+A continuación se presentan los principales problemas encontrados en la
+implementación actual del recolector de basura de D_. Estos problemas surgen
+principalmente de la observación del código y de aproximadamente tres años de
+participación y observación del grupo de noticias, de donde se obtuvieron los
+principales problemas percibidos por la comunidad que utiliza el lenguaje.
+
+
+.. _dgc_bad_code:
+
+Complejidad del código y documentación
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+El análisis del código fue muy complicado debido a la falta de documentación
+y desorganización del código. Además se nota que el recolector ha sido escrito
+en una fase muy temprana y que a ido evolucionando a partir de ello de forma
+descuidada y sin ser rescrito nunca para aprovechar las nuevas características
+que el lenguaje fue incorporando (por ejemplo *templates*).
+
+Estos dos problemas (código complicado y falta de documentación) producen un
+efecto de círculo vicioso, porque provocan que sea complejo entender el
+recolector actual y en consecuencia sea muy complicado escribir documentación
+o mejorarlo. Esto a su vez provoca que, al no disponer de una implementación
+de referencia sencilla, sea muy difícil implementar un recolector nuevo.
+
+.. highlight:: d
+
+Este es, probablemente, la raíz de todos los demás problemas del recolector
+actual. Para ilustrar la dimensión del problema se presenta la implementación
+real de la función ``bigAlloc()``::
+
+ /**
+ * Allocate a chunk of memory that is larger than a page.
+ * Return null if out of memory.
+ */
+ void *bigAlloc(size_t size)
+ {
+ Pool* pool;
+ size_t npages;
+ size_t n;
+ size_t pn;
+ size_t freedpages;
+ void* p;
+ int state;
+
+ npages = (size + PAGESIZE - 1) / PAGESIZE;
+
+ for (state = 0; ; )
+ {
+ // This code could use some refinement when repeatedly
+ // allocating very large arrays.
+
+ for (n = 0; n < npools; n++)
+ {
+ pool = pooltable[n];
+ pn = pool.allocPages(npages);
+ if (pn != OPFAIL)
+ goto L1;
+ }
+
+ // Failed
+ switch (state)
+ {
+ case 0:
+ if (disabled)
+ { state = 1;
+ continue;
+ }
+ // Try collecting
+ freedpages = fullcollectshell();
+ if (freedpages >= npools * ((POOLSIZE / PAGESIZE) / 4))
+ { state = 1;
+ continue;
+ }
+ // Release empty pools to prevent bloat
+ minimize();
+ // Allocate new pool
+ pool = newPool(npages);
+ if (!pool)
+ { state = 2;
+ continue;
+ }
+ pn = pool.allocPages(npages);
+ assert(pn != OPFAIL);
+ goto L1;
+ case 1:
+ // Release empty pools to prevent bloat
+ minimize();
+ // Allocate new pool
+ pool = newPool(npages);
+ if (!pool)
+ goto Lnomemory;
+ pn = pool.allocPages(npages);
+ assert(pn != OPFAIL);
+ goto L1;
+ case 2:
+ goto Lnomemory;
+ default:
+ assert(false);
+ }
+ }
+
+ L1:
+ pool.pagetable[pn] = B_PAGE;
+ if (npages > 1)
+ cstring.memset(&pool.pagetable[pn + 1], B_PAGEPLUS, npages - 1);
+ p = pool.baseAddr + pn * PAGESIZE;
+ cstring.memset(cast(char *)p + size, 0, npages * PAGESIZE - size);
+ debug (MEMSTOMP) cstring.memset(p, 0xF1, size);
+ //debug(PRINTF) printf("\tp = %x\n", p);
+ return p;
+
+ Lnomemory:
+ return null; // let mallocNoSync handle the error
+ }
+
+Se recuerda que la semántica de dicha función es la misma que la de la función
+``new_big()`` presentada en :ref:`dgc_algo_alloc`.
+
+Además, como se comentó en la sección anterior, los algoritmos en la
+implementación real son considerablemente menos modulares que los presentados
+en la sección :ref:`dgc_algo`. Por ejemplo, la función ``fullcollect()`` son
+300 líneas de código.
+
+
+Memoria *encomendada*
+^^^^^^^^^^^^^^^^^^^^^
+Como se comentó en la sección anterior, diferenciar entre memoria
+*encomendada* de memoria *no-encomendada* es complejo y levemente costoso (en
+particular para sistemas operativos que no hacen esta distinción, al menos
+explícitamente, donde no hay ningún beneficio en realizar esta distinción).
+
+Incluso para Microsoft Windows, la ventaja de realizar esta distinción es
+discutible.
+
+
+Precisión
+^^^^^^^^^
+Este fue históricamente uno de los problemas principales del recolector de D_
+[NGD46407]_ [NGD35364]_. Sin embargo, desde que, en la versión 1.001, se ha
+incorporado la capacidad de marcar un bloque como de datos puros (no contiene
+punteros, el atributo ``NO_SCAN``) [NGA6842]_, la gravedad de esos problemas ha
+disminuido considerablemente, aunque siguieron reportándose problemas más
+esporádicamente [NGD54084]_ [NGL13744]_.
+
+De todas maneras queda mucho lugar para mejoras, y es un tema recurrente en el
+grupo de noticias de D_ y se han discutido formas de poder hacer que, al menos
+el *heap* sea preciso [NGD44607]_ [NGD29291]_. Además se mostró un interés
+general por tener un recolector más preciso [NGDN87831]_, pero no han habido
+avances al respecto.
+
+Otra forma de minimizar los efectos de la falta de precisión que se ha
+sugerido reiteradamente en el grupo es teniendo la
+posibilidad de indicar cuando no pueden haber punteros interiores a un bloque
+[NGD89394]_ [NGD71869]_. Esto puede ser de gran utilidad para objetos grandes
+y en particular para mejorar la implementación de de arreglos asociativos.
+
+
+Referencias débiles
+^^^^^^^^^^^^^^^^^^^
+El recolector actual no dispone de soporte de *referencias débiles*
+[#dgcweakref]_, sin embargo hay una demanda apreciable [NGD86840]_ [NGD13301]_
+[NGL8264]_ [NGD69761]_ [NGD74624]_ [NGD88065]_.
+
+.. [#dgcweakref] Una referencia débil (o *weak reference* en inglés) es
+ aquella que que no protege al objeto referenciado de ser reciclado por el
+ recolector.
+
+Para cubrir esta demanda, se han implementado soluciones como biblioteca para
+suplir la inexistencia de una implementación oficial [NGA9103]_.
+
+Sin embargo éstas son en general poco robustas, extremadamente dependientes
+de la implementación del recolector y, en general, presentan problemas muy
+sutiles [NGD88065]_. Por esta razón se ha discutido la posibilidad de incluir
+la implementación de *referencias débiles* como parte del lenguaje
+[NGD88559]_.
+
+
+Concurrencia
+^^^^^^^^^^^^
+El soporte actual de concurrencia, en todos sus aspectos, es muy primitivo. El
+recolector apenas soporta múltiples *mutators* pero con un nivel de
+sincronización excesivo.
+
+Se ha sugerido en el pasado el uso de *pools* y listas de libres específicos
+de hilos, de manera de disminuir la contención, al menos para la asignación de
+memoria [NGD75952]_ [NGDN87831]_.
+
+Además se ha mostrado un interés por tener un nivel de concurrencia aún mayor
+en el recolector, para aumentar la concurrencia en ambientes *multi-core* en
+general pero en particular para evitar grandes pausas en programas con
+requerimientos de tiempo real, históricamente una de las principales críticas
+al lenguaje [NGDN87831]_ [NGL3937]_ [NGD22968]_ [NGA15246]_ [NGD5622]_
+[NGD2547]_ [NGD18354]_.
+
+
+Finalización
+^^^^^^^^^^^^
+El recolector actual no garantiza la finalización de objetos. En particular
+los objetos no son finalizados (es decir, no se llama a sus destructores)
+si aún alcanzables desde el *root set* cuando el programa termina. Cabe
+destacar que esto puede darse porque hay una referencia real desde el *root
+set* (en cuyo caso queda bajo el control del usuario) pero también, dado que
+el *root set* se visita de forma conservativa, se puede deber a un falso
+positivo, en cuyo caso la omisión de la finalización queda por completo fuera
+del control del usuario (y lo que es aún peor, el usuario no puede ser
+siquiera notificado de esta anomalía).
+
+Si bien la especificación de D_ no requiere esta capacidad (de hecho,
+rigurosamente hablando la especificación de D_ no garantiza la finalización de
+objetos bajo ninguna circunstancia), no hay mayores problemas para implementar
+un recolector que de este tipo de garantías [NGD88298]_.
+
+Además los objetos pueden ser finalizados tanto determinísticamente
+(utilizando ``delete`` o ``scope``; ver secciones :ref:`d_low_level`
+y :ref:`d_dbc`) como no determinísticamente (cuando son finalizados por el
+recolector). En el primer caso se puede, por ejemplo, acceder sus atributos
+u otra memoria que se conozca *viva*, mientras que en el segundo no. Sin
+embargo un destructor no puede hacer uso de esta distinción, haciendo que la
+finalización determinística tenga a fines prácticos las mismas restricciones
+que la finalización no determinística. Es por esto que se ha sugerido permitir
+al destructor distinguir estos dos tipos de finalización [NGD89302]_.
+
+
+Eficiencia
+^^^^^^^^^^
+El rendimiento en general del recolector es una de las críticas frecuentes. Si
+bien hay muchos problemas que han sido resueltos, en especial por la inclusión
+de un mínimo grado de precisión en la versión 1.001, en la actualidad se
+siguen encontrando en el grupo de noticias críticas respecto a esto
+[NGD43991]_ [NGD67673]_ [NGD63541]_ [NGD90977]_.
+
+La principal causa del bajo rendimiento del recolector actual es,
+probablemente, lo simple de su algoritmo principal de recolección. Más allá de
+una organización del *heap* moderadamente apropiada y de utilizar conjuntos de
+bits para la fase de marcado, el resto del algoritmo es casi la versión más
+básica de marcado y barrido. Hay mucho lugar para mejoras en este sentido.
+
+
+Configurabilidad
+^^^^^^^^^^^^^^^^
+Si bien el recolector actual tiene algunas características configurables,
+todas son seleccionables sólo en tiempo de compilación del recolector (no del
+programa del usuario), como por ejemplo las opciones descriptas en
+:ref:`dgc_debug`. Por lo tanto, a nivel práctico, es como si no tuviera
+posibilidad alguna de ser configurado por el usuario, ya que no es parte del
+ciclo de desarrollo normal el recompilar el recolector o *runtime* de un
+lenguaje.
+
+Dado que es imposible que un recolector sea óptimo para todo tipo de
+programas, es muy deseable permitir una configuración de parámetros del
+recolector que permitan al usuario ajustarlo a las necesidades particulares de
+sus programas.
+
+
+.. _dgc_bad_ocup:
+
+Factor de ocupación del *heap*
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+Otro problema potencialmente importante del recolector actual es que no se
+tiene ningún cuidado con respecto a que, luego de una recolección, se haya
+recuperado una buena parte del *heap*. Por lo tanto, en casos extremos, el
+recolector tiene que hacer una recolección por cada petición de memoria, lo
+que es extremadamente ineficiente.
+
+Para evitar esto, habría que usar algún esquema para evaluar cuando una
+recolección no fue lo suficientemente *exitosa* y en ese caso pedir más
+memoria al sistema operativo.
+
+
+Detalles
+^^^^^^^^
+Finalmente hay varios detalles en la implementación actual que podrían
+mejorarse:
+
+Listas de libres
+ hay 12 listas de libres, como para guardar bloques de tamaño de ``B_16``
+ a ``B_2048``, ``B_PAGE``, ``B_PAGEPLUS``, ``B_UNCOMMITTED`` y ``B_FREE``;
+ sin embargo solo tienen sentido los bloques de tamaño ``B_16``
+ a ``B_2048``, por lo que 4 de esas listas no se utilizan.
+
+Conjuntos de bits para indicadores
+ los indicadores para la fase de marcado y otras propiedades de un bloque
+ son almacenados en conjuntos de bits que almacenan los indicadores de todos
+ los bloques de un *pool*. Si bien se ha mencionado esto como una ventaja,
+ hay lugar todavía como para algunas mejoras. Como un *pool* tiene páginas
+ con distintos tamaños de bloque, se reserva una cantidad de bits igual a la
+ mayor cantidad posible de bloques que puede haber en el *pool*; es decir,
+ se reserva 1 bit por cada 16 bytes del *pool*. Para un *pool* de 1 MiB
+ (tamaño mínimo), teniendo en cuenta que se utilizan 5 conjuntos de bits
+ (``mark``, ``scan``, ``finals``, ``freebits`` y ``noscan``), se utilizan 40
+ KiB de memoria para conjuntos de bits (un 4% de *desperdicio* si, por
+ ejemplo, ese *pool* estuviera destinado por completo a albergar un solo
+ objeto grande; lo que equivaldría al 2560 objetos de 16 bytes
+ desperdiciados en bits inutilizados).
+
+Repetición de código
+ Hay algunos fragmentos de código repetidos innecesariamente. Por ejemplo en
+ varios lugares se utilizan arreglos de tamaño variable que se implementan
+ repetidas veces (en general como un puntero al inicio del arreglo más el
+ tamaño actual del arreglo más el tamaño de la memoria total asignada
+ actualmente). Esto es propenso a errores y difícil de mantener.
+
+Uso de señales
+ el recolector actual utiliza las señales del sistema operativo ``SIGUSR1``
+ y ``SIGUSR2`` para pausar y reanudar los hilos respectivamente. Esto
+ puede traer inconvenientes a usuarios que desean utilizar estas
+ señales en sus programas (o peor aún, si interactúan con bibliotecas
+ de C que hacen uso de estas señales) [NGD5821]_.
+
+Marcado iterativo
+ si bien esto se mencionó como algo bueno del recolector actual, es un
+ compromiso entre tiempo y espacio, y puede ser interesante analizar otros
+ métodos para evitar la recursión que no requieran tantas pasadas sobre el
+ *heap*.
+
+
+
+.. Esto sería muy similar a la sección de "Recolección de basura) pero en
+ vez de ir describiendo los algoritmos iría comentando por qué los tomo
+ o descarto
+ ESTADO: INCOMPLETO
+
+
+.. _dgc_via:
+
+Análisis de viabilidad
+----------------------------------------------------------------------------