X-Git-Url: https://git.llucax.com/software/libev.git/blobdiff_plain/d9a90c6accc6cea7d5795cccbc615dcc31acb9d9..b5f3175db054d9930a6e75d2034e367b36e875b8:/ev.html diff --git a/ev.html b/ev.html index 9214aae..b82e54e 100644 --- a/ev.html +++ b/ev.html @@ -6,7 +6,7 @@ - + @@ -19,7 +19,8 @@
  • DESCRIPTION
  • FEATURES
  • CONVENTIONS
  • -
  • TIME AND OTHER GLOBAL FUNCTIONS
  • +
  • TIME REPRESENTATION
  • +
  • GLOBAL FUNCTIONS
  • FUNCTIONS CONTROLLING THE EVENT LOOP
  • ANATOMY OF A WATCHER
  • OTHER FUNCTIONS
  • +
  • LIBEVENT EMULATION
  • +
  • C++ SUPPORT
  • AUTHOR

  • @@ -89,13 +92,19 @@ argument of name loop (which is always of type struct ev_loop will not have this argument.

    -

    TIME AND OTHER GLOBAL FUNCTIONS

    Top

    -
    +

    TIME REPRESENTATION

    Top

    +

    Libev represents time as a single floating point number, representing the (fractional) number of seconds since the (POSIX) epoch (somewhere near the beginning of 1970, details are complicated, don't ask). This type is called ev_tstamp, which is what you should use too. It usually aliases to the double type in C.

    + +
    +

    GLOBAL FUNCTIONS

    Top

    +
    +

    These functions can be called anytime, even before initialising the +library in any way.

    ev_tstamp ev_time ()
    @@ -144,7 +153,7 @@ requested operation, or, if the condition doesn't go away, do bad stuff types of such loops, the default loop, which supports signals and child events, and dynamically created loops which do not.

    If you use threads, a common model is to run the default event loop -in your main thread (or in a separate thrad) and for each thread you +in your main thread (or in a separate thread) and for each thread you create, you also create another event loop. Libev itself does no locking whatsoever, so if you mix calls to the same event loop in different threads, make sure you lock (this is usually a bad idea, though, even if @@ -564,11 +573,10 @@ time where time = at (mod interval), regardless of any time jumps.< ignored. Instead, each time the periodic watcher gets scheduled, the reschedule callback will be called with the watcher as first, and the current time as second argument.

    -

    NOTE: This callback MUST NOT stop or destroy the periodic or any other -periodic watcher, ever, or make any event loop modifications. If you need -to stop it, return now + 1e30 (or so, fudge fudge) and stop it afterwards.

    -

    Also, this callback must always return a time that is later than the -passed now value. Not even now itself will be ok.

    +

    NOTE: This callback MUST NOT stop or destroy any periodic watcher, +ever, or make any event loop modifications. If you need to stop it, +return now + 1e30 (or so, fudge fudge) and stop it afterwards (e.g. by +starting a prepare watcher).

    Its prototype is ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now), e.g.:

       static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
    @@ -581,10 +589,13 @@ ev_tstamp now), e.g.:

    (that is, the lowest time value larger than to the second argument). It will usually be called just before the callback will be triggered, but might be called at other times, too.

    +

    NOTE: This callback must always return a time that is later than the +passed now value. Not even now itself will do, it must be larger.

    This can be used to create very complex timers, such as a timer that triggers on each midnight, local time. To do this, you would calculate the -next midnight after now and return the timestamp value for this. How you do this -is, again, up to you (but it is not trivial).

    +next midnight after now and return the timestamp value for this. How +you do this is, again, up to you (but it is not trivial, which is the main +reason I omitted it as an example).

    @@ -664,10 +675,10 @@ believe me.

    -

    ev_prepare and ev_check - your hooks into the event loop

    +

    ev_prepare and ev_check - customise your event loop

    Prepare and check watchers are usually (but not always) used in tandem: -Prepare watchers get invoked before the process blocks and check watchers +prepare watchers get invoked before the process blocks and check watchers afterwards.

    Their main purpose is to integrate other event mechanisms into libev. This could be used, for example, to track variable changes, implement your own @@ -678,16 +689,16 @@ them and starting an ev_timer watcher for any timeouts (many librar provide just this functionality). Then, in the check watcher you check for any events that occured (by checking the pending status of all watchers and stopping them) and call back into the library. The I/O and timer -callbacks will never actually be called (but must be valid neverthelles, +callbacks will never actually be called (but must be valid nevertheless, because you never know, you know?).

    As another example, the Perl Coro module uses these hooks to integrate coroutines into libev programs, by yielding to other active coroutines during each prepare and only letting the process block if no coroutines -are ready to run (its actually more complicated, it only runs coroutines -with priority higher than the event loop and one lower priority once, -using idle watchers to keep the event loop from blocking if lower-priority -coroutines exist, thus mapping low-priority coroutines to idle/background -tasks).

    +are ready to run (it's actually more complicated: it only runs coroutines +with priority higher than or equal to the event loop and one coroutine +of lower priority, but only once, using idle watchers to keep the event +loop from blocking if lower-priority coroutines are active, thus mapping +low-priority coroutines to idle/background tasks).

    ev_prepare_init (ev_prepare *, callback)
    ev_check_init (ev_check *, callback)
    @@ -750,6 +761,16 @@ the given events it.

    +
    +

    LIBEVENT EMULATION

    Top

    +
    +

    TBD.

    + +
    +

    C++ SUPPORT

    Top

    +
    +

    TBD.

    +

    AUTHOR

    Top