]> git.llucax.com Git - z.facultad/75.00/informe.git/blobdiff - source/gc.rst
Arreglar cabecera y pié de página
[z.facultad/75.00/informe.git] / source / gc.rst
index 06ed07e9c1332a3b18c76d03ca743ba6dd41b382..ff79b4fd35994a13242ca71f836f75ed49d88384 100644 (file)
@@ -2,7 +2,7 @@
 .. Introducción a la importancia de la recolección de basura y sus
    principales técnicas, con sus ventajas y desventajas. También se da
    un breve recorrido sobre el estado del arte.
-   ESTADO: TERMINADO, CORREGIDO
+   ESTADO: TERMINADO
 
 
 .. _gc:
@@ -156,22 +156,6 @@ el *root set*. Por lo tanto, una celda está *viva* si y sólo si su dirección
 de memoria está almacenada en una celda *raíz* (parte del *root set*) o si
 está almacenada en otra celda *viva* del *heap*.
 
-Expresado más formalmente, dada la relación :math:`M \to N`, donde :math:`M`
-es una celda del *heap* o parte del *root set* y :math:`N` es una celda del
-*heap*, definida como:
-
-.. math::
-
-   M \to N \Longleftrightarrow M \text{ almacena un puntero a } N
-
-El conjunto de celdas vivas (o *live set*) queda determinado por:
-
-.. math::
-
-   vivas = \left\lbrace N \in Celdas \big/
-      ( \exists r \in Raices / r \to N ) \vee (\exists M \in vivas / M \to N )
-   \right\rbrace
-
 Cabe aclarar que esta es una definición conceptual, asumiendo que el programa
 siempre limpia una dirección de memoria almacenada en el *root set* o una
 celda del *heap* cuando la celda a la que apunta no va a ser utilizada
@@ -183,10 +167,9 @@ lenguajes de programación que requieran un recolector de basura conservativo.
 
 Por último, siendo que el recolector de basura es parte del programa de forma
 indirecta, es común ver en la literatura que se diferencia entre dos partes
-del programa, el recolector de basura y el programa en sí. Dado que para el
-recolector de basura, lo único que interesa conocer del programa en sí son los
-cambios al grafo de conectividad de las celdas, normalmente se lo llama
-*mutator*.
+del programa, el recolector de basura y el programa en sí. A la primera se la
+suele denominar simplemente *recolector* y a la segunda *mutator*, dado que es
+la única que modifica (o *muta*) el grafo de conectividad.
 
 
 
@@ -225,6 +208,11 @@ Más formalmente, Definimos:
             \exists (v_i \to v_{i+1}) \in A
       \right\rbrace
 
+   Un camino cuyos *vértices terminales* coinciden, es decir :math:`v_1
+   = v_N`, es denominado **Ciclo**. Cabe notar que los *vértices terminales*
+   de un ciclo son completamente arbitrarios, ya que cualquier *vértice
+   interior* puede ser un *vértice terminal*.
+
 *Conexión*
    decimos que :math:`M` está *conectado* a :math:`N` si y sólo si existe un
    camino de :math:`M` a :math:`N`.
@@ -256,9 +244,9 @@ Esto es, efectivamente, una partición del *heap* (ver figura
 :vref:`fig:gc-heap-parts`).
 
 
-.. fig:: fig:gc-heap-parts
+.. flt:: fig:gc-heap-parts
 
-   Distintas partes de la memoria *heap*.
+   Distintas partes de la memoria *heap*
 
    Distintas partes de la memoria, incluyendo relación entre *basura*, *live
    set*, *heap* y *root set*.
@@ -318,18 +306,13 @@ Esto es, efectivamente, una partición del *heap* (ver figura
 
 Al proceso de visitar los vértices *conectados* desde el *root set* se lo
 denomina *marcado*, *fase de marcado* o *mark phase* en inglés, debido a que
-es necesario marcar los vértices para evitar visitar 2 veces el mismo nodo en
-casos de que el grafo contenga ciclos [#gccycle]_. De forma similar a la
-búsqueda, que puede realizarse *primero a lo ancho* (*breadth-first*)
-o *primero a lo alto* (*depth-first*) del grafo, el marcado de un grafo
-también puede realizarse de ambas maneras. Cada una podrá o no tener efectos
-en el rendimiento, en particular dependiendo de la aplicación puede convenir
-uno u otro método para lograr una mejor localidad de referencia.
-
-.. [#gccycle] Un ciclo es un camino donde el *vértice inicial* es el mismo
-   que el *vértice final*. Por lo tanto, los *vértices terminales* son
-   completamente arbitrarios, ya que cualquier *vértice interior* puede ser un
-   *vértice terminal*.
+es necesario marcar los vértices para evitar visitar dos veces el mismo nodo
+en casos en los que el grafo contenga ciclos. De forma similar a la búsqueda,
+que puede realizarse *primero a lo ancho* (*breadth-first*) o *primero a lo
+alto* (*depth-first*) del grafo, el marcado de un grafo también puede
+realizarse de ambas maneras. Cada una podrá o no tener efectos en el
+rendimiento, en particular dependiendo de la aplicación puede convenir uno
+u otro método para lograr una mejor localidad de referencia.
 
 Un algoritmo simple (recursivo) de marcado *primero a lo alto* puede ser el
 siguiente (asumiendo que partimos con todos los vértices sin marcar)
@@ -338,7 +321,7 @@ siguiente (asumiendo que partimos con todos los vértices sin marcar)
    function mark(v) is
       if not v.marked
          v.marked = true
-         for (src, dst) in v.edges
+         foreach (src, dst) in v.edges
             mark(dst)
 
    function mark_phase() is
@@ -366,11 +349,11 @@ con el marcado del grafo completo, dejando sin marcar solamente las celdas
 *basura* (en blanco).
 
 
-.. fig:: fig:gc-mark-1
+.. flt:: fig:gc-mark-1
 
-   Ejemplo de marcado del grafo de conectividad (parte 1).
+   Ejemplo de marcado del grafo de conectividad (parte 1)
 
-   .. subfig::
+   .. subflt::
 
       Se comienza a marcar el grafo por la raíz r0.
 
@@ -403,7 +386,7 @@ con el marcado del grafo completo, dejando sin marcar solamente las celdas
 
          }
 
-   .. subfig::
+   .. subflt::
 
       Luego de marcar el nodo ``h1``, se procede al ``h2``.
 
@@ -437,7 +420,7 @@ con el marcado del grafo completo, dejando sin marcar solamente las celdas
 
          }
 
-   .. subfig::
+   .. subflt::
 
       Luego sigue el nodo h5.
 
@@ -473,11 +456,11 @@ con el marcado del grafo completo, dejando sin marcar solamente las celdas
          }
 
 
-.. fig:: fig:gc-mark-2
+.. flt:: fig:gc-mark-2
 
-   Ejemplo de marcado del grafo de conectividad (parte 2).
+   Ejemplo de marcado del grafo de conectividad (parte 2)
 
-   .. subfig::
+   .. subflt::
 
       El nodo h5 tiene una arista al h1, pero el h1 ya fue visitado, por lo
       tanto no se visita nuevamente.
@@ -513,7 +496,7 @@ con el marcado del grafo completo, dejando sin marcar solamente las celdas
 
          }
 
-   .. subfig::
+   .. subflt::
 
       Se concluye el marcado del sub-grafo al que conecta r0, se procede
       a marcar el sub-grafo al que conecta r1, marcando al nodo h6.
@@ -550,7 +533,7 @@ con el marcado del grafo completo, dejando sin marcar solamente las celdas
 
          }
 
-   .. subfig::
+   .. subflt::
 
       El nodo h6 tiene una arista al h2, pero éste ya fue marcado por lo
       que no se vuelve a visitar. No hay más raíces, se finaliza el marcado
@@ -625,16 +608,16 @@ vacíos)::
       while not gray_set.empty()
          v = gray_set.pop()
          black_set.add(v)
-         for (src, dst) in v.edges
+         foreach (src, dst) in v.edges
             if dst in white_set
                white_set.remove(dst)
                gray_set.add(dst)
 
 Si bien este algoritmo no es recursivo, tiene un requerimiento de espacio
 :math:`O(\lvert Live \thickspace set \rvert)`. Un ejemplo donde se aprecia
-esto a simple vista es cuando el *live set* resulta una lista simplemente
-enlazada, en cuyo caso el :math:`gray_set` deberá almacenar todos los nodos
-del *live set*.
+esto a simple vista es cuando el *Live set* resulta una lista simplemente
+enlazada, en cuyo caso el *gray_set* deberá almacenar todos los nodos del
+*Live set*.
 
 
 
@@ -703,7 +686,8 @@ Y los servicios básicos proporcionados por el recolector son los siguientes:
    referencias <gc_rc>`. Para otros recolectores puede significar que el
    usuario asegura que no hay más referencias a esta celda, es decir, análogo
    a eliminar el conjunto de aristas :math:`\big\lbrace (v, w) \in A , v \in
-   Live \thickspace set , w \in Live \thickspace set \big/ w = cell`.
+   Live \thickspace set , w \in Live \thickspace set \big/ w = cell
+   \big\rbrace`.
 
 :math:`collect()`
    indica al recolector que debe hacer un análisis del grafo de conectividad
@@ -722,7 +706,7 @@ aunque en ciertas circunstancias pueden ser utilizados por el usuario también.
 Algoritmos clásicos
 ----------------------------------------------------------------------------
 
-En la literatura se encuentran normalmente referencias a 3 algoritmos
+En la literatura se encuentran normalmente referencias a tres algoritmos
 clásicos, que son utilizados generalmente como bloques básicos para construir
 recolectores más complejos. Se presentan las versiones históricas más simples
 a fin de facilitar la comprensión conceptual.
@@ -815,31 +799,29 @@ Ciclos
 
 El conteo de referencias tiene, sin embargo, un problema fundamental: **falla
 con estructuras cíclicas**. Esto significa que siempre que haya un ciclo en el
-grafo de conectividad, hay una pérdida de memoria potencial en el programa. Un
-ciclo es un camino :math:`\underset{v \to v}{C}`, es decir, el *vértice
-inicial* es el mismo que el *vértice final*.
+grafo de conectividad, hay una pérdida de memoria potencial en el programa.
 
 Cuando esto sucede, las celdas que participan del ciclo tienen siempre su
-contador mayor que 0, sin embargo puede no haber ningún elemento del *root
-set* que apunte a una celda dentro del ciclo, por lo tanto el ciclo es
-*basura* (al igual que cualquier otra celda para la cual hayan referencias
-desde el ciclo pero que no tenga otras referencias externas) y sin embargo los
+contador mayor que 0, sin embargo puede suceder que ningún elemento del *root
+set* apunte a una celda dentro del ciclo, por lo tanto el ciclo es *basura*
+(al igual que cualquier otra celda para la cual hayan referencias desde el
+ciclo pero que no tenga otras referencias externas) y sin embargo los
 contadores no son 0. Los ciclos, por lo tanto, violan la invariante del conteo
 de referencia.
 
 Hay formas de solucionar esto, pero siempre recaen en un esquema que va por
 fuera del conteo de referencias puro. En general los métodos para solucionar
 esto son variados y van desde realizar un marcado del sub-grafo para detectar
-nodos hasta tener otro recolector completo de *emergencia*, pasando por tratar
-los ciclos como un todo contar las referencias al ciclo completo en vez de
-a cada celda en particular.
+ciclos y liberarlos hasta tener otro recolector completo de *emergencia*;
+pasando por tratar los ciclos como un todo para contar las referencias al
+ciclo completo en vez de a cada celda en particular.
 
 Incluso con este problema, el conteo de referencia sin ningún tipo de solución
 en cuanto a la detección y recolección de ciclos fue utilizado en muchos
 lenguajes de programación sin que su necesidad sea tan evidente. Por ejemplo
 Python_ agregó recolección de ciclos en la versión 2.0 [NAS00]_ (liberada en
 octubre de 2000) y PHP_ recién agrega detección de ciclos en la versión 5.3
-(todavía no liberada al momento de escribir este documento) [PHP081]_.
+[PHP530]_.
 
 
 .. _gc_rc_example:
@@ -862,13 +844,13 @@ conduce al decremento del contador de ``h2`` y ``h3`` que permanecen en el
 *live set* ya que sus contadores siguen siendo mayores a 0 (ver figura
 :vref:`fig:gc-rc-rm-2`).
 
-.. fig:: fig:gc-rc-rm-1
+.. flt:: fig:gc-rc-rm-1
 
-   Ejemplo de conteo de referencias: eliminación de una referencia (parte 1).
+   Ejemplo de conteo de referencias: eliminación de una referencia (parte 1)
 
    Eliminación de la referencia ``r0`` :math:`\to` ``h1`` (parte 1).
 
-   .. subfig::
+   .. subflt::
 
       Estado inicial del grafo de conectividad.
 
@@ -915,7 +897,7 @@ conduce al decremento del contador de ``h2`` y ``h3`` que permanecen en el
 
          }
 
-   .. subfig::
+   .. subflt::
 
       Al ejecutarse ``update(r0, null)``, se comienza por visitar la celda
       ``h1``.
@@ -963,7 +945,7 @@ conduce al decremento del contador de ``h2`` y ``h3`` que permanecen en el
 
          }
 
-   .. subfig::
+   .. subflt::
 
       Se decrementa el contador de ``h1`` quedando en 0 (pasa a ser *basura*).
       Se elimina primero ``h1.l`` y luego ``h1.r``.
@@ -1017,14 +999,14 @@ conduce al decremento del contador de ``h2`` y ``h3`` que permanecen en el
          }
 
 
-.. fig:: fig:gc-rc-rm-2
+.. flt:: fig:gc-rc-rm-2
    :padding: 0.5
 
-   Ejemplo de conteo de referencias: eliminación de una referencia (parte 2).
+   Ejemplo de conteo de referencias: eliminación de una referencia (parte 2)
 
    Eliminación de la referencia ``r0`` :math:`\to` ``h1`` (parte 2).
 
-   .. subfig::
+   .. subflt::
 
       Se decrementa el contador de ``h2`` pero no queda en 0 (permanece en el
       *live set*).
@@ -1077,7 +1059,7 @@ conduce al decremento del contador de ``h2`` y ``h3`` que permanecen en el
 
          }
 
-   .. subfig::
+   .. subflt::
 
       El contador de ``h3`` tampoco queda en 0, sigue en el *live set*.
 
@@ -1137,14 +1119,14 @@ se elimina alguna celda que apuntaba a ésta. Luego se procede a decrementar el
 contador de ``h2`` que queda en 0, transformándose en *basura* (ver figura
 :vref:`fig:gc-rc-up-1`).
 
-.. fig:: fig:gc-rc-up-1
+.. flt:: fig:gc-rc-up-1
 
-   Ejemplo de conteo de referencias: actualización de una referencia (parte 1).
+   Ejemplo de conteo de referencias: actualización de una referencia (parte 1)
 
-   Cambio en la referencia ``h2.l`` :math:`\to` ``h2`` a ``h2.l`` :math:`\to`
+   Cambio en la referencia ``h3.l`` :math:`\to` ``h2`` a ``h3.l`` :math:`\to`
    ``h5`` (parte 1).
 
-   .. subfig::
+   .. subflt::
 
       Comienza ``update(h3.l, h5)``, se incrementa el contador de ``h5``.
 
@@ -1197,9 +1179,9 @@ contador de ``h2`` que queda en 0, transformándose en *basura* (ver figura
 
          }
 
-   .. subfig::
+   .. subflt::
 
-      Luego se procede a visitar las hijas de ``h3``, comenzando por ``h2``.
+      Luego se procede a visitar la antigua referencia de ``h3.l`` (``h2``).
 
       .. digraph:: g4_2
 
@@ -1250,7 +1232,7 @@ contador de ``h2`` que queda en 0, transformándose en *basura* (ver figura
 
          }
 
-   .. subfig::
+   .. subflt::
 
       Se decrementa el contador de ``h2`` y queda en 0 (pasa a ser *basura*).
       Se eliminan las referencias a las hijas.
@@ -1311,14 +1293,14 @@ a apuntar a ``h5``) así que permanece en el *live set*. Finalmente se termina
 de actualizar la referencia ``h3.l`` para que apunte a ``h5`` (ver figura
 :vref:`fig:gc-rc-up-2`).
 
-.. fig:: fig:gc-rc-up-2
+.. flt:: fig:gc-rc-up-2
 
-   Ejemplo de conteo de referencias: actualización de una referencia (parte 2).
+   Ejemplo de conteo de referencias: actualización de una referencia (parte 2)
 
-   Cambio en la referencia ``h2.l`` :math:`\to` ``h2`` a ``h2.l`` :math:`\to`
+   Cambio en la referencia ``h3.l`` :math:`\to` ``h2`` a ``h3.l`` :math:`\to`
    ``h5`` (parte 2).
 
-   .. subfig::
+   .. subflt::
 
       Se decrementa el contador de ``h4`` quedando en 0, pasa a ser *basura*.
       Se continúa con ``h5``.
@@ -1372,7 +1354,7 @@ de actualizar la referencia ``h3.l`` para que apunte a ``h5`` (ver figura
 
          }
 
-   .. subfig::
+   .. subflt::
 
       Se decrementa el contador de ``h5`` pero sigue siendo mayor que 0.
 
@@ -1425,7 +1407,7 @@ de actualizar la referencia ``h3.l`` para que apunte a ``h5`` (ver figura
 
          }
 
-   .. subfig::
+   .. subflt::
 
       Se termina por actualizar la referencia de ``h3.l`` para que apunte
       a ``h5``.
@@ -1491,15 +1473,15 @@ referencias externas y por lo tanto deberían ser *basura* también (``h5``), no
 pueden ser recicladas y su memoria es perdida (ver figura
 :vref:`fig:gc-rc-cycle`).
 
-.. fig:: fig:gc-rc-cycle
+.. flt:: fig:gc-rc-cycle
    :padding: 0.5
 
-   Ejemplo de conteo de referencias: pérdida de memoria debido a un ciclo.
+   Ejemplo de conteo de referencias: pérdida de memoria debido a un ciclo
 
    Eliminación de la referencia ``r1`` :math:`\to` ``h3`` (pérdida de memoria
    debido a un ciclo).
 
-   .. subfig::
+   .. subflt::
 
       El ejecutarse ``update(r1, null)`` se visita la celda ``h3``.
 
@@ -1553,7 +1535,7 @@ pueden ser recicladas y su memoria es perdida (ver figura
 
          }
 
-   .. subfig::
+   .. subflt::
 
       Se decrementa el contador de ``h3`` pero sigue siendo mayor que 0 por el
       ciclo.
@@ -1702,9 +1684,9 @@ sus *low level allocators*).
    sucede y se acumulan muchos *huecos* se dice que la memoria está
    *fragmentada*.
 
-.. fig:: fig:gc-copy
+.. flt:: fig:gc-copy
 
-   Estructura del *heap* de un recolector con copia de semi-espacios.
+   Estructura del *heap* de un recolector con copia de semi-espacios
 
    .. aafig::
       :aspect: 70
@@ -1836,11 +1818,11 @@ apunta a ``h3``, por lo tanto ésta es movida al *Tospace* primero, dejando una
 *forwarding address* a la nueva ubicación (ver figura
 :vref:`fig:gc-copy-ex-1`).
 
-.. fig:: fig:gc-copy-ex-1
+.. flt:: fig:gc-copy-ex-1
 
-   Ejemplo de recolección con copia de semi-espacios (parte 1).
+   Ejemplo de recolección con copia de semi-espacios (parte 1)
 
-   .. subfig::
+   .. subflt::
 
       Estructura inicial del *heap*. El *Fromspace* está complete y se inicial
       la recolección.
@@ -1871,7 +1853,7 @@ apunta a ``h3``, por lo tanto ésta es movida al *Tospace* primero, dejando una
          | "Tospace"                                        |
          +--------------------------------------------------+
 
-   .. subfig::
+   .. subflt::
 
       Se sigue la referencia del *root set*, copiando ``h3`` al *Tospace*
       y dejando una *forwarding address*.
@@ -1913,11 +1895,11 @@ sido visitada, solamente se actualiza la referencia apuntando a la nueva
 ubicación de ``h2`` pero no se vuelve a copiar la celda (ver figura
 :vref:`fig:gc-copy-ex-2`).
 
-.. fig:: fig:gc-copy-ex-2
+.. flt:: fig:gc-copy-ex-2
 
-   Ejemplo de recolección con copia de semi-espacios (parte 2).
+   Ejemplo de recolección con copia de semi-espacios (parte 2)
 
-   .. subfig::
+   .. subflt::
 
       Se sigue :math:`h3 \to h2`, copiando ``h2`` al *Tospace* y dejando una
       *forwarding address*.
@@ -1948,7 +1930,7 @@ ubicación de ``h2`` pero no se vuelve a copiar la celda (ver figura
          | "Tospace"                                        |
          +--------------------------------------------------+
 
-   .. subfig::
+   .. subflt::
 
       Se sigue :math:`h2 \to h1`, copiando ``h1``. Luego :math:`h1 \to h2`
       pero ``h2`` no se copia, sólo se actualiza la referencia con la
@@ -1987,11 +1969,11 @@ semi-espacios y se actualiza la referencia del *root set* para que apunte a la
 nueva ubicación de ``h3``, como se muestra en la figura
 :vref:`fig:gc-copy-ex-3`.
 
-.. fig:: fig:gc-copy-ex-3
+.. flt:: fig:gc-copy-ex-3
 
-   Ejemplo de recolección con copia de semi-espacios (parte 3).
+   Ejemplo de recolección con copia de semi-espacios (parte 3)
 
-   .. subfig::
+   .. subflt::
 
       Se sigue :math:`h1 \to h4` copiando `h4`` al *Tospace* y dejando una
       *forwarding address*.
@@ -2022,7 +2004,7 @@ nueva ubicación de ``h3``, como se muestra en la figura
          | "Tospace"   \------/                             |
          +--------------------------------------------------+
 
-   .. subfig::
+   .. subflt::
 
       Se finaliza la recolección, se intercambian los roles de los
       semi-espacios y se actualiza la referencia del *root set*.
@@ -2183,12 +2165,12 @@ clase de colectores que si bien son *stop-the-world*, utilizan todos los hilos
 disponibles para realizar la recolección (ver figura
 :vref:`fig:gc-concurrent`).
 
-.. fig:: fig:gc-concurrent
+.. flt:: fig:gc-concurrent
 
    Distintos tipos de recolectores según el comportamiento en ambientes
-   multi-hilo.
+   multi-hilo
 
-   .. subfig::
+   .. subflt::
 
       *Stop-the-world*.
 
@@ -2207,7 +2189,7 @@ disponibles para realizar la recolección (ver figura
          |         HH Mutator           ZZ Inactivo         XX Recolector    |
          |___________________________________________________________________|
 
-   .. subfig::
+   .. subflt::
 
       Paralelo.
 
@@ -2226,7 +2208,7 @@ disponibles para realizar la recolección (ver figura
          |         HH Mutator           ZZ Inactivo         XX Recolector    |
          |___________________________________________________________________|
 
-   .. subfig::
+   .. subflt::
 
       Concurrente.
 
@@ -2257,12 +2239,12 @@ consume el recolector, debido a la necesidad de re-escanear sub-grafos que han
 sido modificados, además de la sincronización necesaria entre *mutator*
 y recolector.
 
-¿Cúal es la idea entonces de un recolector concurrente? Una vez más, al igual
+¿Cl es la idea entonces de un recolector concurrente? Una vez más, al igual
 que los recolectores incrementales, el principal objetivo es disminuir las
 largas pausas provocadas por la recolección de basura. Sin embargo, este tipo
 de algoritmos además permite hacer un mejor aprovechamiento de las
-arquitecturas *multi-core* [#gcmulticore]_ que cada vez se afirman más, ya que
-el *mutator* y el recolector pueden estar corriendo realmente en paralelo,
+arquitecturas *multi-core* [#gcmulticore]_ que cada vez son más comunes, ya
+que el *mutator* y el recolector pueden estar corriendo realmente en paralelo,
 cada uno en un procesador distinto. Algunos recolectores van más allá
 y permiten incluso paralelizar la recolección de basura en varios hilos
 ([HUEL98]_, [LINS05]_). Otros ejemplos de recolectores concurrentes (aunque no
@@ -2424,11 +2406,11 @@ haya.
 
 Entonces, si el recolector tiene algún mecanismo para identificar zonas de
 alta concentración de *basura* puede hacer la recolección solo en ese área
-donde el trabajo va a ser mejor recompensado (ver :vref:`fig:gc-part`).
+donde el trabajo va a ser mejor recompensado (ver figura :vref:`fig:gc-part`).
 
-.. fig:: fig:gc-part
+.. flt:: fig:gc-part
 
-   Concentración de basura en distintas particiones del *heap*.
+   Concentración de basura en distintas particiones del *heap*
 
    .. aafig::
       :scale: 110