+.. flt:: fig:gc-part
+
+ Concentración de basura en distintas particiones del *heap*
+
+ .. aafig::
+ :scale: 110
+ :aspect: 70
+
+ _______________________________________________________________________
+ | |
+ | +-----------------------------+ +-----------------------------+ |
+ | / Baja \ / Alta \ |
+ | + + + |
+ | GGGGGGGZZGGGGGZZGGGGGGGGZZGGGGGGGGZZZZZGGZZZZZZZZZZZZZZZZGGZZZZZZGGZZ |
+ | GGGGGGGZZGGGGGZZGGGGGGGGZZGGGGGGGGZZZZZGGZZZZZZZZZZZZZZZZGGZZZZZZGGZZ |
+ | |
+ | GG Celdas vivas ZZ Basura |
+ |_______________________________________________________________________|
+
+
+Sin embargo encontrar zonas de alta concentración no es trivial. La forma más
+divulgada de encontrar estas zonas es dividiendo el *heap* en una partición
+utilizada para almacenar celdas *jóvenes* y otra para celdas *viejas*. Una
+celda *vieja* es aquella que ha *sobrevivido* una cantidad *N* de
+recolecciones, mientras que el resto se consideran *jóvenes* (las celdas
+*nacen* jóvenes). Los recolectores que utilizan este tipo de partición son
+ampliamente conocido como recolectores **generacionales**. La *hipótesis
+generacional* dice que el área de celdas jóvenes tiene una mayor probabilidad
+de ser un área de alta concentración de basura [JOLI96]_. Basándose en esto,
+los recolectores generacionales primero intentan recuperar espacio del área de
+celdas jóvenes y luego, de ser necesario, del área de celdas viejas. Es
+posible tener varias generaciones e ir subiendo de generación a generación
+a medida que es necesario. Sin embargo en general no se obtienen buenos
+resultados una vez que se superan las 3 particiones. La complejidad que trae
+este método es que para recolectar la generación joven es necesario tomar las
+referencias de la generación vieja a la joven como parte del *root set* (de
+otra forma podrían tomarse celdas como *basura* que todavía son utilizadas por
+las celdas viejas). Revisar toda la generación vieja no es una opción porque
+sería prácticamente lo mismo que realizar una recolección del *heap* completo.
+La solución está entonces, una vez más, en instrumentar el *mutator* para que
+avise al recolector cuando cambia una referencia de la generación vieja a la
+joven (no es necesario vigilar las referencias en sentido inverso ya que
+cuando se recolecta la generación vieja se hace una recolección del *heap*
+completo).
+
+Sin embargo, a pesar de ser este el esquema más difundido para dividir el
+*heap* y realizar una recolección parcial sobre un área de alta concentración
+de basura, no es la única. Otros recolectores proponen hacer un análisis
+estático del código revisando la conectividad entre los objetos según sus
+tipos (esto es posible solo en lenguajes con *tipado* estático), de manera tal
+de separar en distintas áreas grupos de tipos que no pueden tener referencias
+entre sí [HIRZ03]_. Este análisis hace que sea innecesario instrumentar el
+*mutator* para reportar al recolector cambios de referencias
+inter-particiones, sencillamente porque queda demostrado que no existe dicho
+tipo de referencias. Esto quita una de las principales ineficiencias
+y complejidades del esquema generacional.