X-Git-Url: https://git.llucax.com/software/libev.git/blobdiff_plain/8314a2bcfca6fbd1d9fcac78400d7c381b2c01ff..8e61f07d52c0b46222c8be6f32914ada9fbe714b:/ev.html diff --git a/ev.html b/ev.html index abaebaa..4837317 100644 --- a/ev.html +++ b/ev.html @@ -6,7 +6,7 @@ - +
@@ -26,12 +26,12 @@ev_io
- is this file descriptor readable or writableev_timer
- relative and optionally recurring timeoutsev_periodic
- to cron or not to cronev_signal
- signal me when a signal gets signalledev_child
- wait for pid status changesev_idle
- when you've got nothing better to doIt supports the following flags:
EVFLAG_AUTO
The default flags value. Use this if you have no clue (it's the right thing, believe me).
EVFLAG_NOENV
If this flag bit is ored into the flag value (or the program runs setuid or setgid) then libev will not look at the environment variable @@ -177,12 +177,12 @@ override the flags completely if it is found in the environment. This is useful to try out specific backends to test their performance, or to work around bugs.
EVMETHOD_SELECT
(portable select backend)EVMETHOD_POLL
(poll backend, available everywhere except on windows)EVMETHOD_EPOLL
(linux only)EVMETHOD_KQUEUE
(some bsds only)EVMETHOD_DEVPOLL
(solaris 8 only)EVMETHOD_PORT
(solaris 10 only)If one or more of these are ored into the flags value, then only these backends will be tried (in the reverse order as given here). If one are @@ -290,7 +290,7 @@ libraries. Just remember to unref after start and ref before stop.
A watcher is a structure that you create and register to record your interest in some event. For instance, if you want to wait for STDIN to -become readable, you would create an ev_io watcher for that:
+become readable, you would create anev_io
watcher for that:
static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents) { ev_io_stop (w); @@ -324,55 +324,55 @@ corresponding stop function (ev_<type>_stop (loop, watcher *)
As long as your watcher is active (has been started but not stopped) you must not touch the values stored in it. Most specifically you must never reinitialise it or call its set method.
-You cna check whether an event is active by calling the
ev_is_active +
You can check whether an event is active by calling the
ev_is_active (watcher *)
macro. To see whether an event is outstanding (but the -callback for it has not been called yet) you cna use theev_is_pending +callback for it has not been called yet) you can use the
ev_is_pending (watcher *)
macro.Each and every callback receives the event loop pointer as first, the registered watcher structure as second, and a bitset of received events as third argument.
-The rceeived events usually include a single bit per event type received +
The received events usually include a single bit per event type received (you can receive multiple events at the same time). The possible bit masks are:
-
- EV_READ
-- EV_WRITE
+- +
EV_READ
EV_WRITE
- -
-The file descriptor in the ev_io watcher has become readable and/or +
The file descriptor in the
ev_io
watcher has become readable and/or writable.- EV_TIMEOUT
+EV_TIMEOUT
- -
-The ev_timer watcher has timed out.
+The
ev_timer
watcher has timed out.- EV_PERIODIC
+EV_PERIODIC
- -
-The ev_periodic watcher has timed out.
+The
ev_periodic
watcher has timed out.- EV_SIGNAL
+EV_SIGNAL
- -
-The signal specified in the ev_signal watcher has been received by a thread.
+The signal specified in the
ev_signal
watcher has been received by a thread.- EV_CHILD
+EV_CHILD
- -
-The pid specified in the ev_child watcher has received a status change.
+The pid specified in the
ev_child
watcher has received a status change.- EV_IDLE
+EV_IDLE
- -
-The ev_idle watcher has determined that you have nothing better to do.
+The
ev_idle
watcher has determined that you have nothing better to do.- EV_PREPARE
-- EV_CHECK
+- +
EV_PREPARE
EV_CHECK
- -
-All ev_prepare watchers are invoked just before
ev_loop
starts -to gather new events, and all ev_check watchers are invoked just after +All
ev_prepare
watchers are invoked just beforeev_loop
starts +to gather new events, and allev_check
watchers are invoked just afterev_loop
has gathered them, but before it invokes any callbacks for any received events. Callbacks of both watcher types can start and stop as many watchers as they want, and all of them will be taken into account -(for example, a ev_prepare watcher might start an idle watcher to keep +(for example, aev_prepare
watcher might start an idle watcher to keepev_loop
from blocking).- EV_ERROR
+EV_ERROR
An unspecified error has occured, the watcher has been stopped. This might happen because the watcher could not be properly started because libev @@ -391,7 +391,7 @@ programs, though, so beware.
ASSOCIATING CUSTOM DATA WITH A WATCHER
-Each watcher has, by default, a member
information given in the last section.void *data
that you can change -and read at any time, libev will completely ignore it. This cna be used +and read at any time, libev will completely ignore it. This can be used to associate arbitrary data with your watcher. If you need more data and don't want to allocate memory and store a pointer to it in that data member, you can also "subclass" the watcher type and provide your own @@ -428,12 +428,12 @@ have been omitted....struct ev_io - is my file descriptor readable or writable
-++
ev_io
- is this file descriptor readable or writable-I/O watchers check whether a file descriptor is readable or writable in each iteration of the event loop (This behaviour is called level-triggering because you keep receiving events as long as the -condition persists. Remember you cna stop the watcher if you don't want to +condition persists. Remember you can stop the watcher if you don't want to act on the event and neither want to receive future events).
In general you can register as many read and/or write event watchers oer fd as you want (as long as you don't confuse yourself). Setting all file @@ -450,15 +450,15 @@ EVMETHOD_POLL).
- ev_io_init (ev_io *, callback, int fd, int events)
- ev_io_set (ev_io *, int fd, int events)
- -
Configures an ev_io watcher. The fd is the file descriptor to rceeive +
Configures an
ev_io
watcher. The fd is the file descriptor to rceeive events for and events is eitherEV_READ
,EV_WRITE
orEV_READ | EV_WRITE
to receive the given events.struct ev_timer - relative and optionally recurring timeouts
-++
ev_timer
- relative and optionally recurring timeouts-Timer watchers are simple relative timers that generate an event after a given time, and optionally repeating in regular intervals after that.
The timers are based on real time, that is, if you register an event that @@ -499,7 +499,7 @@ value), or reset the running timer to the repeat value.
example: Imagine you have a tcp connection and you want a so-called idle timeout, that is, you want to be called when there have been, say, 60 seconds of inactivity on the socket. The easiest way to do this is to -configure an ev_timer with after=repeat=60 and calling ev_timer_again each +configure anev_timer
with after=repeat=60 and calling ev_timer_again each time you successfully read or write some data. If you go into an idle state where you do not expect data to travel on the socket, you can stop the timer, and again will automatically restart it if need be. @@ -507,16 +507,16 @@ the timer, and again will automatically restart it if need be.ev_periodic - to cron or not to cron it
-++
ev_periodic
- to cron or not to cron-Periodic watchers are also timers of a kind, but they are very versatile (and unfortunately a bit complex).
-Unlike ev_timer's, they are not based on real time (or relative time) +
Unlike
ev_timer
's, they are not based on real time (or relative time) but on wallclock time (absolute time). You can tell a periodic watcher to trigger "at" some specific point in time. For example, if you tell a periodic watcher to trigger in 10 seconds (by specifiying e.g. c<ev_now () + 10.>) and then reset your system clock to the last year, then it will -take a year to trigger the event (unlike an ev_timer, which would trigger +take a year to trigger the event (unlike anev_timer
, which would trigger roughly 10 seconds later and of course not if you reset your system time again).They can also be used to implement vastly more complex timers, such as @@ -552,10 +552,10 @@ time:
This doesn't mean there will always be 3600 seconds in between triggers, but only that the the callback will be called when the system time shows a -full hour (UTC), or more correct, when the system time is evenly divisible +full hour (UTC), or more correctly, when the system time is evenly divisible by 3600.
Another way to think about it (for the mathematically inclined) is that -ev_periodic will try to run the callback in this mode at the next possible +
ev_periodic
will try to run the callback in this mode at the next possible time wheretime = at (mod interval)
, regardless of any time jumps.- * manual reschedule mode (reschedule_cb = callback)
@@ -565,10 +565,12 @@ ignored. Instead, each time the periodic watcher gets scheduled, the reschedule callback will be called with the watcher as first, and the current time as second argument.NOTE: This callback MUST NOT stop or destroy the periodic or any other -periodic watcher, ever, or make any event loop modificstions. If you need -to stop it, return 1e30 (or so, fudge fudge) and stop it afterwards.
-Its prototype is c<ev_tstamp (*reschedule_cb)(struct ev_periodic *w, -ev_tstamp now)>, e.g.:
+periodic watcher, ever, or make any event loop modifications. If you need +to stop it, returnnow + 1e30
(or so, fudge fudge) and stop it afterwards. +Also, this callback must always return a time that is later than the +passed
+now
value. Not evennow
itself will be ok.Its prototype is
ev_tstamp (*reschedule_cb)(struct ev_periodic *w, +ev_tstamp now)
, e.g.:static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now) { return now + 60.; @@ -597,13 +599,13 @@ program when the crontabs have changed).ev_signal - signal me when a signal gets signalled
-++
ev_signal
- signal me when a signal gets signalled-Signal watchers will trigger an event when the process receives a specific signal one or more times. Even though signals are very asynchronous, libev will try it's best to deliver signals synchronously, i.e. as part of the normal event processing, like any other event.
-You cna configure as many watchers as you like per signal. Only when the +
You can configure as many watchers as you like per signal. Only when the first watcher gets started will libev actually register a signal watcher with the kernel (thus it coexists with your own signal handlers as long as you don't register any with libev). Similarly, when the last signal @@ -619,8 +621,8 @@ of the
SIGxxx
constants).ev_child - wait for pid status changes
-++
ev_child
- wait for pid status changes-Child watchers trigger when your process receives a SIGCHLD in response to some child status changes (most typically when a child of yours dies).
@@ -630,19 +632,22 @@ some child status changes (most typically when a child of yours dies).
Configures the watcher to wait for status changes of process
+the status word (use the macros frompid
(or any process ifpid
is specified as0
). The callback can look at therstatus
member of theev_child
watcher structure to see -the status word (use the macros fromsys/wait.h
). Therpid
member -contains the pid of the process causing the status change.sys/wait.h
and see your systems +waitpid
documentation). Therpid
member contains the pid of the +process causing the status change.ev_idle - when you've got nothing better to do
--Idle watchers trigger events when there are no other I/O or timer (or -periodic) events pending. That is, as long as your process is busy -handling sockets or timeouts it will not be called. But when your process -is idle all idle watchers are being called again and again - until -stopped, that is, or your process receives more events.
++
ev_idle
- when you've got nothing better to do+Idle watchers trigger events when there are no other events are pending +(prepare, check and other idle watchers do not count). That is, as long +as your process is busy handling sockets or timeouts (or even signals, +imagine) it will not be triggered. But when your process is idle all idle +watchers are being called again and again, once per event loop iteration - +until stopped, that is, or your process receives more events and becomes +busy.
The most noteworthy effect is that as long as any idle watchers are active, the process will not block when waiting for new events.
Apart from keeping your process non-blocking (which is a useful @@ -661,36 +666,42 @@ believe me.
prepare and check - your hooks into the event loop
-Prepare and check watchers usually (but not always) are used in -tandom. Prepare watchers get invoked before the process blocks and check -watchers afterwards.
+Prepare and check watchers are usually (but not always) used in tandem: +Prepare watchers get invoked before the process blocks and check watchers +afterwards.
Their main purpose is to integrate other event mechanisms into libev. This could be used, for example, to track variable changes, implement your own watchers, integrate net-snmp or a coroutine library and lots more.
This is done by examining in each prepare call which file descriptors need -to be watched by the other library, registering ev_io watchers for them -and starting an ev_timer watcher for any timeouts (many libraries provide -just this functionality). Then, in the check watcher you check for any -events that occured (by making your callbacks set soem flags for example) -and call back into the library.
-As another example, the perl Coro module uses these hooks to integrate +to be watched by the other library, registering
+ev_io
watchers for +them and starting anev_timer
watcher for any timeouts (many libraries +provide just this functionality). Then, in the check watcher you check for +any events that occured (by checking the pending status of all watchers +and stopping them) and call back into the library. The I/O and timer +callbacks will never actually be called (but must be valid neverthelles, +because you never know, you know?).As another example, the Perl Coro module uses these hooks to integrate coroutines into libev programs, by yielding to other active coroutines during each prepare and only letting the process block if no coroutines -are ready to run.
+are ready to run (its actually more complicated, it only runs coroutines +with priority higher than the event loop and one lower priority once, +using idle watchers to keep the event loop from blocking if lower-priority +coroutines exist, thus mapping low-priority coroutines to idle/background +tasks).
- ev_prepare_init (ev_prepare *, callback)
- ev_check_init (ev_check *, callback)
Initialises and configures the prepare or check watcher - they have no parameters of any kind. There are
+macros, but using them is utterly, utterly and completely pointless.ev_prepare_set
andev_check_set
-macros, but using them is utterly, utterly pointless.OTHER FUNCTIONS
-There are some other fucntions of possible interest. Described. Here. Now.
+There are some other functions of possible interest. Described. Here. Now.
- ev_once (loop, int fd, int events, ev_tstamp timeout, callback)
- @@ -699,36 +710,39 @@ callback on whichever event happens first and automatically stop both watchers. This is useful if you want to wait for a single event on an fd or timeout without havign to allocate/configure/start/stop/free one or more watchers yourself. -
If
+fd
is less than 0, then no I/O watcher will be started and events is -ignored. Otherwise, an ev_io watcher for the givenfd
andevents
set -will be craeted and started.If
fd
is less than 0, then no I/O watcher will be started and events +is being ignored. Otherwise, anev_io
watcher for the givenfd
and +events
set will be craeted and started.If
-timeout
is less than 0, then no timeout watcher will be -started. Otherwise an ev_timer watcher with after =timeout
(and repeat -= 0) will be started.The callback has the type
+started. Otherwise anvoid (*cb)(int revents, void *arg)
and -gets passed an events set (normally a combination of EV_ERROR, EV_READ, -EV_WRITE or EV_TIMEOUT) and thearg
value passed toev_once
:ev_timer
watcher with after =timeout
(and +repeat = 0) will be started. While0
is a valid timeout, it is of +dubious value. +The callback has the type
void (*cb)(int revents, void *arg)
and gets +passed an events set like normal event callbacks (with a combination of +EV_ERROR
,EV_READ
,EV_WRITE
orEV_TIMEOUT
) and thearg
+value passed toev_once
:static void stdin_ready (int revents, void *arg) { if (revents & EV_TIMEOUT) - /* doh, nothing entered */ + /* doh, nothing entered */; else if (revents & EV_READ) - /* stdin might have data for us, joy! */ + /* stdin might have data for us, joy! */; } - ev_once (STDIN_FILENO, EV_READm 10., stdin_ready, 0); + ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);- ev_feed_event (loop, watcher, int events)
Feeds the given event set into the event loop, as if the specified event -has happened for the specified watcher (which must be a pointer to an -initialised but not necessarily active event watcher).
+had happened for the specified watcher (which must be a pointer to an +initialised but not necessarily started event watcher).- ev_feed_fd_event (loop, int fd, int revents)
- -
Feed an event on the given fd, as if a file descriptor backend detected it.
+Feed an event on the given fd, as if a file descriptor backend detected +the given events it.
- ev_feed_signal_event (loop, int signum)