/** * These functions are built-in intrinsics to the compiler. * * Intrinsic functions are functions built in to the compiler, usually to take * advantage of specific CPU features that are inefficient to handle via * external functions. The compiler's optimizer and code generator are fully * integrated in with intrinsic functions, bringing to bear their full power on * them. This can result in some surprising speedups. * * Copyright: Public Domain * License: Public Domain * Authors: Walter Bright */ module std.intrinsic; /** * Scans the bits in v starting with bit 0, looking * for the first set bit. * Returns: * The bit number of the first bit set. * The return value is undefined if v is zero. */ int bsf( uint v ); /** * Scans the bits in v from the most significant bit * to the least significant bit, looking * for the first set bit. * Returns: * The bit number of the first bit set. * The return value is undefined if v is zero. * Example: * --- * import std.intrinsic; * * int main() * { * uint v; * int x; * * v = 0x21; * x = bsf(v); * printf("bsf(x%x) = %d\n", v, x); * x = bsr(v); * printf("bsr(x%x) = %d\n", v, x); * return 0; * } * --- * Output: * bsf(x21) = 0
* bsr(x21) = 5 */ int bsr( uint v ); /** * Tests the bit. */ int bt( const uint* p, uint bitnum ); /** * Tests and complements the bit. */ int btc( uint* p, uint bitnum ); /** * Tests and resets (sets to 0) the bit. */ int btr( uint* p, uint bitnum ); /** * Tests and sets the bit. * Params: * p = a non-NULL pointer to an array of uints. * index = a bit number, starting with bit 0 of p[0], * and progressing. It addresses bits like the expression: --- p[index / (uint.sizeof*8)] & (1 << (index & ((uint.sizeof*8) - 1))) --- * Returns: * A non-zero value if the bit was set, and a zero * if it was clear. * * Example: * --- import std.intrinsic; int main() { uint array[2]; array[0] = 2; array[1] = 0x100; printf("btc(array, 35) = %d\n", btc(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("btc(array, 35) = %d\n", btc(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("bts(array, 35) = %d\n", bts(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("btr(array, 35) = %d\n", btr(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("bt(array, 1) = %d\n", bt(array, 1)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); return 0; } * --- * Output:
btc(array, 35) = 0
array = [0]:x2, [1]:x108
btc(array, 35) = -1
array = [0]:x2, [1]:x100
bts(array, 35) = 0
array = [0]:x2, [1]:x108
btr(array, 35) = -1
array = [0]:x2, [1]:x100
bt(array, 1) = -1
array = [0]:x2, [1]:x100
*/ int bts( uint* p, uint bitnum ); /** * Swaps bytes in a 4 byte uint end-to-end, i.e. byte 0 becomes * byte 3, byte 1 becomes byte 2, byte 2 becomes byte 1, byte 3 * becomes byte 0. */ uint bswap( uint v ); /** * Reads I/O port at port_address. */ ubyte inp( uint port_address ); /** * ditto */ ushort inpw( uint port_address ); /** * ditto */ uint inpl( uint port_address ); /** * Writes and returns value to I/O port at port_address. */ ubyte outp( uint port_address, ubyte value ); /** * ditto */ ushort outpw( uint port_address, ushort value ); /** * ditto */ uint outpl( uint port_address, uint value );