X-Git-Url: https://git.llucax.com/software/libev.git/blobdiff_plain/0f6dd14468b680e28306eb9689eeed325a47a527..refs/heads/master:/ev.pod diff --git a/ev.pod b/ev.pod index 5aada8a..9ef6da2 100644 --- a/ev.pod +++ b/ev.pod @@ -262,6 +262,13 @@ flags. If that is troubling you, check C afterwards). If you don't know what event loop to use, use the one returned from this function. +The default loop is the only loop that can handle C and +C watchers, and to do this, it always registers a handler +for C. If this is a problem for your app you can either +create a dynamic loop with C that doesn't do that, or you +can simply overwrite the C signal handler I calling +C. + The flags argument can be used to specify special behaviour or specific backends to use, and is usually specified as C<0> (or C). @@ -405,6 +412,10 @@ file descriptor per loop iteration. For small and medium numbers of file descriptors a "slow" C or C backend might perform better. +On the positive side, ignoring the spurious readyness notifications, this +backend actually performed to specification in all tests and is fully +embeddable, which is a rare feat among the OS-specific backends. + =item C Try all backends (even potentially broken ones that wouldn't be tried @@ -416,9 +427,8 @@ It is definitely not recommended to use this flag. =back If one or more of these are ored into the flags value, then only these -backends will be tried (in the reverse order as given here). If none are -specified, most compiled-in backend will be tried, usually in reverse -order of their flag values :) +backends will be tried (in the reverse order as listed here). If none are +specified, all backends in C will be tried. The most typical usage is like this: @@ -475,14 +485,16 @@ earlier call to C. =item ev_default_fork () -This function reinitialises the kernel state for backends that have -one. Despite the name, you can call it anytime, but it makes most sense -after forking, in either the parent or child process (or both, but that -again makes little sense). +This function sets a flag that causes subsequent C iterations +to reinitialise the kernel state for backends that have one. Despite the +name, you can call it anytime, but it makes most sense after forking, in +the child process (or both child and parent, but that again makes little +sense). You I call it in the child before using any of the libev +functions, and it will only take effect at the next C iteration. -You I call this function in the child process after forking if and -only if you want to use the event library in both processes. If you just -fork+exec, you don't have to call it. +On the other hand, you only need to call this function in the child +process if and only if you want to use the event library in the child. If +you just fork+exec, you don't have to call it at all. The function itself is quite fast and it's usually not a problem to call it just in case after a fork. To make this easy, the function will fit in @@ -490,10 +502,6 @@ quite nicely into a call to C: pthread_atfork (0, 0, ev_default_fork); -At the moment, C and C are safe to use -without calling this function, so if you force one of those backends you -do not need to care. - =item ev_loop_fork (loop) Like C, but acts on an event loop created by @@ -553,12 +561,16 @@ usually a better approach for this kind of thing. Here are the gory details of what C does: - Before the first iteration, call any pending watchers. - * If there are no active watchers (reference count is zero), return. - - Queue all prepare watchers and then call all outstanding watchers. + * If EVFLAG_FORKCHECK was used, check for a fork. + - If a fork was detected, queue and call all fork watchers. + - Queue and call all prepare watchers. - If we have been forked, recreate the kernel state. - Update the kernel state with all outstanding changes. - Update the "event loop time". - - Calculate for how long to block. + - Calculate for how long to sleep or block, if at all + (active idle watchers, EVLOOP_NONBLOCK or not having + any active watchers at all will result in not sleeping). + - Sleep if the I/O and timer collect interval say so. - Block the process, waiting for any events. - Queue all outstanding I/O (fd) events. - Update the "event loop time" and do time jump handling. @@ -569,10 +581,11 @@ Here are the gory details of what C does: - Call all queued watchers in reverse order (i.e. check watchers first). Signals and child watchers are implemented as I/O watchers, and will be handled here by queueing them when their watcher gets executed. - - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK - were used, return, otherwise continue with step *. + - If ev_unloop has been called, or EVLOOP_ONESHOT or EVLOOP_NONBLOCK + were used, or there are no active watchers, return, otherwise + continue with step *. -Example: Queue some jobs and then loop until no events are outsanding +Example: Queue some jobs and then loop until no events are outstanding anymore. ... queue jobs here, make sure they register event watchers as long @@ -587,6 +600,8 @@ has processed all outstanding events). The C argument must be either C, which will make the innermost C call return, or C, which will make all nested C calls return. +This "unloop state" will be cleared when entering C again. + =item ev_ref (loop) =item ev_unref (loop) @@ -600,7 +615,9 @@ example, libev itself uses this for its internal signal pipe: It is not visible to the libev user and should not keep C from exiting if no event watchers registered by it are active. It is also an excellent way to do this for generic recurring timers or from within third-party -libraries. Just remember to I and I. +libraries. Just remember to I and I +(but only if the watcher wasn't active before, or was active before, +respectively). Example: Create a signal watcher, but keep it from keeping C running when nothing else is active. @@ -2493,6 +2510,14 @@ C<_get_osfhandle> on the fd to convert it to an OS handle. Otherwise, it is assumed that all these functions actually work on fds, even on win32. Should not be defined on non-win32 platforms. +=item EV_FD_TO_WIN32_HANDLE + +If C is enabled, then libev needs a way to map +file descriptors to socket handles. When not defining this symbol (the +default), then libev will call C<_get_osfhandle>, which is usually +correct. In some cases, programs use their own file descriptor management, +in which case they can provide this function to map fds to socket handles. + =item EV_USE_POLL If defined to be C<1>, libev will compile in support for the C(2) @@ -2538,8 +2563,8 @@ be detected at runtime. =item EV_H The name of the F header file used to include it. The default if -undefined is C<"ev.h"> in F and F. This can be used to -virtually rename the F header file in case of conflicts. +undefined is C<"ev.h"> in F, F and F. This can be +used to virtually rename the F header file in case of conflicts. =item EV_CONFIG_H @@ -2550,7 +2575,7 @@ C, above. =item EV_EVENT_H Similarly to C, this macro can be used to override F's idea -of how the F header can be found, the dfeault is C<"event.h">. +of how the F header can be found, the default is C<"event.h">. =item EV_PROTOTYPES @@ -2774,6 +2799,73 @@ watchers becomes O(1) w.r.t. prioritiy handling. =back +=head1 Win32 platform limitations and workarounds + +Win32 doesn't support any of the standards (e.g. POSIX) that libev +requires, and its I/O model is fundamentally incompatible with the POSIX +model. Libev still offers limited functionality on this platform in +the form of the C backend, and only supports socket +descriptors. This only applies when using Win32 natively, not when using +e.g. cygwin. + +There is no supported compilation method available on windows except +embedding it into other applications. + +Due to the many, low, and arbitrary limits on the win32 platform and the +abysmal performance of winsockets, using a large number of sockets is not +recommended (and not reasonable). If your program needs to use more than +a hundred or so sockets, then likely it needs to use a totally different +implementation for windows, as libev offers the POSIX model, which cannot +be implemented efficiently on windows (microsoft monopoly games). + +=over 4 + +=item The winsocket select function + +The winsocket C