X-Git-Url: https://git.llucax.com/software/libev.git/blobdiff_plain/a728e62d7c25b8d8852e332e729e70248520a925..9e2c6f5f713cf5b0a9dc3b1aed5b0b7f06f3b6dc:/ev.html?ds=inline diff --git a/ev.html b/ev.html index aeefef7..9dd27c1 100644 --- a/ev.html +++ b/ev.html @@ -6,7 +6,7 @@ - +
@@ -23,7 +23,8 @@ev_child
- wait for pid status changesev_idle
- when you've got nothing better to doev_prepare
and ev_check
- customise your event loopev_embed
- when one backend isn't enoughev_tstamp
, which is what you should use too. It usually aliases
-to the double type in C.
+to the double
type in C, and when you need to do any calculations on
+it, you should treat it as such.
+
+
+
+
Returns the current time as libev would use it.
+Returns the current time as libev would use it. Please note that the
+ev_now
function is usually faster and also often returns the timestamp
+you actually want to know.
Example: make sure we haven't accidentally been linked against the wrong +version:
+assert (("libev version mismatch", + ev_version_major () == EV_VERSION_MAJOR + && ev_version_minor () >= EV_VERSION_MINOR)); + ++ +
Return the set of all backends (i.e. their corresponding EV_BACKEND_*
+value) compiled into this binary of libev (independent of their
+availability on the system you are running on). See ev_default_loop
for
+a description of the set values.
Example: make sure we have the epoll method, because yeah this is cool and +a must have and can we have a torrent of it please!!!11
+assert (("sorry, no epoll, no sex", + ev_supported_backends () & EVBACKEND_EPOLL)); + ++
Return the set of all backends compiled into this binary of libev and also
+recommended for this platform. This set is often smaller than the one
+returned by ev_supported_backends
, as for example kqueue is broken on
+most BSDs and will not be autodetected unless you explicitly request it
+(assuming you know what you are doing). This is the set of backends that
+libev will probe for if you specify no backends explicitly.
Returns the set of backends that are embeddable in other event loops. This
+is the theoretical, all-platform, value. To find which backends
+might be supported on the current system, you would need to look at
+ev_embeddable_backends () & ev_supported_backends ()
, likewise for
+recommended ones.
See the description of ev_embed
watchers for more info.
You could override this function in high-availability programs to, say, free some memory if it cannot allocate memory, to use a special allocator, or even to sleep a while and retry until some memory is available.
+Example: replace the libev allocator with one that waits a bit and then +retries: better than mine).
+static void * + persistent_realloc (void *ptr, long size) + { + for (;;) + { + void *newptr = realloc (ptr, size); + + if (newptr) + return newptr; + + sleep (60); + } + } + + ... + ev_set_allocator (persistent_realloc); + +
Example: do the same thing as libev does internally:
+static void + fatal_error (const char *msg) + { + perror (msg); + abort (); + } + + ... + ev_set_syserr_cb (fatal_error); + +
This will initialise the default event loop if it hasn't been initialised yet and return it. If the default loop could not be initialised, returns false. If it already was initialised it simply returns it (and ignores the -flags).
+flags. If that is troubling you, checkev_backend ()
afterwards).
If you don't know what event loop to use, use the one returned from this function.
The flags argument can be used to specify special behaviour or specific -backends to use, and is usually specified as 0 (or EVFLAG_AUTO).
-It supports the following flags:
+backends to use, and is usually specified as0
(or EVFLAG_AUTO
).
+ The following flags are supported:
EVFLAG_AUTO
EVMETHOD_SELECT
(portable select backend)EVMETHOD_POLL
(poll backend, available everywhere except on windows)EVMETHOD_EPOLL
(linux only)EVMETHOD_KQUEUE
(some bsds only)EVMETHOD_DEVPOLL
(solaris 8 only)EVMETHOD_PORT
(solaris 10 only)EVBACKEND_SELECT
(value 1, portable select backend)This is your standard select(2) backend. Not completely standard, as +libev tries to roll its own fd_set with no limits on the number of fds, +but if that fails, expect a fairly low limit on the number of fds when +using this backend. It doesn't scale too well (O(highest_fd)), but its usually +the fastest backend for a low number of fds.
+EVBACKEND_POLL
(value 2, poll backend, available everywhere except on windows)And this is your standard poll(2) backend. It's more complicated than +select, but handles sparse fds better and has no artificial limit on the +number of fds you can use (except it will slow down considerably with a +lot of inactive fds). It scales similarly to select, i.e. O(total_fds).
+EVBACKEND_EPOLL
(value 4, Linux)For few fds, this backend is a bit little slower than poll and select, +but it scales phenomenally better. While poll and select usually scale like +O(total_fds) where n is the total number of fds (or the highest fd), epoll scales +either O(1) or O(active_fds).
+While stopping and starting an I/O watcher in the same iteration will +result in some caching, there is still a syscall per such incident +(because the fd could point to a different file description now), so its +best to avoid that. Also, dup()ed file descriptors might not work very +well if you register events for both fds.
+Please note that epoll sometimes generates spurious notifications, so you +need to use non-blocking I/O or other means to avoid blocking when no data +(or space) is available.
+EVBACKEND_KQUEUE
(value 8, most BSD clones)Kqueue deserves special mention, as at the time of this writing, it
+was broken on all BSDs except NetBSD (usually it doesn't work with
+anything but sockets and pipes, except on Darwin, where of course its
+completely useless). For this reason its not being "autodetected"
+unless you explicitly specify it explicitly in the flags (i.e. using
+EVBACKEND_KQUEUE
).
It scales in the same way as the epoll backend, but the interface to the +kernel is more efficient (which says nothing about its actual speed, of +course). While starting and stopping an I/O watcher does not cause an +extra syscall as with epoll, it still adds up to four event changes per +incident, so its best to avoid that.
+EVBACKEND_DEVPOLL
(value 16, Solaris 8)If one or more of these are ored into the flags value, then only these -backends will be tried (in the reverse order as given here). If one are -specified, any backend will do.
+This is not implemented yet (and might never be).
+EVBACKEND_PORT
(value 32, Solaris 10)This uses the Solaris 10 port mechanism. As with everything on Solaris, +it's really slow, but it still scales very well (O(active_fds)).
+Please note that solaris ports can result in a lot of spurious +notifications, so you need to use non-blocking I/O or other means to avoid +blocking when no data (or space) is available.
+EVBACKEND_ALL
Try all backends (even potentially broken ones that wouldn't be tried
+with EVFLAG_AUTO
). Since this is a mask, you can do stuff such as
+EVBACKEND_ALL & ~EVBACKEND_KQUEUE
.
If one or more of these are ored into the flags value, then only these +backends will be tried (in the reverse order as given here). If none are +specified, most compiled-in backend will be tried, usually in reverse +order of their flag values :)
+The most typical usage is like this:
+if (!ev_default_loop (0)) + fatal ("could not initialise libev, bad $LIBEV_FLAGS in environment?"); + ++
Restrict libev to the select and poll backends, and do not allow +environment settings to be taken into account:
+ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV); + ++
Use whatever libev has to offer, but make sure that kqueue is used if +available (warning, breaks stuff, best use only with your own private +event loop and only if you know the OS supports your types of fds):
+ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE); + +
Example: try to create a event loop that uses epoll and nothing else.
+struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV); + if (!epoller) + fatal ("no epoll found here, maybe it hides under your chair"); + +
Destroys the default loop again (frees all memory and kernel state -etc.). This stops all registered event watchers (by not touching them in -any way whatsoever, although you cannot rely on this :).
+etc.). None of the active event watchers will be stopped in the normal +sense, so e.g.ev_is_active
might still return true. It is your
+responsibility to either stop all watchers cleanly yoursef before
+calling this function, or cope with the fact afterwards (which is usually
+the easiest thing, youc na just ignore the watchers and/or free ()
them
+for example).
ev_loop_new
.
one. Despite the name, you can call it anytime, but it makes most sense
after forking, in either the parent or child process (or both, but that
again makes little sense).
- You must call this function after forking if and only if you want to -use the event library in both processes. If you just fork+exec, you don't -have to call it.
+You must call this function in the child process after forking if and +only if you want to use the event library in both processes. If you just +fork+exec, you don't have to call it.
The function itself is quite fast and it's usually not a problem to call
it just in case after a fork. To make this easy, the function will fit in
quite nicely into a call to pthread_atfork
:
pthread_atfork (0, 0, ev_default_fork);+
At the moment, EVBACKEND_SELECT
and EVBACKEND_POLL
are safe to use
+without calling this function, so if you force one of those backends you
+do not need to care.
pthread_atfork
:
ev_loop_new
. Yes, you have to call this on every allocated event loop
after fork, and how you do this is entirely your own problem.
Returns one of the EVMETHOD_*
flags indicating the event backend in
+
Returns one of the EVBACKEND_*
flags indicating the event backend in
use.
Returns the current "event loop time", which is the time the event loop -got events and started processing them. This timestamp does not change -as long as callbacks are being processed, and this is also the base time -used for relative timers. You can treat it as the timestamp of the event -occuring (or more correctly, the mainloop finding out about it).
+received events and started processing them. This timestamp does not +change as long as callbacks are being processed, and this is also the base +time used for relative timers. You can treat it as the timestamp of the +event occuring (or more correctly, libev finding out about it).Finally, this is it, the event handler. This function usually is called after you initialised all your watchers and you want to start handling events.
-If the flags argument is specified as 0, it will not return until either
-no event watchers are active anymore or ev_unloop
was called.
If the flags argument is specified as 0
, it will not return until
+either no event watchers are active anymore or ev_unloop
was called.
Please note that an explicit ev_unloop
is usually better than
+relying on all watchers to be stopped when deciding when a program has
+finished (especially in interactive programs), but having a program that
+automatically loops as long as it has to and no longer by virtue of
+relying on its watchers stopping correctly is a thing of beauty.
A flags value of EVLOOP_NONBLOCK
will look for new events, will handle
those events and any outstanding ones, but will not block your process in
case there are no events and will return after one iteration of the loop.
A flags value of EVLOOP_ONESHOT
will look for new events (waiting if
neccessary) and will handle those and any outstanding ones. It will block
your process until at least one new event arrives, and will return after
-one iteration of the loop.
This flags value could be used to implement alternative looping
-constructs, but the prepare
and check
watchers provide a better and
-more generic mechanism.
ev_prepare
/ev_check
watchers is
+usually a better approach for this kind of thing.
+ Here are the gory details of what ev_loop
does:
* If there are no active watchers (reference count is zero), return. + - Queue prepare watchers and then call all outstanding watchers. + - If we have been forked, recreate the kernel state. + - Update the kernel state with all outstanding changes. + - Update the "event loop time". + - Calculate for how long to block. + - Block the process, waiting for any events. + - Queue all outstanding I/O (fd) events. + - Update the "event loop time" and do time jump handling. + - Queue all outstanding timers. + - Queue all outstanding periodics. + - If no events are pending now, queue all idle watchers. + - Queue all check watchers. + - Call all queued watchers in reverse order (i.e. check watchers first). + Signals and child watchers are implemented as I/O watchers, and will + be handled here by queueing them when their watcher gets executed. + - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK + were used, return, otherwise continue with step *. + ++
Example: queue some jobs and then loop until no events are outsanding +anymore.
+... queue jobs here, make sure they register event watchers as long + ... as they still have work to do (even an idle watcher will do..) + ev_loop (my_loop, 0); + ... jobs done. yeah! + +
Can be used to make a call to ev_loop
return early (but only after it
has processed all outstanding events). The how
argument must be either
-EVUNLOOP_ONCE
, which will make the innermost ev_loop
call return, or
+EVUNLOOP_ONE
, which will make the innermost ev_loop
call return, or
EVUNLOOP_ALL
, which will make all nested ev_loop
calls return.
ev_loop
from exiting
no event watchers registered by it are active. It is also an excellent
way to do this for generic recurring timers or from within third-party
libraries. Just remember to unref after start and ref before stop.
+ Example: create a signal watcher, but keep it from keeping ev_loop
+running when nothing else is active.
struct dv_signal exitsig; + ev_signal_init (&exitsig, sig_cb, SIGINT); + ev_signal_start (myloop, &exitsig); + evf_unref (myloop); + ++
Example: for some weird reason, unregister the above signal handler again.
+ev_ref (myloop); + ev_signal_stop (myloop, &exitsig); + +@@ -330,11 +553,7 @@ with a watcher-specific start function (
ev_<type>_start (loop, watch
corresponding stop function (ev_<type>_stop (loop, watcher *)
.
As long as your watcher is active (has been started but not stopped) you
must not touch the values stored in it. Most specifically you must never
-reinitialise it or call its set method.
-You can check whether an event is active by calling the ev_is_active
-(watcher *)
macro. To see whether an event is outstanding (but the
-callback for it has not been called yet) you can use the ev_is_pending
-(watcher *)
macro.
+reinitialise it or call its set
macro.
Each and every callback receives the event loop pointer as first, the
registered watcher structure as second, and a bitset of received events as
third argument.
@@ -394,6 +613,84 @@ programs, though, so beware.
+
+SUMMARY OF GENERIC WATCHER FUNCTIONS
+
+In the following description, TYPE
stands for the watcher type,
+e.g. timer
for ev_timer
watchers and io
for ev_io
watchers.
+
+ ev_init
(ev_TYPE *watcher, callback)
+ -
+
This macro initialises the generic portion of a watcher. The contents
+of the watcher object can be arbitrary (so malloc
will do). Only
+the generic parts of the watcher are initialised, you need to call
+the type-specific ev_TYPE_set
macro afterwards to initialise the
+type-specific parts. For each type there is also a ev_TYPE_init
macro
+which rolls both calls into one.
+ You can reinitialise a watcher at any time as long as it has been stopped
+(or never started) and there are no pending events outstanding.
+ The callbakc is always of type void (*)(ev_loop *loop, ev_TYPE *watcher,
+int revents)
.
+
+ ev_TYPE_set
(ev_TYPE *, [args])
+ -
+
This macro initialises the type-specific parts of a watcher. You need to
+call ev_init
at least once before you call this macro, but you can
+call ev_TYPE_set
any number of times. You must not, however, call this
+macro on a watcher that is active (it can be pending, however, which is a
+difference to the ev_init
macro).
+ Although some watcher types do not have type-specific arguments
+(e.g. ev_prepare
) you still need to call its set
macro.
+
+ ev_TYPE_init
(ev_TYPE *watcher, callback, [args])
+ -
+
This convinience macro rolls both ev_init
and ev_TYPE_set
macro
+calls into a single call. This is the most convinient method to initialise
+a watcher. The same limitations apply, of course.
+
+ ev_TYPE_start
(loop *, ev_TYPE *watcher)
+ -
+
Starts (activates) the given watcher. Only active watchers will receive
+events. If the watcher is already active nothing will happen.
+
+ ev_TYPE_stop
(loop *, ev_TYPE *watcher)
+ -
+
Stops the given watcher again (if active) and clears the pending
+status. It is possible that stopped watchers are pending (for example,
+non-repeating timers are being stopped when they become pending), but
+ev_TYPE_stop
ensures that the watcher is neither active nor pending. If
+you want to free or reuse the memory used by the watcher it is therefore a
+good idea to always call its ev_TYPE_stop
function.
+
+ - bool ev_is_active (ev_TYPE *watcher)
+ -
+
Returns a true value iff the watcher is active (i.e. it has been started
+and not yet been stopped). As long as a watcher is active you must not modify
+it.
+
+ - bool ev_is_pending (ev_TYPE *watcher)
+ -
+
Returns a true value iff the watcher is pending, (i.e. it has outstanding
+events but its callback has not yet been invoked). As long as a watcher
+is pending (but not active) you must not call an init function on it (but
+ev_TYPE_set
is safe) and you must make sure the watcher is available to
+libev (e.g. you cnanot free ()
it).
+
+ - callback = ev_cb (ev_TYPE *watcher)
+ -
+
Returns the callback currently set on the watcher.
+
+ - ev_cb_set (ev_TYPE *watcher, callback)
+ -
+
Change the callback. You can change the callback at virtually any time
+(modulo threads).
+
+
+
+
+
+
+
ASSOCIATING CUSTOM DATA WITH A WATCHER
@@ -434,6 +731,10 @@ have been omitted....
This section describes each watcher in detail, but will not repeat
information given in the last section.
+
+
+
+
ev_io
- is this file descriptor readable or writable
@@ -442,17 +743,18 @@ in each iteration of the event loop (This behaviour is called
level-triggering because you keep receiving events as long as the
condition persists. Remember you can stop the watcher if you don't want to
act on the event and neither want to receive future events).
-In general you can register as many read and/or write event watchers oer
+
In general you can register as many read and/or write event watchers per
fd as you want (as long as you don't confuse yourself). Setting all file
descriptors to non-blocking mode is also usually a good idea (but not
required if you know what you are doing).
You have to be careful with dup'ed file descriptors, though. Some backends
(the linux epoll backend is a notable example) cannot handle dup'ed file
descriptors correctly if you register interest in two or more fds pointing
-to the same file/socket etc. description.
+to the same underlying file/socket etc. description (that is, they share
+the same underlying "file open").
If you must do this, then force the use of a known-to-be-good backend
-(at the time of this writing, this includes only EVMETHOD_SELECT and
-EVMETHOD_POLL).
+(at the time of this writing, this includes only EVBACKEND_SELECT
and
+EVBACKEND_POLL
).
- ev_io_init (ev_io *, callback, int fd, int events)
- ev_io_set (ev_io *, int fd, int events)
@@ -460,8 +762,39 @@ EVMETHOD_POLL).
Configures an ev_io
watcher. The fd is the file descriptor to rceeive
events for and events is either EV_READ
, EV_WRITE
or EV_READ |
EV_WRITE
to receive the given events.
+ Please note that most of the more scalable backend mechanisms (for example
+epoll and solaris ports) can result in spurious readyness notifications
+for file descriptors, so you practically need to use non-blocking I/O (and
+treat callback invocation as hint only), or retest separately with a safe
+interface before doing I/O (XLib can do this), or force the use of either
+EVBACKEND_SELECT
or EVBACKEND_POLL
, which don't suffer from this
+problem. Also note that it is quite easy to have your callback invoked
+when the readyness condition is no longer valid even when employing
+typical ways of handling events, so its a good idea to use non-blocking
+I/O unconditionally.
+Example: call stdin_readable_cb
when STDIN_FILENO has become, well
+readable, but only once. Since it is likely line-buffered, you could
+attempt to read a whole line in the callback:
+ static void
+ stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
+ {
+ ev_io_stop (loop, w);
+ .. read from stdin here (or from w->fd) and haqndle any I/O errors
+ }
+
+ ...
+ struct ev_loop *loop = ev_default_init (0);
+ struct ev_io stdin_readable;
+ ev_io_init (&stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
+ ev_io_start (loop, &stdin_readable);
+ ev_loop (loop, 0);
+
+
+
+
+
ev_timer
- relative and optionally recurring timeouts
@@ -469,18 +802,21 @@ EV_WRITE
to receive the given events.
Timer watchers are simple relative timers that generate an event after a given time, and optionally repeating in regular intervals after that.
The timers are based on real time, that is, if you register an event that -times out after an hour and youreset your system clock to last years +times out after an hour and you reset your system clock to last years time, it will still time out after (roughly) and hour. "Roughly" because -detecting time jumps is hard, and soem inaccuracies are unavoidable (the +detecting time jumps is hard, and some inaccuracies are unavoidable (the monotonic clock option helps a lot here).
The relative timeouts are calculated relative to the ev_now ()
time. This is usually the right thing as this timestamp refers to the time
-of the event triggering whatever timeout you are modifying/starting. If
-you suspect event processing to be delayed and you *need* to base the timeout
-ion the current time, use something like this to adjust for this:
ev_timer_set (&timer, after + ev_now () - ev_time (), 0.);+
The callback is guarenteed to be invoked only when its timeout has passed, +but if multiple timers become ready during the same loop iteration then +order of execution is undefined.
The timer itself will do a best-effort at avoiding drift, that is, if you configure a timer to trigger every 10 seconds, then it will trigger at exactly 10 second intervals. If, however, your program cannot keep up with -the timer (ecause it takes longer than those 10 seconds to do stuff) the +the timer (because it takes longer than those 10 seconds to do stuff) the timer will not fire more than once per event loop iteration.
Example: create a timer that fires after 60 seconds.
+static void + one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents) + { + .. one minute over, w is actually stopped right here + } + + struct ev_timer mytimer; + ev_timer_init (&mytimer, one_minute_cb, 60., 0.); + ev_timer_start (loop, &mytimer); + ++
Example: create a timeout timer that times out after 10 seconds of +inactivity.
+static void + timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents) + { + .. ten seconds without any activity + } + + struct ev_timer mytimer; + ev_timer_init (&mytimer, timeout_cb, 0., 10.); /* note, only repeat used */ + ev_timer_again (&mytimer); /* start timer */ + ev_loop (loop, 0); + + // and in some piece of code that gets executed on any "activity": + // reset the timeout to start ticking again at 10 seconds + ev_timer_again (&mytimer); + + + + +
ev_periodic
- to cron or not to cronUnlike ev_timer
's, they are not based on real time (or relative time)
but on wallclock time (absolute time). You can tell a periodic watcher
to trigger "at" some specific point in time. For example, if you tell a
-periodic watcher to trigger in 10 seconds (by specifiying e.g. c<ev_now ()
-+ 10.>) and then reset your system clock to the last year, then it will
+periodic watcher to trigger in 10 seconds (by specifiying e.g. ev_now ()
++ 10.
) and then reset your system clock to the last year, then it will
take a year to trigger the event (unlike an ev_timer
, which would trigger
roughly 10 seconds later and of course not if you reset your system time
again).
They can also be used to implement vastly more complex timers, such as triggering an event on eahc midnight, local time.
+As with timers, the callback is guarenteed to be invoked only when the
+time (at
) has been passed, but if multiple periodic timers become ready
+during the same loop iteration then order of execution is undefined.
Lots of arguments, lets sort it out... There are basically three modes of operation, and we will explain them from simplest to complex:
- - - -
Example: call a callback every hour, or, more precisely, whenever the +system clock is divisible by 3600. The callback invocation times have +potentially a lot of jittering, but good long-term stability.
+static void + clock_cb (struct ev_loop *loop, struct ev_io *w, int revents) + { + ... its now a full hour (UTC, or TAI or whatever your clock follows) + } + + struct ev_periodic hourly_tick; + ev_periodic_init (&hourly_tick, clock_cb, 0., 3600., 0); + ev_periodic_start (loop, &hourly_tick); + ++
Example: the same as above, but use a reschedule callback to do it:
+#include <math.h> + + static ev_tstamp + my_scheduler_cb (struct ev_periodic *w, ev_tstamp now) + { + return fmod (now, 3600.) + 3600.; + } + + ev_periodic_init (&hourly_tick, clock_cb, 0., 0., my_scheduler_cb); + ++
Example: call a callback every hour, starting now:
+struct ev_periodic hourly_tick; + ev_periodic_init (&hourly_tick, clock_cb, + fmod (ev_now (loop), 3600.), 3600., 0); + ev_periodic_start (loop, &hourly_tick); + + + + +
ev_signal
- signal me when a signal gets signalledSIGxxx
constants).
+
+
+
+
ev_child
- wait for pid status changessys/wait.h
and see your system
process causing the status change.
+Example: try to exit cleanly on SIGINT and SIGTERM.
+static void + sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents) + { + ev_unloop (loop, EVUNLOOP_ALL); + } + + struct ev_signal signal_watcher; + ev_signal_init (&signal_watcher, sigint_cb, SIGINT); + ev_signal_start (loop, &sigint_cb); + + + + +
ev_idle
- when you've got nothing better to doev_idle_set
macro, but using it is utterly pointle
believe me.
+Example: dynamically allocate an ev_idle
, start it, and in the
+callback, free it. Alos, use no error checking, as usual.
static void + idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents) + { + free (w); + // now do something you wanted to do when the program has + // no longer asnything immediate to do. + } + + struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle)); + ev_idle_init (idle_watcher, idle_cb); + ev_idle_start (loop, idle_cb); + + + + +
ev_prepare
and ev_check
- customise your event loopPrepare and check watchers are usually (but not always) used in tandem: -Prepare watchers get invoked before the process blocks and check watchers +prepare watchers get invoked before the process blocks and check watchers afterwards.
-Their main purpose is to integrate other event mechanisms into libev. This -could be used, for example, to track variable changes, implement your own -watchers, integrate net-snmp or a coroutine library and lots more.
+Their main purpose is to integrate other event mechanisms into libev and +their use is somewhat advanced. This could be used, for example, to track +variable changes, implement your own watchers, integrate net-snmp or a +coroutine library and lots more.
This is done by examining in each prepare call which file descriptors need
to be watched by the other library, registering ev_io
watchers for
them and starting an ev_timer
watcher for any timeouts (many libraries
provide just this functionality). Then, in the check watcher you check for
any events that occured (by checking the pending status of all watchers
and stopping them) and call back into the library. The I/O and timer
-callbacks will never actually be called (but must be valid neverthelles,
+callbacks will never actually be called (but must be valid nevertheless,
because you never know, you know?).
As another example, the Perl Coro module uses these hooks to integrate coroutines into libev programs, by yielding to other active coroutines during each prepare and only letting the process block if no coroutines -are ready to run (its actually more complicated, it only runs coroutines -with priority higher than the event loop and one lower priority once, -using idle watchers to keep the event loop from blocking if lower-priority -coroutines exist, thus mapping low-priority coroutines to idle/background -tasks).
+are ready to run (it's actually more complicated: it only runs coroutines +with priority higher than or equal to the event loop and one coroutine +of lower priority, but only once, using idle watchers to keep the event +loop from blocking if lower-priority coroutines are active, thus mapping +low-priority coroutines to idle/background tasks).ev_prepare_set
and ev_check
macros, but using them is utterly, utterly and completely pointless.
Example: *TODO*.
+ + + + + +ev_embed
- when one backend isn't enoughThis is a rather advanced watcher type that lets you embed one event loop
+into another (currently only ev_io
events are supported in the embedded
+loop, other types of watchers might be handled in a delayed or incorrect
+fashion and must not be used).
There are primarily two reasons you would want that: work around bugs and +prioritise I/O.
+As an example for a bug workaround, the kqueue backend might only support +sockets on some platform, so it is unusable as generic backend, but you +still want to make use of it because you have many sockets and it scales +so nicely. In this case, you would create a kqueue-based loop and embed it +into your default loop (which might use e.g. poll). Overall operation will +be a bit slower because first libev has to poll and then call kevent, but +at least you can use both at what they are best.
+As for prioritising I/O: rarely you have the case where some fds have +to be watched and handled very quickly (with low latency), and even +priorities and idle watchers might have too much overhead. In this case +you would put all the high priority stuff in one loop and all the rest in +a second one, and embed the second one in the first.
+As long as the watcher is active, the callback will be invoked every time
+there might be events pending in the embedded loop. The callback must then
+call ev_embed_sweep (mainloop, watcher)
to make a single sweep and invoke
+their callbacks (you could also start an idle watcher to give the embedded
+loop strictly lower priority for example). You can also set the callback
+to 0
, in which case the embed watcher will automatically execute the
+embedded loop sweep.
As long as the watcher is started it will automatically handle events. The
+callback will be invoked whenever some events have been handled. You can
+set the callback to 0
to avoid having to specify one if you are not
+interested in that.
Also, there have not currently been made special provisions for forking:
+when you fork, you not only have to call ev_loop_fork
on both loops,
+but you will also have to stop and restart any ev_embed
watchers
+yourself.
Unfortunately, not all backends are embeddable, only the ones returned by
+ev_embeddable_backends
are, which, unfortunately, does not include any
+portable one.
So when you want to use this feature you will always have to be prepared +that you cannot get an embeddable loop. The recommended way to get around +this is to have a separate variables for your embeddable loop, try to +create it, and if that fails, use the normal loop for everything:
+struct ev_loop *loop_hi = ev_default_init (0); + struct ev_loop *loop_lo = 0; + struct ev_embed embed; + + // see if there is a chance of getting one that works + // (remember that a flags value of 0 means autodetection) + loop_lo = ev_embeddable_backends () & ev_recommended_backends () + ? ev_loop_new (ev_embeddable_backends () & ev_recommended_backends ()) + : 0; + + // if we got one, then embed it, otherwise default to loop_hi + if (loop_lo) + { + ev_embed_init (&embed, 0, loop_lo); + ev_embed_start (loop_hi, &embed); + } + else + loop_lo = loop_hi; + ++
Configures the watcher to embed the given loop, which must be
+embeddable. If the callback is 0
, then ev_embed_sweep
will be
+invoked automatically, otherwise it is the responsibility of the callback
+to invoke it (it will continue to be called until the sweep has been done,
+if you do not want thta, you need to temporarily stop the embed watcher).
Make a single, non-blocking sweep over the embedded loop. This works
+similarly to ev_loop (embedded_loop, EVLOOP_NONBLOCK)
, but in the most
+apropriate way for embedded loops.
This function combines a simple timer and an I/O watcher, calls your callback on whichever event happens first and automatically stop both watchers. This is useful if you want to wait for a single event on an fd -or timeout without havign to allocate/configure/start/stop/free one or +or timeout without having to allocate/configure/start/stop/free one or more watchers yourself.
If fd
is less than 0, then no I/O watcher will be started and events
is being ignored. Otherwise, an ev_io
watcher for the given fd
and
@@ -727,7 +1259,7 @@ started. Otherwise an ev_timer
watcher with after = timeout
repeat = 0) will be started. While
0
is a valid timeout, it is of
dubious value.
The callback has the type void (*cb)(int revents, void *arg)
and gets
-passed an events set like normal event callbacks (with a combination of
+passed an revents
set like normal event callbacks (a combination of
EV_ERROR
, EV_READ
, EV_WRITE
or EV_TIMEOUT
) and the arg
value passed to ev_once
:
static void stdin_ready (int revents, void *arg)
@@ -742,27 +1274,429 @@ value passed to ev_once
:
- Feeds the given event set into the event loop, as if the specified event had happened for the specified watcher (which must be a pointer to an initialised but not necessarily started event watcher).
Feed an event on the given fd, as if a file descriptor backend detected the given events it.
Feed an event as if the given signal occured (loop must be the default loop!).
+Feed an event as if the given signal occured (loop
must be the default
+loop!).
Libev offers a compatibility emulation layer for libevent. It cannot +emulate the internals of libevent, so here are some usage hints:
+Libev comes with some simplistic wrapper classes for C++ that mainly allow +you to use some convinience methods to start/stop watchers and also change +the callback model to a model using method callbacks on objects.
+To use it,
+#include <ev++.h> + ++
(it is not installed by default). This automatically includes ev.h
+and puts all of its definitions (many of them macros) into the global
+namespace. All C++ specific things are put into the ev
namespace.
It should support all the same embedding options as ev.h, most notably
+EV_MULTIPLICITY
.
Here is a list of things available in the ev
namespace:
ev::READ
, ev::WRITE
etc.These are just enum values with the same values as the EV_READ
etc.
+macros from ev.h.
ev::tstamp
, ev::now
Aliases to the same types/functions as with the ev_
prefix.
ev::io
, ev::timer
, ev::periodic
, ev::idle
, ev::sig
etc.For each ev_TYPE
watcher in ev.h there is a corresponding class of
+the same name in the ev
namespace, with the exception of ev_signal
+which is called ev::sig
to avoid clashes with the signal
macro
+defines by many implementations.
All of those classes have these methods:
++
The constructor takes a pointer to an object and a method pointer to
+the event handler callback to call in this class. The constructor calls
+ev_init
for you, which means you have to call the set
method
+before starting it. If you do not specify a loop then the constructor
+automatically associates the default loop with this watcher.
The destructor automatically stops the watcher if it is active.
+Associates a different struct ev_loop
with this watcher. You can only
+do this when the watcher is inactive (and not pending either).
Basically the same as ev_TYPE_set
, with the same args. Must be
+called at least once. Unlike the C counterpart, an active watcher gets
+automatically stopped and restarted.
Starts the watcher. Note that there is no loop
argument as the
+constructor already takes the loop.
Stops the watcher if it is active. Again, no loop
argument.
ev::timer
, ev::periodic
onlyFor ev::timer
and ev::periodic
, this invokes the corresponding
+ev_TYPE_again
function.
ev::embed
onlyInvokes ev_embed_sweep
.
Example: Define a class with an IO and idle watcher, start one of them in +the constructor.
+class myclass + { + ev_io io; void io_cb (ev::io &w, int revents); + ev_idle idle void idle_cb (ev::idle &w, int revents); + + myclass (); + } + + myclass::myclass (int fd) + : io (this, &myclass::io_cb), + idle (this, &myclass::idle_cb) + { + io.start (fd, ev::READ); + } + ++ +
Libev can (and often is) directly embedded into host +applications. Examples of applications that embed it include the Deliantra +Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe) +and rxvt-unicode.
+The goal is to enable you to just copy the neecssary files into your +source directory without having to change even a single line in them, so +you can easily upgrade by simply copying (or having a checked-out copy of +libev somewhere in your source tree).
+ +Depending on what features you need you need to include one or more sets of files +in your app.
+ +To include only the libev core (all the ev_*
functions), with manual
+configuration (no autoconf):
#define EV_STANDALONE 1 + #include "ev.c" + ++
This will automatically include ev.h, too, and should be done in a +single C source file only to provide the function implementations. To use +it, do the same for ev.h in all files wishing to use this API (best +done by writing a wrapper around ev.h that you can include instead and +where you can put other configuration options):
+#define EV_STANDALONE 1 + #include "ev.h" + ++
Both header files and implementation files can be compiled with a C++ +compiler (at least, thats a stated goal, and breakage will be treated +as a bug).
+You need the following files in your source tree, or in a directory +in your include path (e.g. in libev/ when using -Ilibev):
+ev.h + ev.c + ev_vars.h + ev_wrap.h + + ev_win32.c required on win32 platforms only + + ev_select.c only when select backend is enabled (which is is by default) + ev_poll.c only when poll backend is enabled (disabled by default) + ev_epoll.c only when the epoll backend is enabled (disabled by default) + ev_kqueue.c only when the kqueue backend is enabled (disabled by default) + ev_port.c only when the solaris port backend is enabled (disabled by default) + ++
ev.c includes the backend files directly when enabled, so you only need +to compile a single file.
+ +To include the libevent compatibility API, also include:
+#include "event.c" + ++
in the file including ev.c, and:
+#include "event.h" + ++
in the files that want to use the libevent API. This also includes ev.h.
+You need the following additional files for this:
+event.h + event.c + ++ +
Instead of using EV_STANDALONE=1
and providing your config in
+whatever way you want, you can also m4_include([libev.m4])
in your
+configure.ac and leave EV_STANDALONE
off. ev.c will then include
+config.h and configure itself accordingly.
For this of course you need the m4 file:
+libev.m4 + ++ +
Libev can be configured via a variety of preprocessor symbols you have to define +before including any of its files. The default is not to build for multiplicity +and only include the select backend.
+Must always be 1
if you do not use autoconf configuration, which
+keeps libev from including config.h, and it also defines dummy
+implementations for some libevent functions (such as logging, which is not
+supported). It will also not define any of the structs usually found in
+event.h that are not directly supported by the libev core alone.
If defined to be 1
, libev will try to detect the availability of the
+monotonic clock option at both compiletime and runtime. Otherwise no use
+of the monotonic clock option will be attempted. If you enable this, you
+usually have to link against librt or something similar. Enabling it when
+the functionality isn't available is safe, though, althoguh you have
+to make sure you link against any libraries where the clock_gettime
+function is hiding in (often -lrt).
If defined to be 1
, libev will try to detect the availability of the
+realtime clock option at compiletime (and assume its availability at
+runtime if successful). Otherwise no use of the realtime clock option will
+be attempted. This effectively replaces gettimeofday
by clock_get
+(CLOCK_REALTIME, ...)
and will not normally affect correctness. See tzhe note about libraries
+in the description of EV_USE_MONOTONIC
, though.
If undefined or defined to be 1
, libev will compile in support for the
+select
(2) backend. No attempt at autodetection will be done: if no
+other method takes over, select will be it. Otherwise the select backend
+will not be compiled in.
If defined to 1
, then the select backend will use the system fd_set
+structure. This is useful if libev doesn't compile due to a missing
+NFDBITS
or fd_mask
definition or it misguesses the bitset layout on
+exotic systems. This usually limits the range of file descriptors to some
+low limit such as 1024 or might have other limitations (winsocket only
+allows 64 sockets). The FD_SETSIZE
macro, set before compilation, might
+influence the size of the fd_set
used.
When defined to 1
, the select backend will assume that
+select/socket/connect etc. don't understand file descriptors but
+wants osf handles on win32 (this is the case when the select to
+be used is the winsock select). This means that it will call
+_get_osfhandle
on the fd to convert it to an OS handle. Otherwise,
+it is assumed that all these functions actually work on fds, even
+on win32. Should not be defined on non-win32 platforms.
If defined to be 1
, libev will compile in support for the poll
(2)
+backend. Otherwise it will be enabled on non-win32 platforms. It
+takes precedence over select.
If defined to be 1
, libev will compile in support for the Linux
+epoll
(7) backend. Its availability will be detected at runtime,
+otherwise another method will be used as fallback. This is the
+preferred backend for GNU/Linux systems.
If defined to be 1
, libev will compile in support for the BSD style
+kqueue
(2) backend. Its actual availability will be detected at runtime,
+otherwise another method will be used as fallback. This is the preferred
+backend for BSD and BSD-like systems, although on most BSDs kqueue only
+supports some types of fds correctly (the only platform we found that
+supports ptys for example was NetBSD), so kqueue might be compiled in, but
+not be used unless explicitly requested. The best way to use it is to find
+out wether kqueue supports your type of fd properly and use an embedded
+kqueue loop.
If defined to be 1
, libev will compile in support for the Solaris
+10 port style backend. Its availability will be detected at runtime,
+otherwise another method will be used as fallback. This is the preferred
+backend for Solaris 10 systems.
reserved for future expansion, works like the USE symbols above.
+The name of the ev.h header file used to include it. The default if
+undefined is <ev.h>
in event.h and "ev.h"
in ev.c. This
+can be used to virtually rename the ev.h header file in case of conflicts.
If EV_STANDALONE
isn't 1
, this variable can be used to override
+ev.c's idea of where to find the config.h file, similarly to
+EV_H
, above.
Similarly to EV_H
, this macro can be used to override event.c's idea
+of how the event.h header can be found.
If defined to be 0
, then ev.h will not define any function
+prototypes, but still define all the structs and other symbols. This is
+occasionally useful if you want to provide your own wrapper functions
+around libev functions.
If undefined or defined to 1
, then all event-loop-specific functions
+will have the struct ev_loop *
as first argument, and you can create
+additional independent event loops. Otherwise there will be no support
+for multiple event loops and there is no first event loop pointer
+argument. Instead, all functions act on the single default loop.
If undefined or defined to be 1
, then periodic timers are supported,
+otherwise not. This saves a few kb of code.
By default, all watchers have a void *data
member. By redefining
+this macro to a something else you can include more and other types of
+members. You have to define it each time you include one of the files,
+though, and it must be identical each time.
For example, the perl EV module uses something like this:
+#define EV_COMMON \ + SV *self; /* contains this struct */ \ + SV *cb_sv, *fh /* note no trailing ";" */ + ++
Can be used to change the callback member declaration in each watcher, +and the way callbacks are invoked and set. Must expand to a struct member +definition and a statement, respectively. See the ev.v header file for +their default definitions. One possible use for overriding these is to +avoid the ev_loop pointer as first argument in all cases, or to use method +calls instead of plain function calls in C++.
+ +For a real-world example of a program the includes libev +verbatim, you can have a look at the EV perl module +(http://software.schmorp.de/pkg/EV.html). It has the libev files in +the libev/ subdirectory and includes them in the EV/EVAPI.h (public +interface) and EV.xs (implementation) files. Only the EV.xs file +will be compiled. It is pretty complex because it provides its own header +file.
+The usage in rxvt-unicode is simpler. It has a ev_cpp.h header file +that everybody includes and which overrides some autoconf choices:
+#define EV_USE_POLL 0 + #define EV_MULTIPLICITY 0 + #define EV_PERIODICS 0 + #define EV_CONFIG_H <config.h> + + #include "ev++.h" + ++
And a ev_cpp.C implementation file that contains libev proper and is compiled:
+#include "rxvttoolkit.h" + + /* darwin has problems with its header files in C++, requiring this namespace juggling */ + using namespace ev; + + #include "ev.c" + + + + ++
Marc Lehmann <libev@schmorp.de>.
+Marc Lehmann <libev@schmorp.de>.