X-Git-Url: https://git.llucax.com/software/libev.git/blobdiff_plain/756a6378f76a80c595335d4a78ab426cc44d247d..5466167e0504f6fd929074dda89e770d4abfd3c3:/ev.pod?ds=sidebyside diff --git a/ev.pod b/ev.pod index b1a5fe5..3ad52c0 100644 --- a/ev.pod +++ b/ev.pod @@ -50,6 +50,10 @@ libev - a high performance full-featured event loop written in C =head1 DESCRIPTION +The newest version of this document is also available as a html-formatted +web page you might find easier to navigate when reading it for the first +time: L. + Libev is an event loop: you register interest in certain events (such as a file descriptor being readable or a timeout occuring), and it will manage these event sources and provide your program with events. @@ -276,7 +280,7 @@ enabling this flag. This works by calling C on every iteration of the loop, and thus this might slow down your event loop if you do a lot of loop -iterations and little real work, but is usually not noticable (on my +iterations and little real work, but is usually not noticeable (on my Linux system for example, C is actually a simple 5-insn sequence without a syscall and thus I fast, but my Linux system also has C which is even faster). @@ -432,6 +436,16 @@ Like C, but acts on an event loop created by C. Yes, you have to call this on every allocated event loop after fork, and how you do this is entirely your own problem. +=item unsigned int ev_loop_count (loop) + +Returns the count of loop iterations for the loop, which is identical to +the number of times libev did poll for new events. It starts at C<0> and +happily wraps around with enough iterations. + +This value can sometimes be useful as a generation counter of sorts (it +"ticks" the number of loop iterations), as it roughly corresponds with +C and C calls. + =item unsigned int ev_backend (loop) Returns one of the C flags indicating the event backend in @@ -474,8 +488,9 @@ usually a better approach for this kind of thing. Here are the gory details of what C does: + - Before the first iteration, call any pending watchers. * If there are no active watchers (reference count is zero), return. - - Queue prepare watchers and then call all outstanding watchers. + - Queue all prepare watchers and then call all outstanding watchers. - If we have been forked, recreate the kernel state. - Update the kernel state with all outstanding changes. - Update the "event loop time". @@ -724,8 +739,9 @@ it. Returns a true value iff the watcher is pending, (i.e. it has outstanding events but its callback has not yet been invoked). As long as a watcher is pending (but not active) you must not call an init function on it (but -C is safe) and you must make sure the watcher is available to -libev (e.g. you cnanot C it). +C is safe), you must not change its priority, and you must +make sure the watcher is available to libev (e.g. you cannot C +it). =item callback ev_cb (ev_TYPE *watcher) @@ -736,6 +752,46 @@ Returns the callback currently set on the watcher. Change the callback. You can change the callback at virtually any time (modulo threads). +=item ev_set_priority (ev_TYPE *watcher, priority) + +=item int ev_priority (ev_TYPE *watcher) + +Set and query the priority of the watcher. The priority is a small +integer between C (default: C<2>) and C +(default: C<-2>). Pending watchers with higher priority will be invoked +before watchers with lower priority, but priority will not keep watchers +from being executed (except for C watchers). + +This means that priorities are I used for ordering callback +invocation after new events have been received. This is useful, for +example, to reduce latency after idling, or more often, to bind two +watchers on the same event and make sure one is called first. + +If you need to suppress invocation when higher priority events are pending +you need to look at C watchers, which provide this functionality. + +You I change the priority of a watcher as long as it is active or +pending. + +The default priority used by watchers when no priority has been set is +always C<0>, which is supposed to not be too high and not be too low :). + +Setting a priority outside the range of C to C is +fine, as long as you do not mind that the priority value you query might +or might not have been adjusted to be within valid range. + +=item ev_invoke (loop, ev_TYPE *watcher, int revents) + +Invoke the C with the given C and C. Neither +C nor C need to be valid as long as the watcher callback +can deal with that fact. + +=item int ev_clear_pending (loop, ev_TYPE *watcher) + +If the watcher is pending, this function returns clears its pending status +and returns its C bitset (as if its callback was invoked). If the +watcher isn't pending it does nothing and returns C<0>. + =back @@ -850,7 +906,7 @@ C is far preferable to a program hanging until some data arrives. If you cannot run the fd in non-blocking mode (for example you should not play around with an Xlib connection), then you have to seperately re-test -wether a file descriptor is really ready with a known-to-be good interface +whether a file descriptor is really ready with a known-to-be good interface such as poll (fortunately in our Xlib example, Xlib already does this on its own, so its quite safe to use). @@ -1020,11 +1076,11 @@ to trigger "at" some specific point in time. For example, if you tell a periodic watcher to trigger in 10 seconds (by specifiying e.g. C) and then reset your system clock to the last year, then it will take a year to trigger the event (unlike an C, which would trigger -roughly 10 seconds later and of course not if you reset your system time -again). +roughly 10 seconds later). They can also be used to implement vastly more complex timers, such as -triggering an event on eahc midnight, local time. +triggering an event on each midnight, local time or other, complicated, +rules. As with timers, the callback is guarenteed to be invoked only when the time (C) has been passed, but if multiple periodic timers become ready @@ -1041,18 +1097,18 @@ operation, and we will explain them from simplest to complex: =over 4 -=item * absolute timer (interval = reschedule_cb = 0) +=item * absolute timer (at = time, interval = reschedule_cb = 0) In this configuration the watcher triggers an event at the wallclock time C and doesn't repeat. It will not adjust when a time jump occurs, that is, if it is to be run at January 1st 2011 then it will run when the system time reaches or surpasses this time. -=item * non-repeating interval timer (interval > 0, reschedule_cb = 0) +=item * non-repeating interval timer (at = offset, interval > 0, reschedule_cb = 0) In this mode the watcher will always be scheduled to time out at the next -C time (for some integer N) and then repeat, regardless -of any time jumps. +C time (for some integer N, which can also be negative) +and then repeat, regardless of any time jumps. This can be used to create timers that do not drift with respect to system time: @@ -1068,7 +1124,11 @@ Another way to think about it (for the mathematically inclined) is that C will try to run the callback in this mode at the next possible time where C