X-Git-Url: https://git.llucax.com/software/libev.git/blobdiff_plain/5ac4bf0bc057e29b57d7e6f8fbd42f6d075efb21..87a584a79fd6470bf0be2bf79c52fab041f5bfa8:/ev.html diff --git a/ev.html b/ev.html index 264a3b5..abaebaa 100644 --- a/ev.html +++ b/ev.html @@ -6,7 +6,7 @@ - +
@@ -109,7 +109,7 @@ you linked against by calling the functionsev_version_major
and
ev_version_minor
. If you want, you can compare against the global
symbols EV_VERSION_MAJOR
and EV_VERSION_MINOR
, which specify the
version of the library your program was compiled against.
- Usually, its a good idea to terminate if the major versions mismatch, +
Usually, it's a good idea to terminate if the major versions mismatch, as this indicates an incompatible change. Minor versions are usually compatible to older versions, so a larger minor version alone is usually not a problem.
@@ -148,7 +148,7 @@ in your main thread (or in a separate thrad) and for each thread you create, you also create another event loop. Libev itself does no locking whatsoever, so if you mix calls to the same event loop in different threads, make sure you lock (this is usually a bad idea, though, even if -done correctly, because its hideous and inefficient). +done correctly, because it's hideous and inefficient).The default flags value. Use this if you have no clue (its the right +
The default flags value. Use this if you have no clue (it's the right thing, believe me).
If one or more of these are ored into the flags value, then only these backends will be tried (in the reverse order as given here). If one are @@ -202,7 +202,7 @@ undefined behaviour (or a failed assertion if assertions are enabled).
Destroys the default loop again (frees all memory and kernel state etc.). This stops all registered event watchers (by not touching them in -any way whatsoever, although you cnanot rely on this :).
+any way whatsoever, although you cannot rely on this :).You must call this function after forking if and only if you want to use the event library in both processes. If you just fork+exec, you don't have to call it.
-The function itself is quite fast and its usually not a problem to call +
The function itself is quite fast and it's usually not a problem to call
it just in case after a fork. To make this easy, the function will fit in
quite nicely into a call to pthread_atfork
:
pthread_atfork (0, 0, ev_default_fork); @@ -236,7 +236,7 @@ after fork, and how you do this is entirely your own problem.Returns one of the
EVMETHOD_*
flags indicating the event backend in use.
Returns the current "event loop time", which is the time the event loop got events and started processing them. This timestamp does not change @@ -253,33 +253,35 @@ events.
no event watchers are active anymore orev_unloop
was called.
A flags value of EVLOOP_NONBLOCK
will look for new events, will handle
those events and any outstanding ones, but will not block your process in
-case there are no events.
A flags value of EVLOOP_ONESHOT
will look for new events (waiting if
neccessary) and will handle those and any outstanding ones. It will block
-your process until at least one new event arrives.
This flags value could be used to implement alternative looping
constructs, but the prepare
and check
watchers provide a better and
more generic mechanism.
Can be used to make a call to ev_loop
return early. The how
argument
-must be either EVUNLOOP_ONCE
, which will make the innermost ev_loop
-call return, or EVUNLOOP_ALL
, which will make all nested ev_loop
-calls return.
Can be used to make a call to ev_loop
return early (but only after it
+has processed all outstanding events). The how
argument must be either
+EVUNLOOP_ONCE
, which will make the innermost ev_loop
call return, or
+EVUNLOOP_ALL
, which will make all nested ev_loop
calls return.
Ref/unref can be used to add or remove a refcount on the event loop: Every
-watcher keeps one reference. If you have a long-runing watcher you never
-unregister that should not keep ev_loop from running, ev_unref() after
-starting, and ev_ref() before stopping it. Libev itself uses this for
-example for its internal signal pipe: It is not visible to you as a user
-and should not keep ev_loop
from exiting if the work is done. It is
-also an excellent way to do this for generic recurring timers or from
-within third-party libraries. Just remember to unref after start and ref
-before stop.
Ref/unref can be used to add or remove a reference count on the event
+loop: Every watcher keeps one reference, and as long as the reference
+count is nonzero, ev_loop
will not return on its own. If you have
+a watcher you never unregister that should not keep ev_loop
from
+returning, ev_unref() after starting, and ev_ref() before stopping it. For
+example, libev itself uses this for its internal signal pipe: It is not
+visible to the libev user and should not keep ev_loop
from exiting if
+no event watchers registered by it are active. It is also an excellent
+way to do this for generic recurring timers or from within third-party
+libraries. Just remember to unref after start and ref before stop.
The relative timeouts are calculated relative to the ev_now ()
+time. This is usually the right thing as this timestamp refers to the time
+of the event triggering whatever timeout you are modifying/starting. If
+you suspect event processing to be delayed and you *need* to base the timeout
+ion the current time, use something like this to adjust for this:
ev_timer_set (&timer, after + ev_now () - ev_time (), 0.); + +
Signal watchers will trigger an event when the process receives a specific signal one or more times. Even though signals are very asynchronous, libev -will try its best to deliver signals synchronously, i.e. as part of the +will try it's best to deliver signals synchronously, i.e. as part of the normal event processing, like any other event.
You cna configure as many watchers as you like per signal. Only when the first watcher gets started will libev actually register a signal watcher