/** * This module contains a collection of bit-level operations. * * Copyright: Copyright (c) 2005-2008, The D Runtime Project * License: BSD Style, see LICENSE * Authors: Walter Bright, Don Clugston, Sean Kelly */ module bitmanip; version( DDoc ) { /** * Scans the bits in v starting with bit 0, looking * for the first set bit. * Returns: * The bit number of the first bit set. * The return value is undefined if v is zero. */ int bsf( uint v ); /** * Scans the bits in v from the most significant bit * to the least significant bit, looking * for the first set bit. * Returns: * The bit number of the first bit set. * The return value is undefined if v is zero. * Example: * --- * import bitmanip; * * int main() * { * uint v; * int x; * * v = 0x21; * x = bsf(v); * printf("bsf(x%x) = %d\n", v, x); * x = bsr(v); * printf("bsr(x%x) = %d\n", v, x); * return 0; * } * --- * Output: * bsf(x21) = 0
* bsr(x21) = 5 */ int bsr( uint v ); /** * Tests the bit. */ int bt( uint* p, uint bitnum ); /** * Tests and complements the bit. */ int btc( uint* p, uint bitnum ); /** * Tests and resets (sets to 0) the bit. */ int btr( uint* p, uint bitnum ); /** * Tests and sets the bit. * Params: * p = a non-NULL pointer to an array of uints. * index = a bit number, starting with bit 0 of p[0], * and progressing. It addresses bits like the expression: --- p[index / (uint.sizeof*8)] & (1 << (index & ((uint.sizeof*8) - 1))) --- * Returns: * A non-zero value if the bit was set, and a zero * if it was clear. * * Example: * --- import bitmanip; int main() { uint array[2]; array[0] = 2; array[1] = 0x100; printf("btc(array, 35) = %d\n", btc(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("btc(array, 35) = %d\n", btc(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("bts(array, 35) = %d\n", bts(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("btr(array, 35) = %d\n", btr(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("bt(array, 1) = %d\n", bt(array, 1)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); return 0; } * --- * Output:
    btc(array, 35) = 0
    array = [0]:x2, [1]:x108
    btc(array, 35) = -1
    array = [0]:x2, [1]:x100
    bts(array, 35) = 0
    array = [0]:x2, [1]:x108
    btr(array, 35) = -1
    array = [0]:x2, [1]:x100
    bt(array, 1) = -1
    array = [0]:x2, [1]:x100
    
*/ int bts( uint* p, uint bitnum ); /** * Swaps bytes in a 4 byte uint end-to-end, i.e. byte 0 becomes * byte 3, byte 1 becomes byte 2, byte 2 becomes byte 1, byte 3 * becomes byte 0. */ uint bswap( uint v ); /** * Reads I/O port at port_address. */ ubyte inp( uint port_address ); /** * ditto */ ushort inpw( uint port_address ); /** * ditto */ uint inpl( uint port_address ); /** * Writes and returns value to I/O port at port_address. */ ubyte outp( uint port_address, ubyte value ); /** * ditto */ ushort outpw( uint port_address, ushort value ); /** * ditto */ uint outpl( uint port_address, uint value ); } else { public import std.intrinsic; } /** * Calculates the number of set bits in a 32-bit integer. */ int popcnt( uint x ) { // Avoid branches, and the potential for cache misses which // could be incurred with a table lookup. // We need to mask alternate bits to prevent the // sum from overflowing. // add neighbouring bits. Each bit is 0 or 1. x = x - ((x>>1) & 0x5555_5555); // now each two bits of x is a number 00,01 or 10. // now add neighbouring pairs x = ((x&0xCCCC_CCCC)>>2) + (x&0x3333_3333); // now each nibble holds 0000-0100. Adding them won't // overflow any more, so we don't need to mask any more // Now add the nibbles, then the bytes, then the words // We still need to mask to prevent double-counting. // Note that if we used a rotate instead of a shift, we // wouldn't need the masks, and could just divide the sum // by 8 to account for the double-counting. // On some CPUs, it may be faster to perform a multiply. x += (x>>4); x &= 0x0F0F_0F0F; x += (x>>8); x &= 0x00FF_00FF; x += (x>>16); x &= 0xFFFF; return x; } /** * Reverses the order of bits in a 32-bit integer. */ uint bitswap( uint x ) { version( D_InlineAsm_X86 ) { asm { // Author: Tiago Gasiba. mov EDX, EAX; shr EAX, 1; and EDX, 0x5555_5555; and EAX, 0x5555_5555; shl EDX, 1; or EAX, EDX; mov EDX, EAX; shr EAX, 2; and EDX, 0x3333_3333; and EAX, 0x3333_3333; shl EDX, 2; or EAX, EDX; mov EDX, EAX; shr EAX, 4; and EDX, 0x0f0f_0f0f; and EAX, 0x0f0f_0f0f; shl EDX, 4; or EAX, EDX; bswap EAX; } } else { // swap odd and even bits x = ((x >> 1) & 0x5555_5555) | ((x & 0x5555_5555) << 1); // swap consecutive pairs x = ((x >> 2) & 0x3333_3333) | ((x & 0x3333_3333) << 2); // swap nibbles x = ((x >> 4) & 0x0F0F_0F0F) | ((x & 0x0F0F_0F0F) << 4); // swap bytes x = ((x >> 8) & 0x00FF_00FF) | ((x & 0x00FF_00FF) << 8); // swap 2-byte long pairs x = ( x >> 16 ) | ( x << 16); return x; } }