radius = 0.5; $this->data = $data; $this->title = new Text(""); $this->title->SetFont(FF_FONT1,FS_BOLD); $this->value = new DisplayValue(); $this->value->Show(); $this->value->SetFormat('%.0f%%'); } //--------------- // PUBLIC METHODS // Set label arrays function SetLegends($aLegend) { $this->legends = array_reverse($aLegend); } function SetSliceColors($aColors) { $this->setslicecolors = $aColors; } function Legend(&$aGraph) { parent::Legend($aGraph); $aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol); } function SetCSIMTargets($targets,$alts=null) { $this->csimtargets = $targets; $this->csimalts = $alts; } // Should the slices be separated by a line? If color is specified as "" no line // will be used to separate pie slices. function SetEdge($aColor,$aWeight=1) { $this->edgecolor = $aColor; $this->edgeweight = $aWeight; } // Specify projection angle for 3D in degrees // Must be between 20 and 70 degrees function SetAngle($a) { if( $a<5 || $a>90 ) JpGraphError::Raise("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees."); else $this->angle = $a; } function AddSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle $sa *= M_PI/180; $ea *= M_PI/180; //add coordinates of the centre to the map $coords = "$xc, $yc"; //add coordinates of the first point on the arc to the map $xp = floor($width*cos($sa)/2+$xc); $yp = floor($yc-$height*sin($sa)/2); $coords.= ", $xp, $yp"; //If on the front half, add the thickness offset if ($sa >= M_PI && $sa <= 2*M_PI*1.01) { $yp = floor($yp+$thick); $coords.= ", $xp, $yp"; } //add coordinates every 0.2 radians $a=$sa+0.2; while ($a<$ea) { $xp = floor($width*cos($a)/2+$xc); if ($a >= M_PI && $a <= 2*M_PI*1.01) { $yp = floor($yc-($height*sin($a)/2)+$thick); } else { $yp = floor($yc-$height*sin($a)/2); } $coords.= ", $xp, $yp"; $a += 0.2; } //Add the last point on the arc $xp = floor($width*cos($ea)/2+$xc); $yp = floor($yc-$height*sin($ea)/2); if ($ea >= M_PI && $ea <= 2*M_PI*1.01) { $coords.= ", $xp, ".floor($yp+$thick); } $coords.= ", $xp, $yp"; $alt=''; if( !empty($this->csimalts[$i]) ) { $tmp=sprintf($this->csimalts[$i],$this->data[$i]); $alt="alt=\"$tmp\" title=\"$tmp\""; } if( !empty($this->csimtargets[$i]) ) $this->csimareas .= "csimtargets[$i]."\" $alt>\n"; } function SetLabels($aLabels,$aLblPosAdj="auto") { $this->labels = $aLabels; $this->ilabelposadj=$aLblPosAdj; } // Distance from the pie to the labels function SetLabelMargin($m) { assert($m>0 && $m<1); $this->labelmargin=$m; } // Show a thin line from the pie to the label for a specific slice function ShowLabelHint($f=true) { $this->showlabelhint=$f; } // Set color of hint line to label for each slice function SetLabelHintColor($c) { $this->labelhintcolor=$c; } function SetHeight($aHeight) { $this->iThickness = $aHeight; } // Normalize Angle between 0-360 function NormAngle($a) { // Normalize anle to 0 to 2M_PI // if( $a > 0 ) { while($a > 360) $a -= 360; } else { while($a < 0) $a += 360; } if( $a < 0 ) $a = 360 + $a; if( $a == 360 ) $a=0; return $a; } // Draw one 3D pie slice at position ($xc,$yc) with height $z function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) { // Due to the way the 3D Pie algorithm works we are // guaranteed that any slice we get into this method // belongs to either the left or right side of the // pie ellipse. Hence, no slice will cross 90 or 270 // point. if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) { JpGraphError::Raise('Internal assertion failed. Pie3D::Pie3DSlice'); exit(1); } $p[] = array(); // Setup pre-calculated values $rsa = $sa/180*M_PI; // to Rad $rea = $ea/180*M_PI; // to Rad $sinsa = sin($rsa); $cossa = cos($rsa); $sinea = sin($rea); $cosea = cos($rea); // p[] is the points for the overall slice and // pt[] is the points for the top pie // Angular step when approximating the arc with a polygon train. $step = 0.05; if( $sa >= 270 ) { if( $ea > 360 || ($ea > 0 && $ea <= 90) ) { if( $ea > 0 && $ea <= 90 ) { // Adjust angle to simplify conditions in loops $rea += 2*M_PI; } $p = array($xc,$yc,$xc,$yc+$z, $xc+$w*$cossa,$z+$yc-$h*$sinsa); $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); for( $a=$rsa; $a < 2*M_PI; $a += $step ) { $tca = cos($a); $tsa = sin($a); $p[] = $xc+$w*$tca; $p[] = $z+$yc-$h*$tsa; $pt[] = $xc+$w*$tca; $pt[] = $yc-$h*$tsa; } $pt[] = $xc+$w; $pt[] = $yc; $p[] = $xc+$w; $p[] = $z+$yc; $p[] = $xc+$w; $p[] = $yc; $p[] = $xc; $p[] = $yc; for( $a=2*M_PI+$step; $a < $rea; $a += $step ) { $pt[] = $xc + $w*cos($a); $pt[] = $yc - $h*sin($a); } $pt[] = $xc+$w*$cosea; $pt[] = $yc-$h*$sinea; $pt[] = $xc; $pt[] = $yc; } else { $p = array($xc,$yc,$xc,$yc+$z, $xc+$w*$cossa,$z+$yc-$h*$sinsa); $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); $rea = $rea == 0.0 ? 2*M_PI : $rea; for( $a=$rsa; $a < $rea; $a += $step ) { $tca = cos($a); $tsa = sin($a); $p[] = $xc+$w*$tca; $p[] = $z+$yc-$h*$tsa; $pt[] = $xc+$w*$tca; $pt[] = $yc-$h*$tsa; } $pt[] = $xc+$w*$cosea; $pt[] = $yc-$h*$sinea; $pt[] = $xc; $pt[] = $yc; $p[] = $xc+$w*$cosea; $p[] = $z+$yc-$h*$sinea; $p[] = $xc+$w*$cosea; $p[] = $yc-$h*$sinea; $p[] = $xc; $p[] = $yc; } } elseif( $sa >= 180 ) { $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea); $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); for( $a=$rea; $a>$rsa; $a -= $step ) { $tca = cos($a); $tsa = sin($a); $p[] = $xc+$w*$tca; $p[] = $z+$yc-$h*$tsa; $pt[] = $xc+$w*$tca; $pt[] = $yc-$h*$tsa; } $pt[] = $xc+$w*$cossa; $pt[] = $yc-$h*$sinsa; $pt[] = $xc; $pt[] = $yc; $p[] = $xc+$w*$cossa; $p[] = $z+$yc-$h*$sinsa; $p[] = $xc+$w*$cossa; $p[] = $yc-$h*$sinsa; $p[] = $xc; $p[] = $yc; } elseif( $sa >= 90 ) { if( $ea > 180 ) { $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea); $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); for( $a=$rea; $a > M_PI; $a -= $step ) { $tca = cos($a); $tsa = sin($a); $p[] = $xc+$w*$tca; $p[] = $z + $yc - $h*$tsa; $pt[] = $xc+$w*$tca; $pt[] = $yc-$h*$tsa; } $p[] = $xc-$w; $p[] = $z+$yc; $p[] = $xc-$w; $p[] = $yc; $p[] = $xc; $p[] = $yc; $pt[] = $xc-$w; $pt[] = $z+$yc; $pt[] = $xc-$w; $pt[] = $yc; for( $a=M_PI-$step; $a > $rsa; $a -= $step ) { $pt[] = $xc + $w*cos($a); $pt[] = $yc - $h*sin($a); } $pt[] = $xc+$w*$cossa; $pt[] = $yc-$h*$sinsa; $pt[] = $xc; $pt[] = $yc; } else { // $sa >= 90 && $ea <= 180 $p = array($xc,$yc,$xc,$yc+$z, $xc+$w*$cosea,$z+$yc-$h*$sinea, $xc+$w*$cosea,$yc-$h*$sinea, $xc,$yc); $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); for( $a=$rea; $a>$rsa; $a -= $step ) { $pt[] = $xc + $w*cos($a); $pt[] = $yc - $h*sin($a); } $pt[] = $xc+$w*$cossa; $pt[] = $yc-$h*$sinsa; $pt[] = $xc; $pt[] = $yc; } } else { // sa > 0 && ea < 90 $p = array($xc,$yc,$xc,$yc+$z, $xc+$w*$cossa,$z+$yc-$h*$sinsa, $xc+$w*$cossa,$yc-$h*$sinsa, $xc,$yc); $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); for( $a=$rsa; $a < $rea; $a += $step ) { $pt[] = $xc + $w*cos($a); $pt[] = $yc - $h*sin($a); } $pt[] = $xc+$w*$cosea; $pt[] = $yc-$h*$sinea; $pt[] = $xc; $pt[] = $yc; } $img->PushColor($fillcolor.":".$shadow); $img->FilledPolygon($p); $img->PopColor(); $img->PushColor($fillcolor); $img->FilledPolygon($pt); $img->PopColor(); } // Draw a 3D Pie function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z, $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) { //--------------------------------------------------------------------------- // As usual the algorithm get more complicated than I originally // envisioned. I believe that this is as simple as it is possible // to do it with the features I want. It's a good exercise to start // thinking on how to do this to convince your self that all this // is really needed for the general case. // // The algorithm two draw 3D pies without "real 3D" is done in // two steps. // First imagine the pie cut in half through a thought line between // 12'a clock and 6'a clock. It now easy to imagine that we can plot // the individual slices for each half by starting with the topmost // pie slice and continue down to 6'a clock. // // In the algortithm this is done in three principal steps // Step 1. Do the knife cut to ensure by splitting slices that extends // over the cut line. This is done by splitting the original slices into // upto 3 subslices. // Step 2. Find the top slice for each half // Step 3. Draw the slices from top to bottom // // The thing that slightly complicates this scheme with all the // angle comparisons below is that we can have an arbitrary start // angle so we must take into account the different equivalence classes. // For the same reason we must walk through the angle array in a // modulo fashion. // // Limitations of algorithm: // * A small exploded slice which crosses the 270 degree point // will get slightly nagged close to the center due to the fact that // we print the slices in Z-order and that the slice left part // get printed first and might get slightly nagged by a larger // slice on the right side just before the right part of the small // slice. Not a major problem though. //--------------------------------------------------------------------------- // Determine the height of the ellippse which gives an // indication of the inclination angle $h = ($angle/90.0)*$d; $sum = 0; for($i=0; $ilabeltype == 2 ) { $this->adjusted_data = $this->AdjPercentage($data); } // Setup the start $accsum = 0; $a = $startangle; $a = $this->NormAngle($a); // // Step 1 . Split all slices that crosses 90 or 270 // $idx=0; $adjexplode=array(); $numcolors = count($colors); for($i=0; $iexplode_radius[$i]) ) $this->explode_radius[$i]=0; $expscale=1; if( $aaoption == 1 ) $expscale=2; $la = $a + $da/2; $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale, $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale ); $adjexplode[$idx] = $explode; $labeldata[$i] = array($la,$explode[0],$explode[1]); $originalangles[$i] = array($a,$a+$da); $ne = $this->NormAngle($a+$da); if( $da <= 180 ) { // If the slice size is <= 90 it can at maximum cut across // one boundary (either 90 or 270) where it needs to be split $split=-1; // no split if( ($da<=90 && ($a <= 90 && $ne > 90)) || (($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) { $split = 90; } elseif( ($da<=90 && ($a <= 270 && $ne > 270)) || (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) { $split = 270; } if( $split > 0 ) { // split in two $angles[$idx] = array($a,$split); $adjcolors[$idx] = $colors[$i % $numcolors]; $adjexplode[$idx] = $explode; $angles[++$idx] = array($split,$ne); $adjcolors[$idx] = $colors[$i % $numcolors]; $adjexplode[$idx] = $explode; } else { // no split $angles[$idx] = array($a,$ne); $adjcolors[$idx] = $colors[$i % $numcolors]; $adjexplode[$idx] = $explode; } } else { // da>180 // Slice may, depending on position, cross one or two // bonudaries if( $a < 90 ) $split = 90; elseif( $a <= 270 ) $split = 270; else $split = 90; $angles[$idx] = array($a,$split); $adjcolors[$idx] = $colors[$i % $numcolors]; $adjexplode[$idx] = $explode; //if( $a+$da > 360-$split ) { // For slices larger than 270 degrees we might cross // another boundary as well. This means that we must // split the slice further. The comparison gets a little // bit complicated since we must take into accound that // a pie might have a startangle >0 and hence a slice might // wrap around the 0 angle. // Three cases: // a) Slice starts before 90 and hence gets a split=90, but // we must also check if we need to split at 270 // b) Slice starts after 90 but before 270 and slices // crosses 90 (after a wrap around of 0) // c) If start is > 270 (hence the firstr split is at 90) // and the slice is so large that it goes all the way // around 270. if( ($a < 90 && ($a+$da > 270)) || ($a > 90 && $a<=270 && ($a+$da>360+90) ) || ($a > 270 && $this->NormAngle($a+$da)>270) ) { $angles[++$idx] = array($split,360-$split); $adjcolors[$idx] = $colors[$i % $numcolors]; $adjexplode[$idx] = $explode; $angles[++$idx] = array(360-$split,$ne); $adjcolors[$idx] = $colors[$i % $numcolors]; $adjexplode[$idx] = $explode; } else { // Just a simple split to the previous decided // angle. $angles[++$idx] = array($split,$ne); $adjcolors[$idx] = $colors[$i % $numcolors]; $adjexplode[$idx] = $explode; } } $a += $da; $a = $this->NormAngle($a); } // Total number of slices $n = count($angles); for($i=0; $i<$n; ++$i) { list($dbgs,$dbge) = $angles[$i]; } // // Step 2. Find start index (first pie that starts in upper left quadrant) // $minval = $angles[0][0]; $min = 0; for( $i=0; $i<$n; ++$i ) { if( $angles[$i][0] < $minval ) { $minval = $angles[$i][0]; $min = $i; } } $j = $min; $cnt = 0; while( $angles[$j][1] <= 90 ) { $j++; if( $j>=$n) { $j=0; } if( $cnt > $n ) { JpGraphError::Raise("Pie3D Internal error (#1). Trying to wrap twice when looking for start index"); } ++$cnt; } $start = $j; // // Step 3. Print slices in z-order // $cnt = 0; // First stroke all the slices between 90 and 270 (left half circle) // counterclockwise while( $angles[$j][0] < 270 && $aaoption !== 2 ) { list($x,$y) = $adjexplode[$j]; $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1], $z,$adjcolors[$j],$shadow); $last = array($x,$y,$j); $j++; if( $j >= $n ) $j=0; if( $cnt > $n ) { JpGraphError::Raise("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking."); } ++$cnt; } $slice_left = $n-$cnt; $j=$start-1; if($j<0) $j=$n-1; $cnt = 0; // The stroke all slices from 90 to -90 (right half circle) // clockwise while( $cnt < $slice_left && $aaoption !== 2 ) { list($x,$y) = $adjexplode[$j]; $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1], $z,$adjcolors[$j],$shadow); $j--; if( $cnt > $n ) { JpGraphError::Raise("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking."); } if($j<0) $j=$n-1; $cnt++; } // Now do a special thing. Stroke the last slice on the left // halfcircle one more time. This is needed in the case where // the slice close to 270 have been exploded. In that case the // part of the slice close to the center of the pie might be // slightly nagged. if( $aaoption !== 2 ) $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0], $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow); if( $aaoption !== 1 ) { // Now print possible labels and add csim $img->SetFont($this->value->ff,$this->value->fs); $margin = $img->GetFontHeight()/2; for($i=0; $i < count($data); ++$i ) { $la = $labeldata[$i][0]; $x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin); $y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin); if( $la > 180 && $la < 360 ) $y += $z; if( $this->labeltype == 0 ) { if( $sum > 0 ) $l = 100*$data[$i]/$sum; else $l = 0; } elseif( $this->labeltype == 1 ) { $l = $data[$i]; } else { $l = $this->adjusted_data[$i]; } if( isset($this->labels[$i]) && is_string($this->labels[$i]) ) $l=sprintf($this->labels[$i],$l); $this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z); $this->AddSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z, $originalangles[$i][0],$originalangles[$i][1]); } } // // Finally add potential lines in pie // if( $edgecolor=="" || $aaoption !== 0 ) return; $accsum = 0; $a = $startangle; $a = $this->NormAngle($a); $a *= M_PI/180.0; $idx=0; $img->PushColor($edgecolor); $img->SetLineWeight($edgeweight); $fulledge = true; for($i=0; $i < count($data) && $fulledge; ++$i ) { if( empty($this->explode_radius[$i]) ) $this->explode_radius[$i]=0; if( $this->explode_radius[$i] > 0 ) { $fulledge = false; } } for($i=0; $i < count($data); ++$i, ++$idx ) { $da = $data[$i]/$sum * 2*M_PI; $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor, $this->explode_radius[$i],$fulledge); $a += $da; } $img->PopColor(); } function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) { $step = 0.02; if( $exploderadius > 0 ) { $la = ($sa+$ea)/2; $xc += $exploderadius*cos($la); $yc -= $exploderadius*sin($la) * ($h/$w) ; } $p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa)); for($a=$sa; $a < $ea; $a += $step ) { $p[] = $xc + $w*cos($a); $p[] = $yc - $h*sin($a); } $p[] = $xc+$w*cos($ea); $p[] = $yc-$h*sin($ea); $p[] = $xc; $p[] = $yc; $img->SetColor($edgecolor); $img->Polygon($p); // Unfortunately we can't really draw the full edge around the whole of // of the slice if any of the slices are exploded. The reason is that // this algorithm is to simply. There are cases where the edges will // "overwrite" other slices when they have been exploded. // Doing the full, proper 3D hidden lines stiff is actually quite // tricky. So for exploded pies we only draw the top edge. Not perfect // but the "real" solution is much more complicated. if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) { if($sa < M_PI && $ea > M_PI) $sa = M_PI; if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) ) $ea = 2*M_PI; if( $sa >= M_PI && $ea <= 2*M_PI ) { $p = array($xc + $w*cos($sa),$yc - $h*sin($sa), $xc + $w*cos($sa),$z + $yc - $h*sin($sa)); for($a=$sa+$step; $a < $ea; $a += $step ) { $p[] = $xc + $w*cos($a); $p[] = $z + $yc - $h*sin($a); } $p[] = $xc + $w*cos($ea); $p[] = $z + $yc - $h*sin($ea); $p[] = $xc + $w*cos($ea); $p[] = $yc - $h*sin($ea); $img->SetColor($edgecolor); $img->Polygon($p); } } } function Stroke($img,$aaoption=0) { $n = count($this->data); // If user hasn't set the colors use the theme array if( $this->setslicecolors==null ) { $colors = array_keys($img->rgb->rgb_table); sort($colors); $idx_a=$this->themearr[$this->theme]; $ca = array(); $m = count($idx_a); for($i=0; $i < $m; ++$i) $ca[$i] = $colors[$idx_a[$i]]; $ca = array_reverse(array_slice($ca,0,$n)); } else { $ca = $this->setslicecolors; } if( $this->posx <= 1 && $this->posx > 0 ) $xc = round($this->posx*$img->width); else $xc = $this->posx ; if( $this->posy <= 1 && $this->posy > 0 ) $yc = round($this->posy*$img->height); else $yc = $this->posy ; if( $this->radius <= 1 ) { $width = floor($this->radius*min($img->width,$img->height)); // Make sure that the pie doesn't overflow the image border // The 0.9 factor is simply an extra margin to leave some space // between the pie an the border of the image. $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9)); } else { $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ; } // Add a sanity check for width if( $width < 1 ) { JpGraphError::Raise("Width for 3D Pie is 0. Specify a size > 0"); exit(); } // Establish a thickness. By default the thickness is a fifth of the // pie slice width (=pie radius) but since the perspective depends // on the inclination angle we use some heuristics to make the edge // slightly thicker the less the angle. // Has user specified an absolute thickness? In that case use // that instead if( $this->iThickness ) { $thick = $this->iThickness; $thick *= ($aaoption === 1 ? 2 : 1 ); } else $thick = $width/12; $a = $this->angle; if( $a <= 30 ) $thick *= 1.6; elseif( $a <= 40 ) $thick *= 1.4; elseif( $a <= 50 ) $thick *= 1.2; elseif( $a <= 60 ) $thick *= 1.0; elseif( $a <= 70 ) $thick *= 0.8; elseif( $a <= 80 ) $thick *= 0.7; else $thick *= 0.6; $thick = floor($thick); if( $this->explode_all ) for($i=0; $i < $n; ++$i) $this->explode_radius[$i]=$this->explode_r; $this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle, $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight); // Adjust title position if( $aaoption != 1 ) { $this->title->Pos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom"); $this->title->Stroke($img); } } //--------------- // PRIVATE METHODS // Position the labels of each slice function StrokeLabels($label,$img,$a,$xp,$yp,$z) { $this->value->halign="left"; $this->value->valign="top"; $this->value->margin=0; // Position the axis title. // dx, dy is the offset from the top left corner of the bounding box that sorrounds the text // that intersects with the extension of the corresponding axis. The code looks a little // bit messy but this is really the only way of having a reasonable position of the // axis titles. $img->SetFont($this->value->ff,$this->value->fs,$this->value->fsize); $h=$img->GetTextHeight($label); // For numeric values the format of the display value // must be taken into account if( is_numeric($label) ) { if( $label >= 0 ) $w=$img->GetTextWidth(sprintf($this->value->format,$label)); else $w=$img->GetTextWidth(sprintf($this->value->negformat,$label)); } else $w=$img->GetTextWidth($label); while( $a > 2*M_PI ) $a -= 2*M_PI; if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0; if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI; if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1; if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI); if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI; if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI); if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1; if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI); if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0; $x = round($xp-$dx*$w); $y = round($yp-$dy*$h); /* // Mark anchor point for debugging $img->SetColor('red'); $img->Line($xp-10,$yp,$xp+10,$yp); $img->Line($xp,$yp-10,$xp,$yp+10); */ $this->value->Stroke($img,$label,$x,$y); } } // Class /* EOF */ ?>