#include <ev.h>
-=head1 EXAMPLE PROGRAM
+=head2 EXAMPLE PROGRAM
#include <ev.h>
=head1 DESCRIPTION
+The newest version of this document is also available as a html-formatted
+web page you might find easier to navigate when reading it for the first
+time: L<http://cvs.schmorp.de/libev/ev.html>.
+
Libev is an event loop: you register interest in certain events (such as a
-file descriptor being readable or a timeout occuring), and it will manage
+file descriptor being readable or a timeout occurring), and it will manage
these event sources and provide your program with events.
To do this, it must take more or less complete control over your process
details of the event, and then hand it over to libev by I<starting> the
watcher.
-=head1 FEATURES
+=head2 FEATURES
Libev supports C<select>, C<poll>, the Linux-specific C<epoll>, the
BSD-specific C<kqueue> and the Solaris-specific event port mechanisms
L<benchmark|http://libev.schmorp.de/bench.html> comparing it to libevent
for example).
-=head1 CONVENTIONS
+=head2 CONVENTIONS
Libev is very configurable. In this manual the default configuration will
be described, which supports multiple event loops. For more info about
loops, then all functions taking an initial argument of name C<loop>
(which is always of type C<struct ev_loop *>) will not have this argument.
-=head1 TIME REPRESENTATION
+=head2 TIME REPRESENTATION
Libev represents time as a single floating point number, representing the
(fractional) number of seconds since the (POSIX) epoch (somewhere near
the beginning of 1970, details are complicated, don't ask). This type is
called C<ev_tstamp>, which is what you should use too. It usually aliases
to the C<double> type in C, and when you need to do any calculations on
-it, you should treat it as such.
+it, you should treat it as some floatingpoint value. Unlike the name
+component C<stamp> might indicate, it is also used for time differences
+throughout libev.
=head1 GLOBAL FUNCTIONS
C<ev_now> function is usually faster and also often returns the timestamp
you actually want to know.
+=item ev_sleep (ev_tstamp interval)
+
+Sleep for the given interval: The current thread will be blocked until
+either it is interrupted or the given time interval has passed. Basically
+this is a subsecond-resolution C<sleep ()>.
+
=item int ev_version_major ()
=item int ev_version_minor ()
-You can find out the major and minor version numbers of the library
+You can find out the major and minor ABI version numbers of the library
you linked against by calling the functions C<ev_version_major> and
C<ev_version_minor>. If you want, you can compare against the global
symbols C<EV_VERSION_MAJOR> and C<EV_VERSION_MINOR>, which specify the
version of the library your program was compiled against.
+These version numbers refer to the ABI version of the library, not the
+release version.
+
Usually, it's a good idea to terminate if the major versions mismatch,
-as this indicates an incompatible change. Minor versions are usually
+as this indicates an incompatible change. Minor versions are usually
compatible to older versions, so a larger minor version alone is usually
not a problem.
If you don't know what event loop to use, use the one returned from this
function.
+The default loop is the only loop that can handle C<ev_signal> and
+C<ev_child> watchers, and to do this, it always registers a handler
+for C<SIGCHLD>. If this is a problem for your app you can either
+create a dynamic loop with C<ev_loop_new> that doesn't do that, or you
+can simply overwrite the C<SIGCHLD> signal handler I<after> calling
+C<ev_default_init>.
+
The flags argument can be used to specify special behaviour or specific
backends to use, and is usually specified as C<0> (or C<EVFLAG_AUTO>).
This is your standard select(2) backend. Not I<completely> standard, as
libev tries to roll its own fd_set with no limits on the number of fds,
but if that fails, expect a fairly low limit on the number of fds when
-using this backend. It doesn't scale too well (O(highest_fd)), but its usually
-the fastest backend for a low number of fds.
+using this backend. It doesn't scale too well (O(highest_fd)), but its
+usually the fastest backend for a low number of (low-numbered :) fds.
+
+To get good performance out of this backend you need a high amount of
+parallelity (most of the file descriptors should be busy). If you are
+writing a server, you should C<accept ()> in a loop to accept as many
+connections as possible during one iteration. You might also want to have
+a look at C<ev_set_io_collect_interval ()> to increase the amount of
+readyness notifications you get per iteration.
=item C<EVBACKEND_POLL> (value 2, poll backend, available everywhere except on windows)
-And this is your standard poll(2) backend. It's more complicated than
-select, but handles sparse fds better and has no artificial limit on the
-number of fds you can use (except it will slow down considerably with a
-lot of inactive fds). It scales similarly to select, i.e. O(total_fds).
+And this is your standard poll(2) backend. It's more complicated
+than select, but handles sparse fds better and has no artificial
+limit on the number of fds you can use (except it will slow down
+considerably with a lot of inactive fds). It scales similarly to select,
+i.e. O(total_fds). See the entry for C<EVBACKEND_SELECT>, above, for
+performance tips.
=item C<EVBACKEND_EPOLL> (value 4, Linux)
For few fds, this backend is a bit little slower than poll and select,
-but it scales phenomenally better. While poll and select usually scale like
-O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
-either O(1) or O(active_fds).
-
-While stopping and starting an I/O watcher in the same iteration will
-result in some caching, there is still a syscall per such incident
+but it scales phenomenally better. While poll and select usually scale
+like O(total_fds) where n is the total number of fds (or the highest fd),
+epoll scales either O(1) or O(active_fds). The epoll design has a number
+of shortcomings, such as silently dropping events in some hard-to-detect
+cases and rewiring a syscall per fd change, no fork support and bad
+support for dup.
+
+While stopping, setting and starting an I/O watcher in the same iteration
+will result in some caching, there is still a syscall per such incident
(because the fd could point to a different file description now), so its
-best to avoid that. Also, dup()ed file descriptors might not work very
-well if you register events for both fds.
+best to avoid that. Also, C<dup ()>'ed file descriptors might not work
+very well if you register events for both fds.
Please note that epoll sometimes generates spurious notifications, so you
need to use non-blocking I/O or other means to avoid blocking when no data
(or space) is available.
+Best performance from this backend is achieved by not unregistering all
+watchers for a file descriptor until it has been closed, if possible, i.e.
+keep at least one watcher active per fd at all times.
+
+While nominally embeddeble in other event loops, this feature is broken in
+all kernel versions tested so far.
+
=item C<EVBACKEND_KQUEUE> (value 8, most BSD clones)
Kqueue deserves special mention, as at the time of this writing, it
-was broken on all BSDs except NetBSD (usually it doesn't work with
-anything but sockets and pipes, except on Darwin, where of course its
-completely useless). For this reason its not being "autodetected"
+was broken on all BSDs except NetBSD (usually it doesn't work reliably
+with anything but sockets and pipes, except on Darwin, where of course
+it's completely useless). For this reason it's not being "autodetected"
unless you explicitly specify it explicitly in the flags (i.e. using
-C<EVBACKEND_KQUEUE>).
+C<EVBACKEND_KQUEUE>) or libev was compiled on a known-to-be-good (-enough)
+system like NetBSD.
+
+You still can embed kqueue into a normal poll or select backend and use it
+only for sockets (after having made sure that sockets work with kqueue on
+the target platform). See C<ev_embed> watchers for more info.
It scales in the same way as the epoll backend, but the interface to the
kernel is more efficient (which says nothing about its actual speed, of
-course). While starting and stopping an I/O watcher does not cause an
-extra syscall as with epoll, it still adds up to four event changes per
-incident, so its best to avoid that.
+course). While stopping, setting and starting an I/O watcher does never
+cause an extra syscall as with C<EVBACKEND_EPOLL>, it still adds up to
+two event changes per incident, support for C<fork ()> is very bad and it
+drops fds silently in similarly hard-to-detect cases.
+
+This backend usually performs well under most conditions.
+
+While nominally embeddable in other event loops, this doesn't work
+everywhere, so you might need to test for this. And since it is broken
+almost everywhere, you should only use it when you have a lot of sockets
+(for which it usually works), by embedding it into another event loop
+(e.g. C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>) and using it only for
+sockets.
=item C<EVBACKEND_DEVPOLL> (value 16, Solaris 8)
-This is not implemented yet (and might never be).
+This is not implemented yet (and might never be, unless you send me an
+implementation). According to reports, C</dev/poll> only supports sockets
+and is not embeddable, which would limit the usefulness of this backend
+immensely.
=item C<EVBACKEND_PORT> (value 32, Solaris 10)
-This uses the Solaris 10 port mechanism. As with everything on Solaris,
+This uses the Solaris 10 event port mechanism. As with everything on Solaris,
it's really slow, but it still scales very well (O(active_fds)).
-Please note that solaris ports can result in a lot of spurious
+Please note that solaris event ports can deliver a lot of spurious
notifications, so you need to use non-blocking I/O or other means to avoid
blocking when no data (or space) is available.
+While this backend scales well, it requires one system call per active
+file descriptor per loop iteration. For small and medium numbers of file
+descriptors a "slow" C<EVBACKEND_SELECT> or C<EVBACKEND_POLL> backend
+might perform better.
+
+On the positive side, ignoring the spurious readyness notifications, this
+backend actually performed to specification in all tests and is fully
+embeddable, which is a rare feat among the OS-specific backends.
+
=item C<EVBACKEND_ALL>
Try all backends (even potentially broken ones that wouldn't be tried
with C<EVFLAG_AUTO>). Since this is a mask, you can do stuff such as
C<EVBACKEND_ALL & ~EVBACKEND_KQUEUE>.
+It is definitely not recommended to use this flag.
+
=back
If one or more of these are ored into the flags value, then only these
-backends will be tried (in the reverse order as given here). If none are
-specified, most compiled-in backend will be tried, usually in reverse
-order of their flag values :)
+backends will be tried (in the reverse order as listed here). If none are
+specified, all backends in C<ev_recommended_backends ()> will be tried.
The most typical usage is like this:
sense, so e.g. C<ev_is_active> might still return true. It is your
responsibility to either stop all watchers cleanly yoursef I<before>
calling this function, or cope with the fact afterwards (which is usually
-the easiest thing, youc na just ignore the watchers and/or C<free ()> them
+the easiest thing, you can just ignore the watchers and/or C<free ()> them
for example).
+Note that certain global state, such as signal state, will not be freed by
+this function, and related watchers (such as signal and child watchers)
+would need to be stopped manually.
+
+In general it is not advisable to call this function except in the
+rare occasion where you really need to free e.g. the signal handling
+pipe fds. If you need dynamically allocated loops it is better to use
+C<ev_loop_new> and C<ev_loop_destroy>).
+
=item ev_loop_destroy (loop)
Like C<ev_default_destroy>, but destroys an event loop created by an
received events and started processing them. This timestamp does not
change as long as callbacks are being processed, and this is also the base
time used for relative timers. You can treat it as the timestamp of the
-event occuring (or more correctly, libev finding out about it).
+event occurring (or more correctly, libev finding out about it).
=item ev_loop (loop, int flags)
Here are the gory details of what C<ev_loop> does:
- * If there are no active watchers (reference count is zero), return.
- - Queue prepare watchers and then call all outstanding watchers.
+ - Before the first iteration, call any pending watchers.
+ * If EVFLAG_FORKCHECK was used, check for a fork.
+ - If a fork was detected, queue and call all fork watchers.
+ - Queue and call all prepare watchers.
- If we have been forked, recreate the kernel state.
- Update the kernel state with all outstanding changes.
- Update the "event loop time".
- - Calculate for how long to block.
+ - Calculate for how long to sleep or block, if at all
+ (active idle watchers, EVLOOP_NONBLOCK or not having
+ any active watchers at all will result in not sleeping).
+ - Sleep if the I/O and timer collect interval say so.
- Block the process, waiting for any events.
- Queue all outstanding I/O (fd) events.
- Update the "event loop time" and do time jump handling.
- Call all queued watchers in reverse order (i.e. check watchers first).
Signals and child watchers are implemented as I/O watchers, and will
be handled here by queueing them when their watcher gets executed.
- - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
- were used, return, otherwise continue with step *.
+ - If ev_unloop has been called, or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
+ were used, or there are no active watchers, return, otherwise
+ continue with step *.
-Example: Queue some jobs and then loop until no events are outsanding
+Example: Queue some jobs and then loop until no events are outstanding
anymore.
... queue jobs here, make sure they register event watchers as long
C<EVUNLOOP_ONE>, which will make the innermost C<ev_loop> call return, or
C<EVUNLOOP_ALL>, which will make all nested C<ev_loop> calls return.
+This "unloop state" will be cleared when entering C<ev_loop> again.
+
=item ev_ref (loop)
=item ev_unref (loop)
visible to the libev user and should not keep C<ev_loop> from exiting if
no event watchers registered by it are active. It is also an excellent
way to do this for generic recurring timers or from within third-party
-libraries. Just remember to I<unref after start> and I<ref before stop>.
+libraries. Just remember to I<unref after start> and I<ref before stop>
+(but only if the watcher wasn't active before, or was active before,
+respectively).
Example: Create a signal watcher, but keep it from keeping C<ev_loop>
running when nothing else is active.
ev_ref (loop);
ev_signal_stop (loop, &exitsig);
+=item ev_set_io_collect_interval (loop, ev_tstamp interval)
+
+=item ev_set_timeout_collect_interval (loop, ev_tstamp interval)
+
+These advanced functions influence the time that libev will spend waiting
+for events. Both are by default C<0>, meaning that libev will try to
+invoke timer/periodic callbacks and I/O callbacks with minimum latency.
+
+Setting these to a higher value (the C<interval> I<must> be >= C<0>)
+allows libev to delay invocation of I/O and timer/periodic callbacks to
+increase efficiency of loop iterations.
+
+The background is that sometimes your program runs just fast enough to
+handle one (or very few) event(s) per loop iteration. While this makes
+the program responsive, it also wastes a lot of CPU time to poll for new
+events, especially with backends like C<select ()> which have a high
+overhead for the actual polling but can deliver many events at once.
+
+By setting a higher I<io collect interval> you allow libev to spend more
+time collecting I/O events, so you can handle more events per iteration,
+at the cost of increasing latency. Timeouts (both C<ev_periodic> and
+C<ev_timer>) will be not affected. Setting this to a non-null value will
+introduce an additional C<ev_sleep ()> call into most loop iterations.
+
+Likewise, by setting a higher I<timeout collect interval> you allow libev
+to spend more time collecting timeouts, at the expense of increased
+latency (the watcher callback will be called later). C<ev_io> watchers
+will not be affected. Setting this to a non-null value will not introduce
+any overhead in libev.
+
+Many (busy) programs can usually benefit by setting the io collect
+interval to a value near C<0.1> or so, which is often enough for
+interactive servers (of course not for games), likewise for timeouts. It
+usually doesn't make much sense to set it to a lower value than C<0.01>,
+as this approsaches the timing granularity of most systems.
+
=back
Returns a true value iff the watcher is pending, (i.e. it has outstanding
events but its callback has not yet been invoked). As long as a watcher
is pending (but not active) you must not call an init function on it (but
-C<ev_TYPE_set> is safe) and you must make sure the watcher is available to
-libev (e.g. you cnanot C<free ()> it).
+C<ev_TYPE_set> is safe), you must not change its priority, and you must
+make sure the watcher is available to libev (e.g. you cannot C<free ()>
+it).
=item callback ev_cb (ev_TYPE *watcher)
If you need to suppress invocation when higher priority events are pending
you need to look at C<ev_idle> watchers, which provide this functionality.
+You I<must not> change the priority of a watcher as long as it is active or
+pending.
+
The default priority used by watchers when no priority has been set is
always C<0>, which is supposed to not be too high and not be too low :).
fine, as long as you do not mind that the priority value you query might
or might not have been adjusted to be within valid range.
+=item ev_invoke (loop, ev_TYPE *watcher, int revents)
+
+Invoke the C<watcher> with the given C<loop> and C<revents>. Neither
+C<loop> nor C<revents> need to be valid as long as the watcher callback
+can deal with that fact.
+
+=item int ev_clear_pending (loop, ev_TYPE *watcher)
+
+If the watcher is pending, this function returns clears its pending status
+and returns its C<revents> bitset (as if its callback was invoked). If the
+watcher isn't pending it does nothing and returns C<0>.
+
=back
descriptors to non-blocking mode is also usually a good idea (but not
required if you know what you are doing).
-You have to be careful with dup'ed file descriptors, though. Some backends
-(the linux epoll backend is a notable example) cannot handle dup'ed file
-descriptors correctly if you register interest in two or more fds pointing
-to the same underlying file/socket/etc. description (that is, they share
-the same underlying "file open").
-
If you must do this, then force the use of a known-to-be-good backend
(at the time of this writing, this includes only C<EVBACKEND_SELECT> and
C<EVBACKEND_POLL>).
such as poll (fortunately in our Xlib example, Xlib already does this on
its own, so its quite safe to use).
+=head3 The special problem of disappearing file descriptors
+
+Some backends (e.g. kqueue, epoll) need to be told about closing a file
+descriptor (either by calling C<close> explicitly or by any other means,
+such as C<dup>). The reason is that you register interest in some file
+descriptor, but when it goes away, the operating system will silently drop
+this interest. If another file descriptor with the same number then is
+registered with libev, there is no efficient way to see that this is, in
+fact, a different file descriptor.
+
+To avoid having to explicitly tell libev about such cases, libev follows
+the following policy: Each time C<ev_io_set> is being called, libev
+will assume that this is potentially a new file descriptor, otherwise
+it is assumed that the file descriptor stays the same. That means that
+you I<have> to call C<ev_io_set> (or C<ev_io_init>) when you change the
+descriptor even if the file descriptor number itself did not change.
+
+This is how one would do it normally anyway, the important point is that
+the libev application should not optimise around libev but should leave
+optimisations to libev.
+
+=head3 The special problem of dup'ed file descriptors
+
+Some backends (e.g. epoll), cannot register events for file descriptors,
+but only events for the underlying file descriptions. That means when you
+have C<dup ()>'ed file descriptors or weirder constellations, and register
+events for them, only one file descriptor might actually receive events.
+
+There is no workaround possible except not registering events
+for potentially C<dup ()>'ed file descriptors, or to resort to
+C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>.
+
+=head3 The special problem of fork
+
+Some backends (epoll, kqueue) do not support C<fork ()> at all or exhibit
+useless behaviour. Libev fully supports fork, but needs to be told about
+it in the child.
+
+To support fork in your programs, you either have to call
+C<ev_default_fork ()> or C<ev_loop_fork ()> after a fork in the child,
+enable C<EVFLAG_FORKCHECK>, or resort to C<EVBACKEND_SELECT> or
+C<EVBACKEND_POLL>.
+
+
+=head3 Watcher-Specific Functions
+
=over 4
=item ev_io_init (ev_io *, callback, int fd, int events)
=back
+=head3 Examples
+
Example: Call C<stdin_readable_cb> when STDIN_FILENO has become, well
readable, but only once. Since it is likely line-buffered, you could
attempt to read a whole line in the callback.
but if multiple timers become ready during the same loop iteration then
order of execution is undefined.
+=head3 Watcher-Specific Functions and Data Members
+
=over 4
=item ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)
=back
+=head3 Examples
+
Example: Create a timer that fires after 60 seconds.
static void
periodic watcher to trigger in 10 seconds (by specifiying e.g. C<ev_now ()
+ 10.>) and then reset your system clock to the last year, then it will
take a year to trigger the event (unlike an C<ev_timer>, which would trigger
-roughly 10 seconds later and of course not if you reset your system time
-again).
+roughly 10 seconds later).
They can also be used to implement vastly more complex timers, such as
-triggering an event on eahc midnight, local time.
+triggering an event on each midnight, local time or other, complicated,
+rules.
As with timers, the callback is guarenteed to be invoked only when the
time (C<at>) has been passed, but if multiple periodic timers become ready
during the same loop iteration then order of execution is undefined.
+=head3 Watcher-Specific Functions and Data Members
+
=over 4
=item ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)
=over 4
-=item * absolute timer (interval = reschedule_cb = 0)
+=item * absolute timer (at = time, interval = reschedule_cb = 0)
In this configuration the watcher triggers an event at the wallclock time
C<at> and doesn't repeat. It will not adjust when a time jump occurs,
that is, if it is to be run at January 1st 2011 then it will run when the
system time reaches or surpasses this time.
-=item * non-repeating interval timer (interval > 0, reschedule_cb = 0)
+=item * non-repeating interval timer (at = offset, interval > 0, reschedule_cb = 0)
In this mode the watcher will always be scheduled to time out at the next
-C<at + N * interval> time (for some integer N) and then repeat, regardless
-of any time jumps.
+C<at + N * interval> time (for some integer N, which can also be negative)
+and then repeat, regardless of any time jumps.
This can be used to create timers that do not drift with respect to system
time:
C<ev_periodic> will try to run the callback in this mode at the next possible
time where C<time = at (mod interval)>, regardless of any time jumps.
-=item * manual reschedule mode (reschedule_cb = callback)
+For numerical stability it is preferable that the C<at> value is near
+C<ev_now ()> (the current time), but there is no range requirement for
+this value.
+
+=item * manual reschedule mode (at and interval ignored, reschedule_cb = callback)
In this mode the values for C<interval> and C<at> are both being
ignored. Instead, each time the periodic watcher gets scheduled, the
NOTE: I<This callback MUST NOT stop or destroy any periodic watcher,
ever, or make any event loop modifications>. If you need to stop it,
return C<now + 1e30> (or so, fudge fudge) and stop it afterwards (e.g. by
-starting a prepare watcher).
+starting an C<ev_prepare> watcher, which is legal).
Its prototype is C<ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
ev_tstamp now)>, e.g.:
a different time than the last time it was called (e.g. in a crond like
program when the crontabs have changed).
+=item ev_tstamp offset [read-write]
+
+When repeating, this contains the offset value, otherwise this is the
+absolute point in time (the C<at> value passed to C<ev_periodic_set>).
+
+Can be modified any time, but changes only take effect when the periodic
+timer fires or C<ev_periodic_again> is being called.
+
=item ev_tstamp interval [read-write]
The current interval value. Can be modified any time, but changes only
switched off. Can be changed any time, but changes only take effect when
the periodic timer fires or C<ev_periodic_again> is being called.
+=item ev_tstamp at [read-only]
+
+When active, contains the absolute time that the watcher is supposed to
+trigger next.
+
=back
+=head3 Examples
+
Example: Call a callback every hour, or, more precisely, whenever the
system clock is divisible by 3600. The callback invocation times have
potentially a lot of jittering, but good long-term stability.
watcher for a signal is stopped libev will reset the signal handler to
SIG_DFL (regardless of what it was set to before).
+=head3 Watcher-Specific Functions and Data Members
+
=over 4
=item ev_signal_init (ev_signal *, callback, int signum)
Child watchers trigger when your process receives a SIGCHLD in response to
some child status changes (most typically when a child of yours dies).
+=head3 Watcher-Specific Functions and Data Members
+
=over 4
=item ev_child_init (ev_child *, callback, int pid)
=back
+=head3 Examples
+
Example: Try to exit cleanly on SIGINT and SIGTERM.
static void
usually detected immediately, and if the file exists there will be no
polling.
+=head3 Inotify
+
+When C<inotify (7)> support has been compiled into libev (generally only
+available on Linux) and present at runtime, it will be used to speed up
+change detection where possible. The inotify descriptor will be created lazily
+when the first C<ev_stat> watcher is being started.
+
+Inotify presense does not change the semantics of C<ev_stat> watchers
+except that changes might be detected earlier, and in some cases, to avoid
+making regular C<stat> calls. Even in the presense of inotify support
+there are many cases where libev has to resort to regular C<stat> polling.
+
+(There is no support for kqueue, as apparently it cannot be used to
+implement this functionality, due to the requirement of having a file
+descriptor open on the object at all times).
+
+=head3 The special problem of stat time resolution
+
+The C<stat ()> syscall only supports full-second resolution portably, and
+even on systems where the resolution is higher, many filesystems still
+only support whole seconds.
+
+That means that, if the time is the only thing that changes, you might
+miss updates: on the first update, C<ev_stat> detects a change and calls
+your callback, which does something. When there is another update within
+the same second, C<ev_stat> will be unable to detect it.
+
+The solution to this is to delay acting on a change for a second (or till
+the next second boundary), using a roughly one-second delay C<ev_timer>
+(C<ev_timer_set (w, 0., 1.01); ev_timer_again (loop, w)>). The C<.01>
+is added to work around small timing inconsistencies of some operating
+systems.
+
+=head3 Watcher-Specific Functions and Data Members
+
=over 4
=item ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)
=back
+=head3 Examples
+
Example: Watch C</etc/passwd> for attribute changes.
static void
...
ev_stat passwd;
- ev_stat_init (&passwd, passwd_cb, "/etc/passwd");
+ ev_stat_init (&passwd, passwd_cb, "/etc/passwd", 0.);
ev_stat_start (loop, &passwd);
+Example: Like above, but additionally use a one-second delay so we do not
+miss updates (however, frequent updates will delay processing, too, so
+one might do the work both on C<ev_stat> callback invocation I<and> on
+C<ev_timer> callback invocation).
+
+ static ev_stat passwd;
+ static ev_timer timer;
+
+ static void
+ timer_cb (EV_P_ ev_timer *w, int revents)
+ {
+ ev_timer_stop (EV_A_ w);
+
+ /* now it's one second after the most recent passwd change */
+ }
+
+ static void
+ stat_cb (EV_P_ ev_stat *w, int revents)
+ {
+ /* reset the one-second timer */
+ ev_timer_again (EV_A_ &timer);
+ }
+
+ ...
+ ev_stat_init (&passwd, stat_cb, "/etc/passwd", 0.);
+ ev_stat_start (loop, &passwd);
+ ev_timer_init (&timer, timer_cb, 0., 1.01);
+
=head2 C<ev_idle> - when you've got nothing better to do...
"pseudo-background processing", or delay processing stuff to after the
event loop has handled all outstanding events.
+=head3 Watcher-Specific Functions and Data Members
+
=over 4
=item ev_idle_init (ev_signal *, callback)
=back
+=head3 Examples
+
Example: Dynamically allocate an C<ev_idle> watcher, start it, and in the
callback, free it. Also, use no error checking, as usual.
loop from blocking if lower-priority coroutines are active, thus mapping
low-priority coroutines to idle/background tasks).
+It is recommended to give C<ev_check> watchers highest (C<EV_MAXPRI>)
+priority, to ensure that they are being run before any other watchers
+after the poll. Also, C<ev_check> watchers (and C<ev_prepare> watchers,
+too) should not activate ("feed") events into libev. While libev fully
+supports this, they will be called before other C<ev_check> watchers
+did their job. As C<ev_check> watchers are often used to embed other
+(non-libev) event loops those other event loops might be in an unusable
+state until their C<ev_check> watcher ran (always remind yourself to
+coexist peacefully with others).
+
+=head3 Watcher-Specific Functions and Data Members
+
=over 4
=item ev_prepare_init (ev_prepare *, callback)
=back
-Example: To include a library such as adns, you would add IO watchers
-and a timeout watcher in a prepare handler, as required by libadns, and
-in a check watcher, destroy them and call into libadns. What follows is
-pseudo-code only of course:
+=head3 Examples
+
+There are a number of principal ways to embed other event loops or modules
+into libev. Here are some ideas on how to include libadns into libev
+(there is a Perl module named C<EV::ADNS> that does this, which you could
+use for an actually working example. Another Perl module named C<EV::Glib>
+embeds a Glib main context into libev, and finally, C<Glib::EV> embeds EV
+into the Glib event loop).
+
+Method 1: Add IO watchers and a timeout watcher in a prepare handler,
+and in a check watcher, destroy them and call into libadns. What follows
+is pseudo-code only of course. This requires you to either use a low
+priority for the check watcher or use C<ev_clear_pending> explicitly, as
+the callbacks for the IO/timeout watchers might not have been called yet.
static ev_io iow [nfd];
static ev_timer tw;
static void
io_cb (ev_loop *loop, ev_io *w, int revents)
{
- // set the relevant poll flags
- // could also call adns_processreadable etc. here
- struct pollfd *fd = (struct pollfd *)w->data;
- if (revents & EV_READ ) fd->revents |= fd->events & POLLIN;
- if (revents & EV_WRITE) fd->revents |= fd->events & POLLOUT;
}
// create io watchers for each fd and a timer before blocking
ev_timer_init (&tw, 0, timeout * 1e-3);
ev_timer_start (loop, &tw);
- // create on ev_io per pollfd
+ // create one ev_io per pollfd
for (int i = 0; i < nfd; ++i)
{
ev_io_init (iow + i, io_cb, fds [i].fd,
| (fds [i].events & POLLOUT ? EV_WRITE : 0)));
fds [i].revents = 0;
- iow [i].data = fds + i;
ev_io_start (loop, iow + i);
}
}
ev_timer_stop (loop, &tw);
for (int i = 0; i < nfd; ++i)
- ev_io_stop (loop, iow + i);
+ {
+ // set the relevant poll flags
+ // could also call adns_processreadable etc. here
+ struct pollfd *fd = fds + i;
+ int revents = ev_clear_pending (iow + i);
+ if (revents & EV_READ ) fd->revents |= fd->events & POLLIN;
+ if (revents & EV_WRITE) fd->revents |= fd->events & POLLOUT;
+
+ // now stop the watcher
+ ev_io_stop (loop, iow + i);
+ }
adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
}
+Method 2: This would be just like method 1, but you run C<adns_afterpoll>
+in the prepare watcher and would dispose of the check watcher.
+
+Method 3: If the module to be embedded supports explicit event
+notification (adns does), you can also make use of the actual watcher
+callbacks, and only destroy/create the watchers in the prepare watcher.
+
+ static void
+ timer_cb (EV_P_ ev_timer *w, int revents)
+ {
+ adns_state ads = (adns_state)w->data;
+ update_now (EV_A);
+
+ adns_processtimeouts (ads, &tv_now);
+ }
+
+ static void
+ io_cb (EV_P_ ev_io *w, int revents)
+ {
+ adns_state ads = (adns_state)w->data;
+ update_now (EV_A);
+
+ if (revents & EV_READ ) adns_processreadable (ads, w->fd, &tv_now);
+ if (revents & EV_WRITE) adns_processwriteable (ads, w->fd, &tv_now);
+ }
+
+ // do not ever call adns_afterpoll
+
+Method 4: Do not use a prepare or check watcher because the module you
+want to embed is too inflexible to support it. Instead, youc na override
+their poll function. The drawback with this solution is that the main
+loop is now no longer controllable by EV. The C<Glib::EV> module does
+this.
+
+ static gint
+ event_poll_func (GPollFD *fds, guint nfds, gint timeout)
+ {
+ int got_events = 0;
+
+ for (n = 0; n < nfds; ++n)
+ // create/start io watcher that sets the relevant bits in fds[n] and increment got_events
+
+ if (timeout >= 0)
+ // create/start timer
+
+ // poll
+ ev_loop (EV_A_ 0);
+
+ // stop timer again
+ if (timeout >= 0)
+ ev_timer_stop (EV_A_ &to);
+
+ // stop io watchers again - their callbacks should have set
+ for (n = 0; n < nfds; ++n)
+ ev_io_stop (EV_A_ iow [n]);
+
+ return got_events;
+ }
+
=head2 C<ev_embed> - when one backend isn't enough...
So when you want to use this feature you will always have to be prepared
that you cannot get an embeddable loop. The recommended way to get around
this is to have a separate variables for your embeddable loop, try to
-create it, and if that fails, use the normal loop for everything:
+create it, and if that fails, use the normal loop for everything.
- struct ev_loop *loop_hi = ev_default_init (0);
- struct ev_loop *loop_lo = 0;
- struct ev_embed embed;
-
- // see if there is a chance of getting one that works
- // (remember that a flags value of 0 means autodetection)
- loop_lo = ev_embeddable_backends () & ev_recommended_backends ()
- ? ev_loop_new (ev_embeddable_backends () & ev_recommended_backends ())
- : 0;
-
- // if we got one, then embed it, otherwise default to loop_hi
- if (loop_lo)
- {
- ev_embed_init (&embed, 0, loop_lo);
- ev_embed_start (loop_hi, &embed);
- }
- else
- loop_lo = loop_hi;
+=head3 Watcher-Specific Functions and Data Members
=over 4
similarly to C<ev_loop (embedded_loop, EVLOOP_NONBLOCK)>, but in the most
apropriate way for embedded loops.
-=item struct ev_loop *loop [read-only]
+=item struct ev_loop *other [read-only]
The embedded event loop.
=back
+=head3 Examples
+
+Example: Try to get an embeddable event loop and embed it into the default
+event loop. If that is not possible, use the default loop. The default
+loop is stored in C<loop_hi>, while the mebeddable loop is stored in
+C<loop_lo> (which is C<loop_hi> in the acse no embeddable loop can be
+used).
+
+ struct ev_loop *loop_hi = ev_default_init (0);
+ struct ev_loop *loop_lo = 0;
+ struct ev_embed embed;
+
+ // see if there is a chance of getting one that works
+ // (remember that a flags value of 0 means autodetection)
+ loop_lo = ev_embeddable_backends () & ev_recommended_backends ()
+ ? ev_loop_new (ev_embeddable_backends () & ev_recommended_backends ())
+ : 0;
+
+ // if we got one, then embed it, otherwise default to loop_hi
+ if (loop_lo)
+ {
+ ev_embed_init (&embed, 0, loop_lo);
+ ev_embed_start (loop_hi, &embed);
+ }
+ else
+ loop_lo = loop_hi;
+
+Example: Check if kqueue is available but not recommended and create
+a kqueue backend for use with sockets (which usually work with any
+kqueue implementation). Store the kqueue/socket-only event loop in
+C<loop_socket>. (One might optionally use C<EVFLAG_NOENV>, too).
+
+ struct ev_loop *loop = ev_default_init (0);
+ struct ev_loop *loop_socket = 0;
+ struct ev_embed embed;
+
+ if (ev_supported_backends () & ~ev_recommended_backends () & EVBACKEND_KQUEUE)
+ if ((loop_socket = ev_loop_new (EVBACKEND_KQUEUE))
+ {
+ ev_embed_init (&embed, 0, loop_socket);
+ ev_embed_start (loop, &embed);
+ }
+
+ if (!loop_socket)
+ loop_socket = loop;
+
+ // now use loop_socket for all sockets, and loop for everything else
+
=head2 C<ev_fork> - the audacity to resume the event loop after a fork
C<ev_default_fork> cheats and calls it in the wrong process, the fork
handlers will be invoked, too, of course.
+=head3 Watcher-Specific Functions and Data Members
+
=over 4
=item ev_fork_init (ev_signal *, callback)
#include <ev++.h>
-(it is not installed by default). This automatically includes F<ev.h>
-and puts all of its definitions (many of them macros) into the global
-namespace. All C++ specific things are put into the C<ev> namespace.
+This automatically includes F<ev.h> and puts all of its definitions (many
+of them macros) into the global namespace. All C++ specific things are
+put into the C<ev> namespace. It should support all the same embedding
+options as F<ev.h>, most notably C<EV_MULTIPLICITY>.
+
+Care has been taken to keep the overhead low. The only data member the C++
+classes add (compared to plain C-style watchers) is the event loop pointer
+that the watcher is associated with (or no additional members at all if
+you disable C<EV_MULTIPLICITY> when embedding libev).
-It should support all the same embedding options as F<ev.h>, most notably
-C<EV_MULTIPLICITY>.
+Currently, functions, and static and non-static member functions can be
+used as callbacks. Other types should be easy to add as long as they only
+need one additional pointer for context. If you need support for other
+types of functors please contact the author (preferably after implementing
+it).
Here is a list of things available in the C<ev> namespace:
=over 4
-=item ev::TYPE::TYPE (object *, object::method *)
+=item ev::TYPE::TYPE ()
-=item ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)
+=item ev::TYPE::TYPE (struct ev_loop *)
=item ev::TYPE::~TYPE
-The constructor takes a pointer to an object and a method pointer to
-the event handler callback to call in this class. The constructor calls
-C<ev_init> for you, which means you have to call the C<set> method
-before starting it. If you do not specify a loop then the constructor
-automatically associates the default loop with this watcher.
+The constructor (optionally) takes an event loop to associate the watcher
+with. If it is omitted, it will use C<EV_DEFAULT>.
+
+The constructor calls C<ev_init> for you, which means you have to call the
+C<set> method before starting it.
+
+It will not set a callback, however: You have to call the templated C<set>
+method to set a callback before you can start the watcher.
+
+(The reason why you have to use a method is a limitation in C++ which does
+not allow explicit template arguments for constructors).
The destructor automatically stops the watcher if it is active.
+=item w->set<class, &class::method> (object *)
+
+This method sets the callback method to call. The method has to have a
+signature of C<void (*)(ev_TYPE &, int)>, it receives the watcher as
+first argument and the C<revents> as second. The object must be given as
+parameter and is stored in the C<data> member of the watcher.
+
+This method synthesizes efficient thunking code to call your method from
+the C callback that libev requires. If your compiler can inline your
+callback (i.e. it is visible to it at the place of the C<set> call and
+your compiler is good :), then the method will be fully inlined into the
+thunking function, making it as fast as a direct C callback.
+
+Example: simple class declaration and watcher initialisation
+
+ struct myclass
+ {
+ void io_cb (ev::io &w, int revents) { }
+ }
+
+ myclass obj;
+ ev::io iow;
+ iow.set <myclass, &myclass::io_cb> (&obj);
+
+=item w->set<function> (void *data = 0)
+
+Also sets a callback, but uses a static method or plain function as
+callback. The optional C<data> argument will be stored in the watcher's
+C<data> member and is free for you to use.
+
+The prototype of the C<function> must be C<void (*)(ev::TYPE &w, int)>.
+
+See the method-C<set> above for more details.
+
+Example:
+
+ static void io_cb (ev::io &w, int revents) { }
+ iow.set <io_cb> ();
+
=item w->set (struct ev_loop *)
Associates a different C<struct ev_loop> with this watcher. You can only
=item w->set ([args])
Basically the same as C<ev_TYPE_set>, with the same args. Must be
-called at least once. Unlike the C counterpart, an active watcher gets
-automatically stopped and restarted.
+called at least once. Unlike the C counterpart, an active watcher gets
+automatically stopped and restarted when reconfiguring it with this
+method.
=item w->start ()
-Starts the watcher. Note that there is no C<loop> argument as the
-constructor already takes the loop.
+Starts the watcher. Note that there is no C<loop> argument, as the
+constructor already stores the event loop.
=item w->stop ()
Stops the watcher if it is active. Again, no C<loop> argument.
-=item w->again () C<ev::timer>, C<ev::periodic> only
+=item w->again () (C<ev::timer>, C<ev::periodic> only)
For C<ev::timer> and C<ev::periodic>, this invokes the corresponding
C<ev_TYPE_again> function.
-=item w->sweep () C<ev::embed> only
+=item w->sweep () (C<ev::embed> only)
Invokes C<ev_embed_sweep>.
-=item w->update () C<ev::stat> only
+=item w->update () (C<ev::stat> only)
Invokes C<ev_stat_stat>.
}
myclass::myclass (int fd)
- : io (this, &myclass::io_cb),
- idle (this, &myclass::idle_cb)
{
+ io .set <myclass, &myclass::io_cb > (this);
+ idle.set <myclass, &myclass::idle_cb> (this);
+
io.start (fd, ev::READ);
}
=head1 MACRO MAGIC
-Libev can be compiled with a variety of options, the most fundemantal is
-C<EV_MULTIPLICITY>. This option determines whether (most) functions and
-callbacks have an initial C<struct ev_loop *> argument.
+Libev can be compiled with a variety of options, the most fundamantal
+of which is C<EV_MULTIPLICITY>. This option determines whether (most)
+functions and callbacks have an initial C<struct ev_loop *> argument.
To make it easier to write programs that cope with either variant, the
following macros are defined:
Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
and rxvt-unicode.
-The goal is to enable you to just copy the neecssary files into your
+The goal is to enable you to just copy the necessary files into your
source directory without having to change even a single line in them, so
you can easily upgrade by simply copying (or having a checked-out copy of
libev somewhere in your source tree).
monotonic clock option at both compiletime and runtime. Otherwise no use
of the monotonic clock option will be attempted. If you enable this, you
usually have to link against librt or something similar. Enabling it when
-the functionality isn't available is safe, though, althoguh you have
+the functionality isn't available is safe, though, although you have
to make sure you link against any libraries where the C<clock_gettime>
function is hiding in (often F<-lrt>).
realtime clock option at compiletime (and assume its availability at
runtime if successful). Otherwise no use of the realtime clock option will
be attempted. This effectively replaces C<gettimeofday> by C<clock_get
-(CLOCK_REALTIME, ...)> and will not normally affect correctness. See tzhe note about libraries
-in the description of C<EV_USE_MONOTONIC>, though.
+(CLOCK_REALTIME, ...)> and will not normally affect correctness. See the
+note about libraries in the description of C<EV_USE_MONOTONIC>, though.
+
+=item EV_USE_NANOSLEEP
+
+If defined to be C<1>, libev will assume that C<nanosleep ()> is available
+and will use it for delays. Otherwise it will use C<select ()>.
=item EV_USE_SELECT
it is assumed that all these functions actually work on fds, even
on win32. Should not be defined on non-win32 platforms.
+=item EV_FD_TO_WIN32_HANDLE
+
+If C<EV_SELECT_IS_WINSOCKET> is enabled, then libev needs a way to map
+file descriptors to socket handles. When not defining this symbol (the
+default), then libev will call C<_get_osfhandle>, which is usually
+correct. In some cases, programs use their own file descriptor management,
+in which case they can provide this function to map fds to socket handles.
+
=item EV_USE_POLL
If defined to be C<1>, libev will compile in support for the C<poll>(2)
=item EV_H
The name of the F<ev.h> header file used to include it. The default if
-undefined is C<< <ev.h> >> in F<event.h> and C<"ev.h"> in F<ev.c>. This
-can be used to virtually rename the F<ev.h> header file in case of conflicts.
+undefined is C<"ev.h"> in F<event.h>, F<ev.c> and F<ev++.h>. This can be
+used to virtually rename the F<ev.h> header file in case of conflicts.
=item EV_CONFIG_H
=item EV_EVENT_H
Similarly to C<EV_H>, this macro can be used to override F<event.c>'s idea
-of how the F<event.h> header can be found.
+of how the F<event.h> header can be found, the default is C<"event.h">.
=item EV_PROTOTYPES
for multiple event loops and there is no first event loop pointer
argument. Instead, all functions act on the single default loop.
+=item EV_MINPRI
+
+=item EV_MAXPRI
+
+The range of allowed priorities. C<EV_MINPRI> must be smaller or equal to
+C<EV_MAXPRI>, but otherwise there are no non-obvious limitations. You can
+provide for more priorities by overriding those symbols (usually defined
+to be C<-2> and C<2>, respectively).
+
+When doing priority-based operations, libev usually has to linearly search
+all the priorities, so having many of them (hundreds) uses a lot of space
+and time, so using the defaults of five priorities (-2 .. +2) is usually
+fine.
+
+If your embedding app does not need any priorities, defining these both to
+C<0> will save some memory and cpu.
+
=item EV_PERIODIC_ENABLE
If undefined or defined to be C<1>, then periodic timers are supported. If
=item EV_INOTIFY_HASHSIZE
-C<ev_staz> watchers use a small hash table to distribute workload by
+C<ev_stat> watchers use a small hash table to distribute workload by
inotify watch id. The default size is C<16> (or C<1> with C<EV_MINIMAL>),
usually more than enough. If you need to manage thousands of C<ev_stat>
watchers you might want to increase this value (I<must> be a power of
Can be used to change the callback member declaration in each watcher,
and the way callbacks are invoked and set. Must expand to a struct member
-definition and a statement, respectively. See the F<ev.v> header file for
+definition and a statement, respectively. See the F<ev.h> header file for
their default definitions. One possible use for overriding these is to
avoid the C<struct ev_loop *> as first argument in all cases, or to use
method calls instead of plain function calls in C++.
+=head2 EXPORTED API SYMBOLS
+
+If you need to re-export the API (e.g. via a dll) and you need a list of
+exported symbols, you can use the provided F<Symbol.*> files which list
+all public symbols, one per line:
+
+ Symbols.ev for libev proper
+ Symbols.event for the libevent emulation
+
+This can also be used to rename all public symbols to avoid clashes with
+multiple versions of libev linked together (which is obviously bad in
+itself, but sometimes it is inconvinient to avoid this).
+
+A sed command like this will create wrapper C<#define>'s that you need to
+include before including F<ev.h>:
+
+ <Symbols.ev sed -e "s/.*/#define & myprefix_&/" >wrap.h
+
+This would create a file F<wrap.h> which essentially looks like this:
+
+ #define ev_backend myprefix_ev_backend
+ #define ev_check_start myprefix_ev_check_start
+ #define ev_check_stop myprefix_ev_check_stop
+ ...
+
=head2 EXAMPLES
For a real-world example of a program the includes libev
libev will be explained. For complexity discussions about backends see the
documentation for C<ev_default_init>.
+All of the following are about amortised time: If an array needs to be
+extended, libev needs to realloc and move the whole array, but this
+happens asymptotically never with higher number of elements, so O(1) might
+mean it might do a lengthy realloc operation in rare cases, but on average
+it is much faster and asymptotically approaches constant time.
+
=over 4
=item Starting and stopping timer/periodic watchers: O(log skipped_other_timers)
-=item Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)
+This means that, when you have a watcher that triggers in one hour and
+there are 100 watchers that would trigger before that then inserting will
+have to skip roughly seven (C<ld 100>) of these watchers.
+
+=item Changing timer/periodic watchers (by autorepeat or calling again): O(log skipped_other_timers)
+
+That means that changing a timer costs less than removing/adding them
+as only the relative motion in the event queue has to be paid for.
=item Starting io/check/prepare/idle/signal/child watchers: O(1)
+These just add the watcher into an array or at the head of a list.
+
=item Stopping check/prepare/idle watchers: O(1)
=item Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))
-=item Finding the next timer per loop iteration: O(1)
+These watchers are stored in lists then need to be walked to find the
+correct watcher to remove. The lists are usually short (you don't usually
+have many watchers waiting for the same fd or signal).
+
+=item Finding the next timer in each loop iteration: O(1)
+
+By virtue of using a binary heap, the next timer is always found at the
+beginning of the storage array.
=item Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)
-=item Activating one watcher: O(1)
+A change means an I/O watcher gets started or stopped, which requires
+libev to recalculate its status (and possibly tell the kernel, depending
+on backend and wether C<ev_io_set> was used).
+
+=item Activating one watcher (putting it into the pending state): O(1)
+
+=item Priority handling: O(number_of_priorities)
+
+Priorities are implemented by allocating some space for each
+priority. When doing priority-based operations, libev usually has to
+linearly search all the priorities, but starting/stopping and activating
+watchers becomes O(1) w.r.t. prioritiy handling.
+
+=back
+
+
+=head1 Win32 platform limitations and workarounds
+
+Win32 doesn't support any of the standards (e.g. POSIX) that libev
+requires, and its I/O model is fundamentally incompatible with the POSIX
+model. Libev still offers limited functionality on this platform in
+the form of the C<EVBACKEND_SELECT> backend, and only supports socket
+descriptors. This only applies when using Win32 natively, not when using
+e.g. cygwin.
+
+There is no supported compilation method available on windows except
+embedding it into other applications.
+
+Due to the many, low, and arbitrary limits on the win32 platform and the
+abysmal performance of winsockets, using a large number of sockets is not
+recommended (and not reasonable). If your program needs to use more than
+a hundred or so sockets, then likely it needs to use a totally different
+implementation for windows, as libev offers the POSIX model, which cannot
+be implemented efficiently on windows (microsoft monopoly games).
+
+=over 4
+
+=item The winsocket select function
+
+The winsocket C<select> function doesn't follow POSIX in that it requires
+socket I<handles> and not socket I<file descriptors>. This makes select
+very inefficient, and also requires a mapping from file descriptors
+to socket handles. See the discussion of the C<EV_SELECT_USE_FD_SET>,
+C<EV_SELECT_IS_WINSOCKET> and C<EV_FD_TO_WIN32_HANDLE> preprocessor
+symbols for more info.
+
+The configuration for a "naked" win32 using the microsoft runtime
+libraries and raw winsocket select is:
+
+ #define EV_USE_SELECT 1
+ #define EV_SELECT_IS_WINSOCKET 1 /* forces EV_SELECT_USE_FD_SET, too */
+
+Note that winsockets handling of fd sets is O(n), so you can easily get a
+complexity in the O(n²) range when using win32.
+
+=item Limited number of file descriptors
+
+Windows has numerous arbitrary (and low) limits on things. Early versions
+of winsocket's select only supported waiting for a max. of C<64> handles
+(probably owning to the fact that all windows kernels can only wait for
+C<64> things at the same time internally; microsoft recommends spawning a
+chain of threads and wait for 63 handles and the previous thread in each).
+
+Newer versions support more handles, but you need to define C<FD_SETSIZE>
+to some high number (e.g. C<2048>) before compiling the winsocket select
+call (which might be in libev or elsewhere, for example, perl does its own
+select emulation on windows).
+
+Another limit is the number of file descriptors in the microsoft runtime
+libraries, which by default is C<64> (there must be a hidden I<64> fetish
+or something like this inside microsoft). You can increase this by calling
+C<_setmaxstdio>, which can increase this limit to C<2048> (another
+arbitrary limit), but is broken in many versions of the microsoft runtime
+libraries.
+
+This might get you to about C<512> or C<2048> sockets (depending on
+windows version and/or the phase of the moon). To get more, you need to
+wrap all I/O functions and provide your own fd management, but the cost of
+calling select (O(n²)) will likely make this unworkable.
=back