]> git.llucax.com Git - software/libev.git/blob - ev.c
8c05776921bb6093430192e94719fd38f6e857d5
[software/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are
9  * met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *
14  *     * Redistributions in binary form must reproduce the above
15  *       copyright notice, this list of conditions and the following
16  *       disclaimer in the documentation and/or other materials provided
17  *       with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33 #endif
34
35 #include <math.h>
36 #include <stdlib.h>
37 #include <unistd.h>
38 #include <fcntl.h>
39 #include <signal.h>
40 #include <stddef.h>
41
42 #include <stdio.h>
43
44 #include <assert.h>
45 #include <errno.h>
46 #include <sys/types.h>
47 #ifndef WIN32
48 # include <sys/wait.h>
49 #endif
50 #include <sys/time.h>
51 #include <time.h>
52
53 /**/
54
55 #ifndef EV_USE_MONOTONIC
56 # define EV_USE_MONOTONIC 1
57 #endif
58
59 #ifndef EV_USE_SELECT
60 # define EV_USE_SELECT 1
61 #endif
62
63 #ifndef EV_USEV_POLL
64 # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65 #endif
66
67 #ifndef EV_USE_EPOLL
68 # define EV_USE_EPOLL 0
69 #endif
70
71 #ifndef EV_USE_KQUEUE
72 # define EV_USE_KQUEUE 0
73 #endif
74
75 #ifndef EV_USE_REALTIME
76 # define EV_USE_REALTIME 1
77 #endif
78
79 /**/
80
81 #ifndef CLOCK_MONOTONIC
82 # undef EV_USE_MONOTONIC
83 # define EV_USE_MONOTONIC 0
84 #endif
85
86 #ifndef CLOCK_REALTIME
87 # undef EV_USE_REALTIME
88 # define EV_USE_REALTIME 0
89 #endif
90
91 /**/
92
93 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
94 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 #define PID_HASHSIZE  16 /* size of pid hash table, must be power of two */
96 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97
98 #include "ev.h"
99
100 #if __GNUC__ >= 3
101 # define expect(expr,value)         __builtin_expect ((expr),(value))
102 # define inline                     inline
103 #else
104 # define expect(expr,value)         (expr)
105 # define inline                     static
106 #endif
107
108 #define expect_false(expr) expect ((expr) != 0, 0)
109 #define expect_true(expr)  expect ((expr) != 0, 1)
110
111 #define NUMPRI    (EV_MAXPRI - EV_MINPRI + 1)
112 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113
114 typedef struct ev_watcher *W;
115 typedef struct ev_watcher_list *WL;
116 typedef struct ev_watcher_time *WT;
117
118 /*****************************************************************************/
119
120 typedef struct
121 {
122   struct ev_watcher_list *head;
123   unsigned char events;
124   unsigned char reify;
125 } ANFD;
126
127 typedef struct
128 {
129   W w;
130   int events;
131 } ANPENDING;
132
133 #ifdef EV_MULTIPLICITY
134 struct ev_loop
135 {
136 # define VAR(name,decl) decl
137 # include "ev_vars.h"
138 };
139 #else
140 # define VAR(name,decl) static decl
141 # include "ev_vars.h"
142 #endif
143 #undef VAR
144
145 /*****************************************************************************/
146
147 inline ev_tstamp
148 ev_time (void)
149 {
150 #if EV_USE_REALTIME
151   struct timespec ts;
152   clock_gettime (CLOCK_REALTIME, &ts);
153   return ts.tv_sec + ts.tv_nsec * 1e-9;
154 #else
155   struct timeval tv;
156   gettimeofday (&tv, 0);
157   return tv.tv_sec + tv.tv_usec * 1e-6;
158 #endif
159 }
160
161 inline ev_tstamp
162 get_clock (void)
163 {
164 #if EV_USE_MONOTONIC
165   if (expect_true (have_monotonic))
166     {
167       struct timespec ts;
168       clock_gettime (CLOCK_MONOTONIC, &ts);
169       return ts.tv_sec + ts.tv_nsec * 1e-9;
170     }
171 #endif
172
173   return ev_time ();
174 }
175
176 ev_tstamp
177 ev_now (EV_P)
178 {
179   return rt_now;
180 }
181
182 #define array_roundsize(base,n) ((n) | 4 & ~3)
183
184 #define array_needsize(base,cur,cnt,init)               \
185   if (expect_false ((cnt) > cur))                       \
186     {                                                   \
187       int newcnt = cur;                                 \
188       do                                                \
189         {                                               \
190           newcnt = array_roundsize (base, newcnt << 1); \
191         }                                               \
192       while ((cnt) > newcnt);                           \
193                                                         \
194       base = realloc (base, sizeof (*base) * (newcnt)); \
195       init (base + cur, newcnt - cur);                  \
196       cur = newcnt;                                     \
197     }
198
199 /*****************************************************************************/
200
201 static void
202 anfds_init (ANFD *base, int count)
203 {
204   while (count--)
205     {
206       base->head   = 0;
207       base->events = EV_NONE;
208       base->reify  = 0;
209
210       ++base;
211     }
212 }
213
214 static void
215 event (EV_P_ W w, int events)
216 {
217   if (w->pending)
218     {
219       pendings [ABSPRI (w)][w->pending - 1].events |= events;
220       return;
221     }
222
223   w->pending = ++pendingcnt [ABSPRI (w)];
224   array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
225   pendings [ABSPRI (w)][w->pending - 1].w      = w;
226   pendings [ABSPRI (w)][w->pending - 1].events = events;
227 }
228
229 static void
230 queue_events (EV_P_ W *events, int eventcnt, int type)
231 {
232   int i;
233
234   for (i = 0; i < eventcnt; ++i)
235     event (EV_A_ events [i], type);
236 }
237
238 static void
239 fd_event (EV_P_ int fd, int events)
240 {
241   ANFD *anfd = anfds + fd;
242   struct ev_io *w;
243
244   for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
245     {
246       int ev = w->events & events;
247
248       if (ev)
249         event (EV_A_ (W)w, ev);
250     }
251 }
252
253 /*****************************************************************************/
254
255 static void
256 fd_reify (EV_P)
257 {
258   int i;
259
260   for (i = 0; i < fdchangecnt; ++i)
261     {
262       int fd = fdchanges [i];
263       ANFD *anfd = anfds + fd;
264       struct ev_io *w;
265
266       int events = 0;
267
268       for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
269         events |= w->events;
270
271       anfd->reify = 0;
272
273       if (anfd->events != events)
274         {
275           method_modify (EV_A_ fd, anfd->events, events);
276           anfd->events = events;
277         }
278     }
279
280   fdchangecnt = 0;
281 }
282
283 static void
284 fd_change (EV_P_ int fd)
285 {
286   if (anfds [fd].reify || fdchangecnt < 0)
287     return;
288
289   anfds [fd].reify = 1;
290
291   ++fdchangecnt;
292   array_needsize (fdchanges, fdchangemax, fdchangecnt, );
293   fdchanges [fdchangecnt - 1] = fd;
294 }
295
296 static void
297 fd_kill (EV_P_ int fd)
298 {
299   struct ev_io *w;
300
301   while ((w = (struct ev_io *)anfds [fd].head))
302     {
303       ev_io_stop (EV_A_ w);
304       event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305     }
306 }
307
308 /* called on EBADF to verify fds */
309 static void
310 fd_ebadf (EV_P)
311 {
312   int fd;
313
314   for (fd = 0; fd < anfdmax; ++fd)
315     if (anfds [fd].events)
316       if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317         fd_kill (EV_A_ fd);
318 }
319
320 /* called on ENOMEM in select/poll to kill some fds and retry */
321 static void
322 fd_enomem (EV_P)
323 {
324   int fd = anfdmax;
325
326   while (fd--)
327     if (anfds [fd].events)
328       {
329         close (fd);
330         fd_kill (EV_A_ fd);
331         return;
332       }
333 }
334
335 /*****************************************************************************/
336
337 static void
338 upheap (WT *timers, int k)
339 {
340   WT w = timers [k];
341
342   while (k && timers [k >> 1]->at > w->at)
343     {
344       timers [k] = timers [k >> 1];
345       timers [k]->active = k + 1;
346       k >>= 1;
347     }
348
349   timers [k] = w;
350   timers [k]->active = k + 1;
351
352 }
353
354 static void
355 downheap (WT *timers, int N, int k)
356 {
357   WT w = timers [k];
358
359   while (k < (N >> 1))
360     {
361       int j = k << 1;
362
363       if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
364         ++j;
365
366       if (w->at <= timers [j]->at)
367         break;
368
369       timers [k] = timers [j];
370       timers [k]->active = k + 1;
371       k = j;
372     }
373
374   timers [k] = w;
375   timers [k]->active = k + 1;
376 }
377
378 /*****************************************************************************/
379
380 typedef struct
381 {
382   struct ev_watcher_list *head;
383   sig_atomic_t volatile gotsig;
384 } ANSIG;
385
386 static ANSIG *signals;
387 static int signalmax;
388
389 static int sigpipe [2];
390 static sig_atomic_t volatile gotsig;
391
392 static void
393 signals_init (ANSIG *base, int count)
394 {
395   while (count--)
396     {
397       base->head   = 0;
398       base->gotsig = 0;
399
400       ++base;
401     }
402 }
403
404 static void
405 sighandler (int signum)
406 {
407   signals [signum - 1].gotsig = 1;
408
409   if (!gotsig)
410     {
411       int old_errno = errno;
412       gotsig = 1;
413       write (sigpipe [1], &signum, 1);
414       errno = old_errno;
415     }
416 }
417
418 static void
419 sigcb (EV_P_ struct ev_io *iow, int revents)
420 {
421   struct ev_watcher_list *w;
422   int signum;
423
424   read (sigpipe [0], &revents, 1);
425   gotsig = 0;
426
427   for (signum = signalmax; signum--; )
428     if (signals [signum].gotsig)
429       {
430         signals [signum].gotsig = 0;
431
432         for (w = signals [signum].head; w; w = w->next)
433           event (EV_A_ (W)w, EV_SIGNAL);
434       }
435 }
436
437 static void
438 siginit (EV_P)
439 {
440 #ifndef WIN32
441   fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
442   fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
443
444   /* rather than sort out wether we really need nb, set it */
445   fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
446   fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
447 #endif
448
449   ev_io_set (&sigev, sigpipe [0], EV_READ);
450   ev_io_start (&sigev);
451   ev_unref (EV_A); /* child watcher should not keep loop alive */
452 }
453
454 /*****************************************************************************/
455
456 #ifndef WIN32
457
458 #ifndef WCONTINUED
459 # define WCONTINUED 0
460 #endif
461
462 static void
463 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
464 {
465   struct ev_child *w;
466
467   for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
468     if (w->pid == pid || !w->pid)
469       {
470         w->priority = sw->priority; /* need to do it *now* */
471         w->rpid     = pid;
472         w->rstatus  = status;
473         event (EV_A_ (W)w, EV_CHILD);
474       }
475 }
476
477 static void
478 childcb (EV_P_ struct ev_signal *sw, int revents)
479 {
480   int pid, status;
481
482   if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
483     {
484       /* make sure we are called again until all childs have been reaped */
485       event (EV_A_ (W)sw, EV_SIGNAL);
486
487       child_reap (EV_A_ sw, pid, pid, status);
488       child_reap (EV_A_ sw,   0, pid, status); /* this might trigger a watcher twice, but event catches that */
489     }
490 }
491
492 #endif
493
494 /*****************************************************************************/
495
496 #if EV_USE_KQUEUE
497 # include "ev_kqueue.c"
498 #endif
499 #if EV_USE_EPOLL
500 # include "ev_epoll.c"
501 #endif
502 #if EV_USEV_POLL
503 # include "ev_poll.c"
504 #endif
505 #if EV_USE_SELECT
506 # include "ev_select.c"
507 #endif
508
509 int
510 ev_version_major (void)
511 {
512   return EV_VERSION_MAJOR;
513 }
514
515 int
516 ev_version_minor (void)
517 {
518   return EV_VERSION_MINOR;
519 }
520
521 /* return true if we are running with elevated privileges and should ignore env variables */
522 static int
523 enable_secure (void)
524 {
525 #ifdef WIN32
526   return 0;
527 #else
528   return getuid () != geteuid ()
529       || getgid () != getegid ();
530 #endif
531 }
532
533 int
534 ev_method (EV_P)
535 {
536   return method;
537 }
538
539 int
540 ev_init (EV_P_ int methods)
541 {
542 #ifdef EV_MULTIPLICITY
543   memset (loop, 0, sizeof (struct ev_loop));
544 #endif
545
546   if (!method)
547     {
548 #if EV_USE_MONOTONIC
549       {
550         struct timespec ts;
551         if (!clock_gettime (CLOCK_MONOTONIC, &ts))
552           have_monotonic = 1;
553       }
554 #endif
555
556       rt_now    = ev_time ();
557       mn_now    = get_clock ();
558       now_floor = mn_now;
559       diff      = rt_now - mn_now;
560
561       if (pipe (sigpipe))
562         return 0;
563
564       if (methods == EVMETHOD_AUTO)
565         if (!enable_secure () && getenv ("LIBmethodS"))
566           methods = atoi (getenv ("LIBmethodS"));
567         else
568           methods = EVMETHOD_ANY;
569
570       method = 0;
571 #if EV_USE_KQUEUE
572       if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
573 #endif
574 #if EV_USE_EPOLL
575       if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init  (EV_A_ methods);
576 #endif
577 #if EV_USEV_POLL
578       if (!method && (methods & EVMETHOD_POLL  )) method = poll_init   (EV_A_ methods);
579 #endif
580 #if EV_USE_SELECT
581       if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
582 #endif
583
584       if (method)
585         {
586           ev_watcher_init (&sigev, sigcb);
587           ev_set_priority (&sigev, EV_MAXPRI);
588           siginit (EV_A);
589
590 #ifndef WIN32
591           ev_signal_init (&childev, childcb, SIGCHLD);
592           ev_set_priority (&childev, EV_MAXPRI);
593           ev_signal_start (EV_A_ &childev);
594           ev_unref (EV_A); /* child watcher should not keep loop alive */
595 #endif
596         }
597     }
598
599   return method;
600 }
601
602 /*****************************************************************************/
603
604 void
605 ev_fork_prepare (void)
606 {
607   /* nop */
608 }
609
610 void
611 ev_fork_parent (void)
612 {
613   /* nop */
614 }
615
616 void
617 ev_fork_child (void)
618 {
619 #if EV_USE_EPOLL
620   if (method == EVMETHOD_EPOLL)
621     epoll_postfork_child ();
622 #endif
623
624   ev_io_stop (&sigev);
625   close (sigpipe [0]);
626   close (sigpipe [1]);
627   pipe (sigpipe);
628   siginit ();
629 }
630
631 /*****************************************************************************/
632
633 static void
634 call_pending (EV_P)
635 {
636   int pri;
637
638   for (pri = NUMPRI; pri--; )
639     while (pendingcnt [pri])
640       {
641         ANPENDING *p = pendings [pri] + --pendingcnt [pri];
642
643         if (p->w)
644           {
645             p->w->pending = 0;
646             p->w->cb (EV_A_ p->w, p->events);
647           }
648       }
649 }
650
651 static void
652 timers_reify (EV_P)
653 {
654   while (timercnt && timers [0]->at <= mn_now)
655     {
656       struct ev_timer *w = timers [0];
657
658       /* first reschedule or stop timer */
659       if (w->repeat)
660         {
661           assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
662           w->at = mn_now + w->repeat;
663           downheap ((WT *)timers, timercnt, 0);
664         }
665       else
666         ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
667
668       event ((W)w, EV_TIMEOUT);
669     }
670 }
671
672 static void
673 periodics_reify (EV_P)
674 {
675   while (periodiccnt && periodics [0]->at <= rt_now)
676     {
677       struct ev_periodic *w = periodics [0];
678
679       /* first reschedule or stop timer */
680       if (w->interval)
681         {
682           w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
683           assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
684           downheap ((WT *)periodics, periodiccnt, 0);
685         }
686       else
687         ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
688
689       event (EV_A_ (W)w, EV_PERIODIC);
690     }
691 }
692
693 static void
694 periodics_reschedule (EV_P_ ev_tstamp diff)
695 {
696   int i;
697
698   /* adjust periodics after time jump */
699   for (i = 0; i < periodiccnt; ++i)
700     {
701       struct ev_periodic *w = periodics [i];
702
703       if (w->interval)
704         {
705           ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
706
707           if (fabs (diff) >= 1e-4)
708             {
709               ev_periodic_stop (EV_A_ w);
710               ev_periodic_start (EV_A_ w);
711
712               i = 0; /* restart loop, inefficient, but time jumps should be rare */
713             }
714         }
715     }
716 }
717
718 inline int
719 time_update_monotonic (EV_P)
720 {
721   mn_now = get_clock ();
722
723   if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
724     {
725       rt_now = mn_now + diff;
726       return 0;
727     }
728   else
729     {
730       now_floor = mn_now;
731       rt_now = ev_time ();
732       return 1;
733     }
734 }
735
736 static void
737 time_update (EV_P)
738 {
739   int i;
740
741 #if EV_USE_MONOTONIC
742   if (expect_true (have_monotonic))
743     {
744       if (time_update_monotonic (EV_A))
745         {
746           ev_tstamp odiff = diff;
747
748           for (i = 4; --i; ) /* loop a few times, before making important decisions */
749             {
750               diff = rt_now - mn_now;
751
752               if (fabs (odiff - diff) < MIN_TIMEJUMP)
753                 return; /* all is well */
754
755               rt_now    = ev_time ();
756               mn_now    = get_clock ();
757               now_floor = mn_now;
758             }
759
760           periodics_reschedule (EV_A_ diff - odiff);
761           /* no timer adjustment, as the monotonic clock doesn't jump */
762         }
763     }
764   else
765 #endif
766     {
767       rt_now = ev_time ();
768
769       if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
770         {
771           periodics_reschedule (EV_A_ rt_now - mn_now);
772
773           /* adjust timers. this is easy, as the offset is the same for all */
774           for (i = 0; i < timercnt; ++i)
775             timers [i]->at += diff;
776         }
777
778       mn_now = rt_now;
779     }
780 }
781
782 void
783 ev_ref (EV_P)
784 {
785   ++activecnt;
786 }
787
788 void
789 ev_unref (EV_P)
790 {
791   --activecnt;
792 }
793
794 static int loop_done;
795
796 void
797 ev_loop (EV_P_ int flags)
798 {
799   double block;
800   loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
801
802   do
803     {
804       /* queue check watchers (and execute them) */
805       if (expect_false (preparecnt))
806         {
807           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
808           call_pending (EV_A);
809         }
810
811       /* update fd-related kernel structures */
812       fd_reify (EV_A);
813
814       /* calculate blocking time */
815
816       /* we only need this for !monotonic clockor timers, but as we basically
817          always have timers, we just calculate it always */
818 #if EV_USE_MONOTONIC
819       if (expect_true (have_monotonic))
820         time_update_monotonic (EV_A);
821       else
822 #endif
823         {
824           rt_now = ev_time ();
825           mn_now = rt_now;
826         }
827
828       if (flags & EVLOOP_NONBLOCK || idlecnt)
829         block = 0.;
830       else
831         {
832           block = MAX_BLOCKTIME;
833
834           if (timercnt)
835             {
836               ev_tstamp to = timers [0]->at - mn_now + method_fudge;
837               if (block > to) block = to;
838             }
839
840           if (periodiccnt)
841             {
842               ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
843               if (block > to) block = to;
844             }
845
846           if (block < 0.) block = 0.;
847         }
848
849       method_poll (EV_A_ block);
850
851       /* update rt_now, do magic */
852       time_update (EV_A);
853
854       /* queue pending timers and reschedule them */
855       timers_reify (EV_A); /* relative timers called last */
856       periodics_reify (EV_A); /* absolute timers called first */
857
858       /* queue idle watchers unless io or timers are pending */
859       if (!pendingcnt)
860         queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
861
862       /* queue check watchers, to be executed first */
863       if (checkcnt)
864         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
865
866       call_pending (EV_A);
867     }
868   while (activecnt && !loop_done);
869
870   if (loop_done != 2)
871     loop_done = 0;
872 }
873
874 void
875 ev_unloop (EV_P_ int how)
876 {
877   loop_done = how;
878 }
879
880 /*****************************************************************************/
881
882 inline void
883 wlist_add (WL *head, WL elem)
884 {
885   elem->next = *head;
886   *head = elem;
887 }
888
889 inline void
890 wlist_del (WL *head, WL elem)
891 {
892   while (*head)
893     {
894       if (*head == elem)
895         {
896           *head = elem->next;
897           return;
898         }
899
900       head = &(*head)->next;
901     }
902 }
903
904 inline void
905 ev_clear_pending (EV_P_ W w)
906 {
907   if (w->pending)
908     {
909       pendings [ABSPRI (w)][w->pending - 1].w = 0;
910       w->pending = 0;
911     }
912 }
913
914 inline void
915 ev_start (EV_P_ W w, int active)
916 {
917   if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
918   if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
919
920   w->active = active;
921   ev_ref (EV_A);
922 }
923
924 inline void
925 ev_stop (EV_P_ W w)
926 {
927   ev_unref (EV_A);
928   w->active = 0;
929 }
930
931 /*****************************************************************************/
932
933 void
934 ev_io_start (EV_P_ struct ev_io *w)
935 {
936   int fd = w->fd;
937
938   if (ev_is_active (w))
939     return;
940
941   assert (("ev_io_start called with negative fd", fd >= 0));
942
943   ev_start (EV_A_ (W)w, 1);
944   array_needsize (anfds, anfdmax, fd + 1, anfds_init);
945   wlist_add ((WL *)&anfds[fd].head, (WL)w);
946
947   fd_change (EV_A_ fd);
948 }
949
950 void
951 ev_io_stop (EV_P_ struct ev_io *w)
952 {
953   ev_clear_pending (EV_A_ (W)w);
954   if (!ev_is_active (w))
955     return;
956
957   wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
958   ev_stop (EV_A_ (W)w);
959
960   fd_change (EV_A_ w->fd);
961 }
962
963 void
964 ev_timer_start (EV_P_ struct ev_timer *w)
965 {
966   if (ev_is_active (w))
967     return;
968
969   w->at += mn_now;
970
971   assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
972
973   ev_start (EV_A_ (W)w, ++timercnt);
974   array_needsize (timers, timermax, timercnt, );
975   timers [timercnt - 1] = w;
976   upheap ((WT *)timers, timercnt - 1);
977 }
978
979 void
980 ev_timer_stop (EV_P_ struct ev_timer *w)
981 {
982   ev_clear_pending (EV_A_ (W)w);
983   if (!ev_is_active (w))
984     return;
985
986   if (w->active < timercnt--)
987     {
988       timers [w->active - 1] = timers [timercnt];
989       downheap ((WT *)timers, timercnt, w->active - 1);
990     }
991
992   w->at = w->repeat;
993
994   ev_stop (EV_A_ (W)w);
995 }
996
997 void
998 ev_timer_again (EV_P_ struct ev_timer *w)
999 {
1000   if (ev_is_active (w))
1001     {
1002       if (w->repeat)
1003         {
1004           w->at = mn_now + w->repeat;
1005           downheap ((WT *)timers, timercnt, w->active - 1);
1006         }
1007       else
1008         ev_timer_stop (EV_A_ w);
1009     }
1010   else if (w->repeat)
1011     ev_timer_start (EV_A_ w);
1012 }
1013
1014 void
1015 ev_periodic_start (EV_P_ struct ev_periodic *w)
1016 {
1017   if (ev_is_active (w))
1018     return;
1019
1020   assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1021
1022   /* this formula differs from the one in periodic_reify because we do not always round up */
1023   if (w->interval)
1024     w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1025
1026   ev_start (EV_A_ (W)w, ++periodiccnt);
1027   array_needsize (periodics, periodicmax, periodiccnt, );
1028   periodics [periodiccnt - 1] = w;
1029   upheap ((WT *)periodics, periodiccnt - 1);
1030 }
1031
1032 void
1033 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1034 {
1035   ev_clear_pending (EV_A_ (W)w);
1036   if (!ev_is_active (w))
1037     return;
1038
1039   if (w->active < periodiccnt--)
1040     {
1041       periodics [w->active - 1] = periodics [periodiccnt];
1042       downheap ((WT *)periodics, periodiccnt, w->active - 1);
1043     }
1044
1045   ev_stop (EV_A_ (W)w);
1046 }
1047
1048 #ifndef SA_RESTART
1049 # define SA_RESTART 0
1050 #endif
1051
1052 void
1053 ev_signal_start (EV_P_ struct ev_signal *w)
1054 {
1055   if (ev_is_active (w))
1056     return;
1057
1058   assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1059
1060   ev_start (EV_A_ (W)w, 1);
1061   array_needsize (signals, signalmax, w->signum, signals_init);
1062   wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1063
1064   if (!w->next)
1065     {
1066       struct sigaction sa;
1067       sa.sa_handler = sighandler;
1068       sigfillset (&sa.sa_mask);
1069       sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1070       sigaction (w->signum, &sa, 0);
1071     }
1072 }
1073
1074 void
1075 ev_signal_stop (EV_P_ struct ev_signal *w)
1076 {
1077   ev_clear_pending (EV_A_ (W)w);
1078   if (!ev_is_active (w))
1079     return;
1080
1081   wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1082   ev_stop (EV_A_ (W)w);
1083
1084   if (!signals [w->signum - 1].head)
1085     signal (w->signum, SIG_DFL);
1086 }
1087
1088 void
1089 ev_idle_start (EV_P_ struct ev_idle *w)
1090 {
1091   if (ev_is_active (w))
1092     return;
1093
1094   ev_start (EV_A_ (W)w, ++idlecnt);
1095   array_needsize (idles, idlemax, idlecnt, );
1096   idles [idlecnt - 1] = w;
1097 }
1098
1099 void
1100 ev_idle_stop (EV_P_ struct ev_idle *w)
1101 {
1102   ev_clear_pending (EV_A_ (W)w);
1103   if (ev_is_active (w))
1104     return;
1105
1106   idles [w->active - 1] = idles [--idlecnt];
1107   ev_stop (EV_A_ (W)w);
1108 }
1109
1110 void
1111 ev_prepare_start (EV_P_ struct ev_prepare *w)
1112 {
1113   if (ev_is_active (w))
1114     return;
1115
1116   ev_start (EV_A_ (W)w, ++preparecnt);
1117   array_needsize (prepares, preparemax, preparecnt, );
1118   prepares [preparecnt - 1] = w;
1119 }
1120
1121 void
1122 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1123 {
1124   ev_clear_pending (EV_A_ (W)w);
1125   if (ev_is_active (w))
1126     return;
1127
1128   prepares [w->active - 1] = prepares [--preparecnt];
1129   ev_stop (EV_A_ (W)w);
1130 }
1131
1132 void
1133 ev_check_start (EV_P_ struct ev_check *w)
1134 {
1135   if (ev_is_active (w))
1136     return;
1137
1138   ev_start (EV_A_ (W)w, ++checkcnt);
1139   array_needsize (checks, checkmax, checkcnt, );
1140   checks [checkcnt - 1] = w;
1141 }
1142
1143 void
1144 ev_check_stop (EV_P_ struct ev_check *w)
1145 {
1146   ev_clear_pending (EV_A_ (W)w);
1147   if (ev_is_active (w))
1148     return;
1149
1150   checks [w->active - 1] = checks [--checkcnt];
1151   ev_stop (EV_A_ (W)w);
1152 }
1153
1154 void
1155 ev_child_start (EV_P_ struct ev_child *w)
1156 {
1157   if (ev_is_active (w))
1158     return;
1159
1160   ev_start (EV_A_ (W)w, 1);
1161   wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1162 }
1163
1164 void
1165 ev_child_stop (EV_P_ struct ev_child *w)
1166 {
1167   ev_clear_pending (EV_A_ (W)w);
1168   if (ev_is_active (w))
1169     return;
1170
1171   wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1172   ev_stop (EV_A_ (W)w);
1173 }
1174
1175 /*****************************************************************************/
1176
1177 struct ev_once
1178 {
1179   struct ev_io io;
1180   struct ev_timer to;
1181   void (*cb)(int revents, void *arg);
1182   void *arg;
1183 };
1184
1185 static void
1186 once_cb (EV_P_ struct ev_once *once, int revents)
1187 {
1188   void (*cb)(int revents, void *arg) = once->cb;
1189   void *arg = once->arg;
1190
1191   ev_io_stop (EV_A_ &once->io);
1192   ev_timer_stop (EV_A_ &once->to);
1193   free (once);
1194
1195   cb (revents, arg);
1196 }
1197
1198 static void
1199 once_cb_io (EV_P_ struct ev_io *w, int revents)
1200 {
1201   once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1202 }
1203
1204 static void
1205 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1206 {
1207   once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1208 }
1209
1210 void
1211 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1212 {
1213   struct ev_once *once = malloc (sizeof (struct ev_once));
1214
1215   if (!once)
1216     cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1217   else
1218     {
1219       once->cb  = cb;
1220       once->arg = arg;
1221
1222       ev_watcher_init (&once->io, once_cb_io);
1223       if (fd >= 0)
1224         {
1225           ev_io_set (&once->io, fd, events);
1226           ev_io_start (EV_A_ &once->io);
1227         }
1228
1229       ev_watcher_init (&once->to, once_cb_to);
1230       if (timeout >= 0.)
1231         {
1232           ev_timer_set (&once->to, timeout, 0.);
1233           ev_timer_start (EV_A_ &once->to);
1234         }
1235     }
1236 }
1237
1238 /*****************************************************************************/
1239
1240 #if 0
1241
1242 struct ev_io wio;
1243
1244 static void
1245 sin_cb (struct ev_io *w, int revents)
1246 {
1247   fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1248 }
1249
1250 static void
1251 ocb (struct ev_timer *w, int revents)
1252 {
1253   //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1254   ev_timer_stop (w);
1255   ev_timer_start (w);
1256 }
1257
1258 static void
1259 scb (struct ev_signal *w, int revents)
1260 {
1261   fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1262   ev_io_stop (&wio);
1263   ev_io_start (&wio);
1264 }
1265
1266 static void
1267 gcb (struct ev_signal *w, int revents)
1268 {
1269   fprintf (stderr, "generic %x\n", revents);
1270
1271 }
1272
1273 int main (void)
1274 {
1275   ev_init (0);
1276
1277   ev_io_init (&wio, sin_cb, 0, EV_READ);
1278   ev_io_start (&wio);
1279
1280   struct ev_timer t[10000];
1281
1282 #if 0
1283   int i;
1284   for (i = 0; i < 10000; ++i)
1285     {
1286       struct ev_timer *w = t + i;
1287       ev_watcher_init (w, ocb, i);
1288       ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1289       ev_timer_start (w);
1290       if (drand48 () < 0.5)
1291         ev_timer_stop (w);
1292     }
1293 #endif
1294
1295   struct ev_timer t1;
1296   ev_timer_init (&t1, ocb, 5, 10);
1297   ev_timer_start (&t1);
1298
1299   struct ev_signal sig;
1300   ev_signal_init (&sig, scb, SIGQUIT);
1301   ev_signal_start (&sig);
1302
1303   struct ev_check cw;
1304   ev_check_init (&cw, gcb);
1305   ev_check_start (&cw);
1306
1307   struct ev_idle iw;
1308   ev_idle_init (&iw, gcb);
1309   ev_idle_start (&iw);
1310
1311   ev_loop (0);
1312
1313   return 0;
1314 }
1315
1316 #endif
1317
1318
1319
1320