]> git.llucax.com Git - software/libev.git/blobdiff - ev.pod
*** empty log message ***
[software/libev.git] / ev.pod
diff --git a/ev.pod b/ev.pod
index 81da7eac02530a176f5edfeae4d0e85fa83770d1..bbc0893ac55b234753e14a3a45d75ff0e1bfb94f 100644 (file)
--- a/ev.pod
+++ b/ev.pod
@@ -41,7 +41,7 @@ support for multiple event loops, then all functions taking an initial
 argument of name C<loop> (which is always of type C<struct ev_loop *>)
 will not have this argument.
 
-=head1 TIME AND OTHER GLOBAL FUNCTIONS
+=head1 TIME REPRESENTATION
 
 Libev represents time as a single floating point number, representing the
 (fractional) number of seconds since the (POSIX) epoch (somewhere near
@@ -49,6 +49,8 @@ the beginning of 1970, details are complicated, don't ask). This type is
 called C<ev_tstamp>, which is what you should use too. It usually aliases
 to the double type in C.
 
+=head1 GLOBAL FUNCTIONS
+
 =over 4
 
 =item ev_tstamp ev_time ()
@@ -101,7 +103,7 @@ types of such loops, the I<default> loop, which supports signals and child
 events, and dynamically created loops which do not.
 
 If you use threads, a common model is to run the default event loop
-in your main thread (or in a separate thrad) and for each thread you
+in your main thread (or in a separate thread) and for each thread you
 create, you also create another event loop. Libev itself does no locking
 whatsoever, so if you mix calls to the same event loop in different
 threads, make sure you lock (this is usually a bad idea, though, even if
@@ -126,12 +128,12 @@ It supports the following flags:
 
 =over 4
 
-=item EVFLAG_AUTO
+=item C<EVFLAG_AUTO>
 
 The default flags value. Use this if you have no clue (it's the right
 thing, believe me).
 
-=item EVFLAG_NOENV
+=item C<EVFLAG_NOENV>
 
 If this flag bit is ored into the flag value (or the program runs setuid
 or setgid) then libev will I<not> look at the environment variable
@@ -140,17 +142,17 @@ override the flags completely if it is found in the environment. This is
 useful to try out specific backends to test their performance, or to work
 around bugs.
 
-=item EVMETHOD_SELECT  (portable select backend)
+=item C<EVMETHOD_SELECT>  (portable select backend)
 
-=item EVMETHOD_POLL    (poll backend, available everywhere except on windows)
+=item C<EVMETHOD_POLL>    (poll backend, available everywhere except on windows)
 
-=item EVMETHOD_EPOLL   (linux only)
+=item C<EVMETHOD_EPOLL>   (linux only)
 
-=item EVMETHOD_KQUEUE  (some bsds only)
+=item C<EVMETHOD_KQUEUE>  (some bsds only)
 
-=item EVMETHOD_DEVPOLL (solaris 8 only)
+=item C<EVMETHOD_DEVPOLL> (solaris 8 only)
 
-=item EVMETHOD_PORT    (solaris 10 only)
+=item C<EVMETHOD_PORT>    (solaris 10 only)
 
 If one or more of these are ored into the flags value, then only these
 backends will be tried (in the reverse order as given here). If one are
@@ -262,7 +264,7 @@ libraries. Just remember to I<unref after start> and I<ref before stop>.
 
 A watcher is a structure that you create and register to record your
 interest in some event. For instance, if you want to wait for STDIN to
-become readable, you would create an ev_io watcher for that:
+become readable, you would create an C<ev_io> watcher for that:
 
   static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
   {
@@ -301,61 +303,61 @@ As long as your watcher is active (has been started but not stopped) you
 must not touch the values stored in it. Most specifically you must never
 reinitialise it or call its set method.
 
-You cna check whether an event is active by calling the C<ev_is_active
+You can check whether an event is active by calling the C<ev_is_active
 (watcher *)> macro. To see whether an event is outstanding (but the
-callback for it has not been called yet) you cna use the C<ev_is_pending
+callback for it has not been called yet) you can use the C<ev_is_pending
 (watcher *)> macro.
 
 Each and every callback receives the event loop pointer as first, the
 registered watcher structure as second, and a bitset of received events as
 third argument.
 
-The rceeived events usually include a single bit per event type received
+The received events usually include a single bit per event type received
 (you can receive multiple events at the same time). The possible bit masks
 are:
 
 =over 4
 
-=item EV_READ
+=item C<EV_READ>
 
-=item EV_WRITE
+=item C<EV_WRITE>
 
-The file descriptor in the ev_io watcher has become readable and/or
+The file descriptor in the C<ev_io> watcher has become readable and/or
 writable.
 
-=item EV_TIMEOUT
+=item C<EV_TIMEOUT>
 
-The ev_timer watcher has timed out.
+The C<ev_timer> watcher has timed out.
 
-=item EV_PERIODIC
+=item C<EV_PERIODIC>
 
-The ev_periodic watcher has timed out.
+The C<ev_periodic> watcher has timed out.
 
-=item EV_SIGNAL
+=item C<EV_SIGNAL>
 
-The signal specified in the ev_signal watcher has been received by a thread.
+The signal specified in the C<ev_signal> watcher has been received by a thread.
 
-=item EV_CHILD
+=item C<EV_CHILD>
 
-The pid specified in the ev_child watcher has received a status change.
+The pid specified in the C<ev_child> watcher has received a status change.
 
-=item EV_IDLE
+=item C<EV_IDLE>
 
-The ev_idle watcher has determined that you have nothing better to do.
+The C<ev_idle> watcher has determined that you have nothing better to do.
 
-=item EV_PREPARE
+=item C<EV_PREPARE>
 
-=item EV_CHECK
+=item C<EV_CHECK>
 
-All ev_prepare watchers are invoked just I<before> C<ev_loop> starts
-to gather new events, and all ev_check watchers are invoked just after
+All C<ev_prepare> watchers are invoked just I<before> C<ev_loop> starts
+to gather new events, and all C<ev_check> watchers are invoked just after
 C<ev_loop> has gathered them, but before it invokes any callbacks for any
 received events. Callbacks of both watcher types can start and stop as
 many watchers as they want, and all of them will be taken into account
-(for example, a ev_prepare watcher might start an idle watcher to keep
+(for example, a C<ev_prepare> watcher might start an idle watcher to keep
 C<ev_loop> from blocking).
 
-=item EV_ERROR
+=item C<EV_ERROR>
 
 An unspecified error has occured, the watcher has been stopped. This might
 happen because the watcher could not be properly started because libev
@@ -374,7 +376,7 @@ programs, though, so beware.
 =head2 ASSOCIATING CUSTOM DATA WITH A WATCHER
 
 Each watcher has, by default, a member C<void *data> that you can change
-and read at any time, libev will completely ignore it. This cna be used
+and read at any time, libev will completely ignore it. This can be used
 to associate arbitrary data with your watcher. If you need more data and
 don't want to allocate memory and store a pointer to it in that data
 member, you can also "subclass" the watcher type and provide your own
@@ -406,12 +408,12 @@ have been omitted....
 This section describes each watcher in detail, but will not repeat
 information given in the last section.
 
-=head2 struct ev_io - is my file descriptor readable or writable
+=head2 C<ev_io> - is this file descriptor readable or writable
 
 I/O watchers check whether a file descriptor is readable or writable
 in each iteration of the event loop (This behaviour is called
 level-triggering because you keep receiving events as long as the
-condition persists. Remember you cna stop the watcher if you don't want to
+condition persists. Remember you can stop the watcher if you don't want to
 act on the event and neither want to receive future events).
 
 In general you can register as many read and/or write event watchers oer
@@ -434,13 +436,13 @@ EVMETHOD_POLL).
 
 =item ev_io_set (ev_io *, int fd, int events)
 
-Configures an ev_io watcher. The fd is the file descriptor to rceeive
+Configures an C<ev_io> watcher. The fd is the file descriptor to rceeive
 events for and events is either C<EV_READ>, C<EV_WRITE> or C<EV_READ |
 EV_WRITE> to receive the given events.
 
 =back
 
-=head2 struct ev_timer - relative and optionally recurring timeouts
+=head2 C<ev_timer> - relative and optionally recurring timeouts
 
 Timer watchers are simple relative timers that generate an event after a
 given time, and optionally repeating in regular intervals after that.
@@ -490,24 +492,24 @@ This sounds a bit complicated, but here is a useful and typical
 example: Imagine you have a tcp connection and you want a so-called idle
 timeout, that is, you want to be called when there have been, say, 60
 seconds of inactivity on the socket. The easiest way to do this is to
-configure an ev_timer with after=repeat=60 and calling ev_timer_again each
+configure an C<ev_timer> with after=repeat=60 and calling ev_timer_again each
 time you successfully read or write some data. If you go into an idle
 state where you do not expect data to travel on the socket, you can stop
 the timer, and again will automatically restart it if need be.
 
 =back
 
-=head2 ev_periodic - to cron or not to cron it
+=head2 C<ev_periodic> - to cron or not to cron
 
 Periodic watchers are also timers of a kind, but they are very versatile
 (and unfortunately a bit complex).
 
-Unlike ev_timer's, they are not based on real time (or relative time)
+Unlike C<ev_timer>'s, they are not based on real time (or relative time)
 but on wallclock time (absolute time). You can tell a periodic watcher
 to trigger "at" some specific point in time. For example, if you tell a
 periodic watcher to trigger in 10 seconds (by specifiying e.g. c<ev_now ()
 + 10.>) and then reset your system clock to the last year, then it will
-take a year to trigger the event (unlike an ev_timer, which would trigger
+take a year to trigger the event (unlike an C<ev_timer>, which would trigger
 roughly 10 seconds later and of course not if you reset your system time
 again).
 
@@ -546,11 +548,11 @@ time:
 
 This doesn't mean there will always be 3600 seconds in between triggers,
 but only that the the callback will be called when the system time shows a
-full hour (UTC), or more correct, when the system time is evenly divisible
+full hour (UTC), or more correctly, when the system time is evenly divisible
 by 3600.
 
 Another way to think about it (for the mathematically inclined) is that
-ev_periodic will try to run the callback in this mode at the next possible
+C<ev_periodic> will try to run the callback in this mode at the next possible
 time where C<time = at (mod interval)>, regardless of any time jumps.
 
 =item * manual reschedule mode (reschedule_cb = callback)
@@ -561,10 +563,13 @@ reschedule callback will be called with the watcher as first, and the
 current time as second argument.
 
 NOTE: I<This callback MUST NOT stop or destroy the periodic or any other
-periodic watcher, ever, or make any event loop modificstions>. If you need
-to stop it, return 1e30 (or so, fudge fudge) and stop it afterwards.
+periodic watcher, ever, or make any event loop modifications>. If you need
+to stop it, return C<now + 1e30> (or so, fudge fudge) and stop it afterwards.
+
+Also, I<< this callback must always return a time that is later than the
+passed C<now> value >>. Not even C<now> itself will be ok.
 
-Its prototype is c<ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
+Its prototype is C<ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
 ev_tstamp now)>, e.g.:
 
    static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
@@ -593,14 +598,14 @@ program when the crontabs have changed).
 
 =back
 
-=head2 ev_signal - signal me when a signal gets signalled
+=head2 C<ev_signal> - signal me when a signal gets signalled
 
 Signal watchers will trigger an event when the process receives a specific
 signal one or more times. Even though signals are very asynchronous, libev
 will try it's best to deliver signals synchronously, i.e. as part of the
 normal event processing, like any other event.
 
-You cna configure as many watchers as you like per signal. Only when the
+You can configure as many watchers as you like per signal. Only when the
 first watcher gets started will libev actually register a signal watcher
 with the kernel (thus it coexists with your own signal handlers as long
 as you don't register any with libev). Similarly, when the last signal
@@ -618,7 +623,7 @@ of the C<SIGxxx> constants).
 
 =back
 
-=head2 ev_child - wait for pid status changes
+=head2 C<ev_child> - wait for pid status changes
 
 Child watchers trigger when your process receives a SIGCHLD in response to
 some child status changes (most typically when a child of yours dies).
@@ -632,18 +637,21 @@ some child status changes (most typically when a child of yours dies).
 Configures the watcher to wait for status changes of process C<pid> (or
 I<any> process if C<pid> is specified as C<0>). The callback can look
 at the C<rstatus> member of the C<ev_child> watcher structure to see
-the status word (use the macros from C<sys/wait.h>). The C<rpid> member
-contains the pid of the process causing the status change.
+the status word (use the macros from C<sys/wait.h> and see your systems
+C<waitpid> documentation). The C<rpid> member contains the pid of the
+process causing the status change.
 
 =back
 
-=head2 ev_idle - when you've got nothing better to do
+=head2 C<ev_idle> - when you've got nothing better to do
 
-Idle watchers trigger events when there are no other I/O or timer (or
-periodic) events pending. That is, as long as your process is busy
-handling sockets or timeouts it will not be called. But when your process
-is idle all idle watchers are being called again and again - until
-stopped, that is, or your process receives more events.
+Idle watchers trigger events when there are no other events are pending
+(prepare, check and other idle watchers do not count). That is, as long
+as your process is busy handling sockets or timeouts (or even signals,
+imagine) it will not be triggered. But when your process is idle all idle
+watchers are being called again and again, once per event loop iteration -
+until stopped, that is, or your process receives more events and becomes
+busy.
 
 The most noteworthy effect is that as long as any idle watchers are
 active, the process will not block when waiting for new events.
@@ -663,27 +671,33 @@ believe me.
 
 =back
 
-=head2 prepare and check - your hooks into the event loop
+=head2 C<ev_prepare> and C<ev_check> - customise your event loop
 
-Prepare and check watchers usually (but not always) are used in
-tandom. Prepare watchers get invoked before the process blocks and check
-watchers afterwards.
+Prepare and check watchers are usually (but not always) used in tandem:
+Prepare watchers get invoked before the process blocks and check watchers
+afterwards.
 
 Their main purpose is to integrate other event mechanisms into libev. This
 could be used, for example, to track variable changes, implement your own
 watchers, integrate net-snmp or a coroutine library and lots more.
 
 This is done by examining in each prepare call which file descriptors need
-to be watched by the other library, registering ev_io watchers for them
-and starting an ev_timer watcher for any timeouts (many libraries provide
-just this functionality). Then, in the check watcher you check for any
-events that occured (by making your callbacks set soem flags for example)
-and call back into the library.
-
-As another example, the perl Coro module uses these hooks to integrate
+to be watched by the other library, registering C<ev_io> watchers for
+them and starting an C<ev_timer> watcher for any timeouts (many libraries
+provide just this functionality). Then, in the check watcher you check for
+any events that occured (by checking the pending status of all watchers
+and stopping them) and call back into the library. The I/O and timer
+callbacks will never actually be called (but must be valid neverthelles,
+because you never know, you know?).
+
+As another example, the Perl Coro module uses these hooks to integrate
 coroutines into libev programs, by yielding to other active coroutines
 during each prepare and only letting the process block if no coroutines
-are ready to run.
+are ready to run (its actually more complicated, it only runs coroutines
+with priority higher than the event loop and one lower priority once,
+using idle watchers to keep the event loop from blocking if lower-priority
+coroutines exist, thus mapping low-priority coroutines to idle/background
+tasks).
 
 =over 4
 
@@ -693,13 +707,13 @@ are ready to run.
 
 Initialises and configures the prepare or check watcher - they have no
 parameters of any kind. There are C<ev_prepare_set> and C<ev_check_set>
-macros, but using them is utterly, utterly pointless.
+macros, but using them is utterly, utterly and completely pointless.
 
 =back
 
 =head1 OTHER FUNCTIONS
 
-There are some other fucntions of possible interest. Described. Here. Now.
+There are some other functions of possible interest. Described. Here. Now.
 
 =over 4
 
@@ -711,37 +725,40 @@ watchers. This is useful if you want to wait for a single event on an fd
 or timeout without havign to allocate/configure/start/stop/free one or
 more watchers yourself.
 
-If C<fd> is less than 0, then no I/O watcher will be started and events is
-ignored. Otherwise, an ev_io watcher for the given C<fd> and C<events> set
-will be craeted and started.
+If C<fd> is less than 0, then no I/O watcher will be started and events
+is being ignored. Otherwise, an C<ev_io> watcher for the given C<fd> and
+C<events> set will be craeted and started.
 
 If C<timeout> is less than 0, then no timeout watcher will be
-started. Otherwise an ev_timer watcher with after = C<timeout> (and repeat
-= 0) will be started.
+started. Otherwise an C<ev_timer> watcher with after = C<timeout> (and
+repeat = 0) will be started. While C<0> is a valid timeout, it is of
+dubious value.
 
-The callback has the type C<void (*cb)(int revents, void *arg)> and
-gets passed an events set (normally a combination of EV_ERROR, EV_READ,
-EV_WRITE or EV_TIMEOUT) and the C<arg> value passed to C<ev_once>:
+The callback has the type C<void (*cb)(int revents, void *arg)> and gets
+passed an events set like normal event callbacks (with a combination of
+C<EV_ERROR>, C<EV_READ>, C<EV_WRITE> or C<EV_TIMEOUT>) and the C<arg>
+value passed to C<ev_once>:
 
   static void stdin_ready (int revents, void *arg)
   {
     if (revents & EV_TIMEOUT)
-      /* doh, nothing entered */
+      /* doh, nothing entered */;
     else if (revents & EV_READ)
-      /* stdin might have data for us, joy! */
+      /* stdin might have data for us, joy! */;
   }
 
-  ev_once (STDIN_FILENO, EV_READm 10., stdin_ready, 0);
+  ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
 
 =item ev_feed_event (loop, watcher, int events)
 
 Feeds the given event set into the event loop, as if the specified event
-has happened for the specified watcher (which must be a pointer to an
-initialised but not necessarily active event watcher).
+had happened for the specified watcher (which must be a pointer to an
+initialised but not necessarily started event watcher).
 
 =item ev_feed_fd_event (loop, int fd, int revents)
 
-Feed an event on the given fd, as if a file descriptor backend detected it.
+Feed an event on the given fd, as if a file descriptor backend detected
+the given events it.
 
 =item ev_feed_signal_event (loop, int signum)