-.. Acá va lo que decidí hacer en base al análisis anterior y sus razones.
- ESTADO: EMPEZADO
-
-
.. _solucion:
Solución adoptada
============================================================================
-Como hemos visto en :ref:`dgc_bad`, la mejora del recolector de basura puede
-ser abordada desde múltiples flancos. Por lo tanto, para reducir la cantidad
-de posibilidades hay que tener en cuenta uno de los principales objetivos de
-este trabajo: encontrar una solución que tenga una buena probabilidad de ser
-adoptada por el lenguaje, o alguno de sus compiladores al menos. Para asegurar
-esto, la solución debe tener un alto grado de aceptación en la comunidad, lo
-que implica algunos puntos claves:
+Como hemos visto en :ref:`dgc`, la mejora del recolector de basura puede ser
+abordada desde múltiples flancos, con varias alternativas viables. Por lo
+tanto, para reducir la cantidad de posibilidades hay que tener en cuenta uno
+de los principales objetivos de este trabajo: encontrar una solución que tenga
+una buena probabilidad de ser adoptada por el lenguaje, o alguno de sus
+compiladores al menos. Para asegurar esto, la solución debe tener un alto
+grado de aceptación en la comunidad, lo que implica algunos puntos claves:
* La eficiencia general de la solución no debe ser notablemente peor, en
ningún aspecto, que la implementación actual.
hacerlo sin alejarse demasiado del objetivo principal.
+.. highlight:: d
+
.. _sol_bench:
Banco de pruebas
indi[] = testPop1.individuals ~ testPop2.individuals;
}
version (everythingOk) {
- indi[0..N1] = testPop1.individuals;
- indi[N1..N2] = testPop2.individuals;
+ indi[0 .. N1] = testPop1.individuals;
+ indi[N1 .. N2] = testPop2.individuals;
}
}
return 0;
Este programa fue escrito por Oskar Linde y nuevamente hallado__ en el grupo
de noticias. Fue construido para mostrar como el hecho de que el recolector
sea conservativo puede hacer que al leer datos binarios hayan muchos *falsos
-punteros* que mantengan vivas celdas que en realidad ya no deberían ser
+positivos* que mantengan vivas celdas que en realidad ya no deberían ser
accesibles desde el *root set* del grafo de conectividad.
__ http://www.digitalmars.com/webnews/newsgroups.php?art_group=digitalmars.D&article_id=46407
lectura más cercana a la realidad del uso de un recolector.
+.. highlight:: pcode
+
.. _sol_mod:
Modificaciones propuestas
mencionar, es la conversión de marcado iterativo a marcado recursivo y luego
a un esquema híbrido. Como se describe en :ref:`dgc_bad`, el marcado iterativo
tiene sus ventajas, pero tiene desventajas también. Al convertirlo a puramente
-recursivo, se impracticable por resultar en errores de desbordamiento de pila.
+recursivo, es impracticable por resultar en errores de desbordamiento de pila.
Por lo tanto se prueba con un esquema híbrido, poniendo un límite a la
recursividad, volviendo al algoritmo iterativo cuando se alcanza este límite.
documentación completa del código de Tango_, según varía el valor de
``MAX_DEPTH``.
-.. fig:: fig:sol-mark-rec
+.. flt:: fig:sol-mark-rec
Análisis de tiempo total de ejecución en función del valor de
- ``MAX_DEPTH``.
+ ``MAX_DEPTH``
Tiempo total de ejecución de Dil_ al generar la documentación completa del
código de Tango_ en función del valor de ``MAX_DEPTH``. El rombo no
Marcado preciso
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-En paralelo con este trabajo, David Simcha comienza a explorar la posibilidad
-de agregar precisión parcial al recolector, generando información sobre la
-ubicación de los punteros para cada tipo [DBZ3463]_. Su trabajo se limita
-a una implementación a nivel biblioteca de usuario y sobre `D 2.0`_.
-Desafortunadamente su trabajo pasa desapercibido por un buen tiempo.
+Para agregar el soporte de marcado preciso se aprovecha el trabajo realizado
+por Vincent Lang (ver :ref:`dgc_via_art`) [DBZ3463]_, dado que se basa en `D
+1.0`_ y Tango_, al igual que este trabajo. Dado el objetivo y entorno común,
+se abre la posibilidad de adaptar sus cambios a este trabajo, utilizando una
+versión modificada de DMD_ (dado que los cambios aún no son integrados al
+compilador oficial).
-Luego Vincent Lang (mejor conocido como *wm4* en la comunidad de D_), retoma
-este trabajo, pero modificando el compilador DMD_ y trabajando con `D 1.0`_
-y Tango_, al igual que este trabajo. Dado el objetivo y entorno común, se abre
-la posibilidad de adaptar los cambios de Vincent Lang a este trabajo,
-utilizando una versión modificada de DMD_ (dado que los cambios aún no son
-integrados al compilador oficial).
+.. TODO: Apéndice con parches a DMD y Tango?
Información de tipos provista por el compilador
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
la estructura mostrada en la figura :vref:`fig:sol-ptrmap` y que se describe
a continuación.
-.. fig:: fig:sol-ptrmap
+.. flt:: fig:sol-ptrmap
+ :type: table
- Estructura de la información de tipos provista por el compilador.
+ Estructura de la información de tipos provista por el compilador
.. aafig::
:scale: 110
Los conjuntos de bits guardan la información sobre la primera palabra en el
bit menos significativo. Dada la complejidad de la representación, se ilustra
-con un ejemplo. Dada la estructura::
+con un ejemplo. Dada la estructura:
+
+.. code-block:: d
union U {
ubyte ub;
recolector debe debe ser conservativo en este caso, y escanear esa palabra
como si fuera un puntero.
-.. fig:: fig:sol-ptrmap-example
+.. flt:: fig:sol-ptrmap-example
- Ejemplo de estructura de información de tipos generada para el tipo ``S``.
+ Ejemplo de estructura de información de tipos generada para el tipo ``S``
.. aafig::
:textual:
En la figura :vref:`fig:sol-ptrmap-blk` se puede ver, como continuación del
ejemplo anterior, como se almacenaría en memoria un objeto del tipo ``S``.
-.. fig:: fig:sol-ptrmap-blk
+.. flt:: fig:sol-ptrmap-blk
Ejemplo de bloque que almacena un objeto de tipo ``S`` con información de
- tipo.
+ tipo
.. aafig::
:scale: 110
Esto, sin embargo, no significa que la memoria física sea realmente duplicada;
en general todos los sistemas operativos modernos (como Linux_) utilizan una
-técnica llamada *copy-on-write* (*copiar-al-escribir* en castellano) que
-retrasa la copia de memoria hasta que alguno de los dos procesos escribe en un
-segmento. Recién en ese momento el sistema operativo realiza la copia de **ese
-segmento solamente**. Es por esto que la operación puede ser muy eficiente,
-y la copia de memoria es proporcional a la cantidad de cambios que hayan.
+técnica llamada *COW* (de *copy-on-write* en inglés, *copiar-al-escribir* en
+castellano) que retrasa la copia de memoria hasta que alguno de los dos
+procesos escribe en un segmento. Recién en ese momento el sistema operativo
+realiza la copia de **ese segmento solamente**. Es por esto que la operación
+puede ser muy eficiente, y la copia de memoria es proporcional a la cantidad
+de cambios que hayan.
:manpage:`fork(2)` tiene otra propiedad importante de mencionar: detiene todos
los hilos de ejecución en el proceso hijo. Es decir, el proceso hijo se crear
pages = assign_pages(pool, number_of_pages)
pages[0].block.free = true // Agregado
pages[0].block_size = PAGE
- foreach page in pages[1..end]
+ foreach page in pages[1 .. end]
page.block_size = CONTINUATION
return pages[0]
``$dst_dir`` es el directorio donde almacenar los archivos generados
y ``$tango_files`` es la lista de archivos fuente de Tango_.
-.. highlight:: d
-
El resto de los programas se ejecutan sin parámetros (ver :ref:`sol_bench`
para una descripción detallada sobre cada uno).
conservative=0:fork=1:early_collect=1:eager_alloc=1
-.. highlight:: d
-
Métricas utilizadas
^^^^^^^^^^^^^^^^^^^
Para analizar los resultados se utilizan varias métricas. Las más importantes
particulares sobre alguna modificación se describe como se realiza la medición
donde se utiliza la métrica especial.
-Variabilidad de los resultados entre ejecuciones
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Es de esperarse que haya una cierta variación en los resultados entre
-corridas, dada la indeterminación inherente a los sistemas operativos de
-tiempo compartido, que compiten por los recursos de la computadora.
+.. flt:: t:sol-setarch
+ :type: table
-Para minimizar esta variación se utilizan varias herramientas. En primer
-lugar, se corren las pruebas estableciendo máxima prioridad (-19 en Linux_) al
-proceso utilizando el comando :manpage:`nice(1)`. La variación en la
-frecuencia del reloj los procesadores (para ahorrar energía) puede ser otra
-fuente de variación, por lo que se usa el comando :manpage:`cpufreq-set(1)`
-para establecer la máxima frecuencia disponible de manera fija.
-
-Sin embargo, a pesar de tomar estas precauciones, se sigue observando una
-amplia variabilidad entre corridas. Además se observa una variación más
-importante de la esperada no solo en el tiempo, también en el consumo de
-memoria, lo que es más extraño. Esta variación se debe principalmente a que
-Linux_ asigna el espacio de direcciones a los procesos con una componente
-azarosa (por razones de seguridad). Además, por omisión, la llamada al sistema
-:manpage:`mmap(2)` asigna direcciones de memoria altas primero, entregando
-direcciones más bajas en llamadas subsiguientes [LWN90311]_.
-
-El comando :manpage:`setarch(8)` sirve para controlar éste y otros aspectos de
-Linux_. La opción ``-L`` hace que se utilice un esquema de asignación de
-direcciones antiguo, que no tiene una componente aleatoria y asigna primero
-direcciones bajas. La opción ``-R`` solamente desactiva la componente azarosa
-al momento de asignar direcciones.
-
-.. ftable:: t:sol-setarch
-
- Variación entre corridas para TBGC.
+ Variación entre corridas para TBGC
Variación entre corridas para TBGC. La medición está efectuada utilizando
los valores máximo, mínimo y media estadística de 20 corridas, utilizando
realizarse utilizando el desvío estándar en vez de la amplitud máxima, pero
en este cuadro se quiere ilustrar la variación máxima, no la típica.
- .. subtable::
+ .. subflt::
Del tiempo total de ejecución.
voronoi 0.886 0.003 0.006
======== ======== ======== ========
- .. subtable::
+ .. subflt::
Del consumo máximo de memoria.
voronoi 0.001 0.000 0.000
======== ======== ======== ========
-Ambas opciones, reducen notablemente la variación en los resultados (ver
-cuadro :vref:`t:sol-setarch`). Esto probablemente se debe a la naturaleza
-conservativa del recolector, dado que la probabilidad de tener *falsos
-punteros* depende directamente de los valores de las direcciones de memoria,
-aunque las pruebas en la que hay concurrencia involucrada, se siguen viendo
-grandes variaciones, que probablemente estén vinculadas a problemas de
-sincronización que se ven expuestos gracias al indeterminismo inherente a los
-programas multi-hilo.
-
-Si bien se obtienen resultados más estables utilizando un esquema diferente al
-utilizado por omisión, se decide no hacerlo dado que las mediciones serían
-menos realistas. Los usuarios en general no usan esta opción y se presentaría
-una visión más acotada sobre el comportamiento de los programas. Sin embargo,
-para evaluar el este efecto en los resultados, siempre que sea posible se
-analizan los resultados de un gran número de corridas observando
-principalmente su mínima, media, máxima y desvío estándar.
+.. flt:: fig:sol-bigarr-1cpu
-.. Tamaño del ejecutable (XXX: SEGUN LAS PRUEBAS NO FUCKING CAMBIA!!!)
- El tamaño del ejecutable es un factor importante. Cuanto más grande es el
- ejecutable, más parecieran variar los resultados. Por ejemplo se observa un
- incremento de la estabilidad de los resultados al eliminar toda información
- de depuración (*debug*) del ejecutable, utilizando el comando
- :manpage:`strip(1)` (*stripped*). En el cuadro :vref:`t:sol-exesize-tbgc`
- se puede ver la reducción del tamaño del ejecutable para TBGC cuando se
- elimina la información de depuración (4.25 veces más chico en promedio),
- mientas que en el cuadro :vref:`t:sol-exesize-cdgc` se puede ver CDGC (4.6
- veces más chico en promedio).
- .. ftable:: t:sol-exesize-tbgc
- Reducción del tamaño del ejecutable para TBGC.
- ======== ======== ======== ==============
- Nombre Debug Stripped Debug/Stripped
- ======== ======== ======== ==============
- bh 586517 138060 4.248
- bigarr 547687 192004 2.852
- bisort 485857 115164 4.219
- conalloc 616613 149848 4.115
- concpu 616575 149848 4.115
- dil 7293277 1859208 3.923
- em3d 505019 116324 4.341
- mcore 461767 105748 4.367
- rnddata 2832935 1492588 1.898
- sbtree 526402 129860 4.054
- split 589353 144308 4.084
- tree 462009 105844 4.365
- tsp 544901 128412 4.243
- voronoi 601259 141112 4.261
- ======== ======== ======== ==============
- .. ftable:: t:sol-exesize-cdgc
- Reducción del tamaño del ejecutable para CDGC.
- ======== ======== ======== ===============
- Nombre Debug Stripped Debug/Stripped
- ======== ======== ======== ===============
- bh 736115 159884 4.604
- bigarr 697406 213832 3.261
- bisort 635537 136988 4.639
- conalloc 766328 171676 4.464
- concpu 766294 171676 4.464
- dil 7442657 1881028 3.957
- em3d 658827 142248 4.632
- mcore 611486 127576 4.793
- rnddata 2986736 1518512 1.967
- sbtree 680217 155784 4.366
- split 739072 166136 4.449
- tree 611728 127672 4.791
- tsp 694581 150236 4.623
- voronoi 750847 162936 4.608
- ======== ======== ======== ===============
- TODO: Mostrar tiempos de corridas.
-
-
-.. Resultados generales
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-.. Primero se presenta una visión global de los resultados, utilizando las
- métricas más importantes. Para generar los gráficos se utilizan los valores
- máximos (en blanco), mínimos (en negro), media y desvío estándar (en gris)
- calculados en base a, como mínimo, 20 corridas (para algunos casos se hacen
- hasta 50 corridas).
-
-
-Resultados para pruebas sintizadas
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-A continuación se presentan los resultados obtenidos para las pruebas
-sintetizadas (ver :ref:`sol_bench_synth`). Se recuerda que este conjunto de
-resultados es útil para analizar ciertos aspectos puntuales de las
-modificaciones propuestas, pero en general distan mucho de como se comporta un
-programa real, por lo que los resultados deben ser analizados teniendo esto
-presente.
-
-``bigarr``
-^^^^^^^^^^
-.. fig:: fig:sol-bigarr-1cpu
-
- Resultados para ``bigarr`` (utilizando 1 procesador).
+ Resultados para ``bigarr`` (utilizando 1 procesador)
Resultados para ``bigarr`` (utilizando 1 procesador). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-bigarr-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-bigarr-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-bigarr-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-bigarr-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-bigarr-1cpu.pdf
-.. fig:: fig:sol-bigarr-4cpu
+Variabilidad de los resultados entre ejecuciones
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+Es de esperarse que haya una cierta variación en los resultados entre
+corridas, dada la indeterminación inherente a los sistemas operativos de
+tiempo compartido, que compiten por los recursos de la computadora.
+
+Para minimizar esta variación se utilizan varias herramientas. En primer
+lugar, se corren las pruebas estableciendo máxima prioridad (-19 en Linux_) al
+proceso utilizando el comando :manpage:`nice(1)`. La variación en la
+frecuencia del reloj los procesadores (para ahorrar energía) puede ser otra
+fuente de variación, por lo que se usa el comando :manpage:`cpufreq-set(1)`
+para establecer la máxima frecuencia disponible de manera fija.
+
+Sin embargo, a pesar de tomar estas precauciones, se sigue observando una
+amplia variabilidad entre corridas. Además se observa una variación más
+importante de la esperada no solo en el tiempo, también en el consumo de
+memoria, lo que es más extraño. Esta variación se debe principalmente a que
+Linux_ asigna el espacio de direcciones a los procesos con una componente
+azarosa (por razones de seguridad). Además, por omisión, la llamada al sistema
+:manpage:`mmap(2)` asigna direcciones de memoria altas primero, entregando
+direcciones más bajas en llamadas subsiguientes [LWN90311]_.
+
+El comando :manpage:`setarch(8)` sirve para controlar éste y otros aspectos de
+Linux_. La opción ``-L`` hace que se utilice un esquema de asignación de
+direcciones antiguo, que no tiene una componente aleatoria y asigna primero
+direcciones bajas. La opción ``-R`` solamente desactiva la componente azarosa
+al momento de asignar direcciones.
- Resultados para ``bigarr`` (utilizando 4 procesadores).
+Ambas opciones, reducen notablemente la variación en los resultados (ver
+cuadro :vref:`t:sol-setarch`). Esto probablemente se debe a la naturaleza
+conservativa del recolector, dado que la probabilidad de tener *falsos
+positivos* depende directamente de los valores de las direcciones de memoria,
+aunque las pruebas en la que hay concurrencia involucrada, se siguen viendo
+grandes variaciones, que probablemente estén vinculadas a problemas de
+sincronización que se ven expuestos gracias al indeterminismo inherente a los
+programas multi-hilo.
+
+Si bien se obtienen resultados más estables utilizando un esquema diferente al
+utilizado por omisión, se decide no hacerlo dado que las mediciones serían
+menos realistas. Los usuarios en general no usan esta opción y se presentaría
+una visión más acotada sobre el comportamiento de los programas. Sin embargo,
+para evaluar el este efecto en los resultados, siempre que sea posible se
+analizan los resultados de un gran número de corridas observando
+principalmente su mínima, media, máxima y desvío estándar.
+
+
+
+Resultados para pruebas sintizadas
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A continuación se presentan los resultados obtenidos para las pruebas
+sintetizadas (ver :ref:`sol_bench_synth`). Se recuerda que este conjunto de
+resultados es útil para analizar ciertos aspectos puntuales de las
+modificaciones propuestas, pero en general distan mucho de como se comporta un
+programa real, por lo que los resultados deben ser analizados teniendo esto
+presente.
+
+``bigarr``
+^^^^^^^^^^
+En la figura :vref:`fig:sol-bigarr-1cpu` se pueden observar los resultados
+para ``bigarr`` al utilizar un solo procesador. En ella se puede notar que el
+tiempo total de ejecución en general aumenta al utilizar CDGC, esto es
+esperable, dado esta prueba se limitan a usar servicios del recolector. Dado
+que esta ejecución utiliza solo un procesador y por lo tanto no se puede sacar
+provecho a la concurrencia, es de esperarse que el trabajo extra realizado por
+las modificaciones se vea reflejado en los resultados. En la
+:vref:`fig:sol-bigarr-4cpu` (resultados al utilizar 4 procesadores) se puede
+observar como al usar solamente *eager allocation* se recupera un poco el
+tiempo de ejecución, probablemente debido al incremento en la concurrencia
+(aunque no se observa el mismo efecto al usar *early collection*).
+
+Observando el tiempo total de ejecución, no se esperaba un incremento tan
+notorio al pasar de TBGC a una configuración equivalente de CDGC **cons**,
+haciendo un breve análisis de las posibles causas, lo más probable parece ser
+el incremento en la complejidad de la fase de marcado dada capacidad para
+marcar de forma precisa (aunque no se use la opción, se paga el precio de la
+complejidad extra y sin obtener los beneficios). Además se puede observar
+como el agregado de precisión al marcado mejora un poco las cosas (donde sí se
+obtiene rédito de la complejidad extra en el marcado).
+
+.. flt:: fig:sol-bigarr-4cpu
+
+ Resultados para ``bigarr`` (utilizando 4 procesadores)
Resultados para ``bigarr`` (utilizando 4 procesadores). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-bigarr-4cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-bigarr-4cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-bigarr-4cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-bigarr-4cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-bigarr-4cpu.pdf
-En la figura :vref:`fig:sol-bigarr-1cpu` se pueden observar los resultados
-para ``bigarr`` al utilizar un solo procesador. En ella se puede notar que el
-tiempo total de ejecución en general aumenta al utilizar CDGC, esto es
-esperable, dado esta prueba se limitan a usar servicios del recolector. Dado
-que esta ejecución utiliza solo un procesador y por lo tanto no se puede sacar
-provecho a la concurrencia, es de esperarse que el trabajo extra realizado por
-las modificaciones se vea reflejado en los resultados. En la
-:vref:`fig:sol-bigarr-4cpu` (resultados al utilizar 4 procesadores) se puede
-observar como al usar solamente *eager allocation* se recupera un poco el
-tiempo de ejecución, probablemente debido al incremento en la concurrencia
-(aunque no se observa el mismo efecto al usar *early collection*).
-
-Observando el tiempo total de ejecución, no se esperaba un incremento tan
-notorio al pasar de TBGC a una configuración equivalente de CDGC **cons**,
-haciendo un breve análisis de las posibles causas, lo más probable parece ser
-el incremento en la complejidad de la fase de marcado dada capacidad para
-marcar de forma precisa (aunque no se use la opción, se paga el precio de la
-complejidad extra y sin obtener los beneficios). Además se puede observar
-como el agregado de precisión al marcado mejora un poco las cosas (donde sí se
-obtiene rédito de la complejidad extra en el marcado).
-
En general se observa que al usar *eager allocation* el consumo de memoria
y los tiempos de pausa se disparan mientras que la cantidad de recolecciones
disminuye drásticamente. Lo que se observa es que el programa es
copiar tablas de memoria más grandes al efectuar el *fork* (ver
:ref:`sol_fork`).
-``concpu``
-^^^^^^^^^^
-.. fig:: fig:sol-concpu-1cpu
+.. raw:: latex
- Resultados para ``concpu`` (utilizando 1 procesador).
+ \clearpage
+
+.. flt:: fig:sol-concpu-1cpu
+
+ Resultados para ``concpu`` (utilizando 1 procesador)
Resultados para ``concpu`` (utilizando 1 procesador). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-concpu-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-concpu-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-concpu-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-concpu-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-concpu-1cpu.pdf
-.. fig:: fig:sol-concpu-4cpu
+.. flt:: fig:sol-concpu-4cpu
- Resultados para ``concpu`` (utilizando 4 procesadores).
+ Resultados para ``concpu`` (utilizando 4 procesadores)
Resultados para ``concpu`` (utilizando 4 procesadores). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-concpu-4cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-concpu-4cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-concpu-4cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-concpu-4cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-concpu-4cpu.pdf
+``concpu``
+^^^^^^^^^^
En la figura :vref:`fig:sol-concpu-1cpu` se pueden observar los resultados
para ``concpu`` al utilizar un solo procesador. En ella se aprecia que el
tiempo total de ejecución disminuye levemente al usar marcado concurrente
dramático en la cantidad de recolecciones solo al no usar marcado concurrente
para 4 procesadores.
-``conalloc``
-^^^^^^^^^^^^
-.. fig:: fig:sol-conalloc-1cpu
+.. flt:: fig:sol-conalloc-1cpu
- Resultados para ``conalloc`` (utilizando 1 procesador).
+ Resultados para ``conalloc`` (utilizando 1 procesador)
Resultados para ``conalloc`` (utilizando 1 procesador). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-conalloc-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-conalloc-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-conalloc-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-conalloc-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-conalloc-1cpu.pdf
-.. fig:: fig:sol-conalloc-4cpu
+.. flt:: fig:sol-conalloc-4cpu
- Resultados para ``conalloc`` (utilizando 4 procesadores).
+ Resultados para ``conalloc`` (utilizando 4 procesadores)
Resultados para ``conalloc`` (utilizando 4 procesadores). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-conalloc-4cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-conalloc-4cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-conalloc-4cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-conalloc-4cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-conalloc-4cpu.pdf
-En la figura :vref:`fig:sol-conalloc-1cpu` se pueden observar los resultados
-para ``conalloc`` al utilizar un solo procesador. Los cambios con respecto
-a lo observado para ``concpu`` son mínimos. El efecto de la mejoría al usar
-marcado concurrente pero no *eager allocation* no se observa más, dado que
-``conalloc`` pide memoria en todos los hilos, se crea un cuello de botella. Se
-ve claramente como tampoco baja la cantidad de recolecciones hecha debido
-a esto y se invierte la variabilidad entre los tiempos pico de pausa real
-y *stop-the-world* (sin una razón obvia, pero probablemente relacionado que
-todos los hilos piden memoria).
-
-Al utilizar 4 procesadores (figura :vref:`fig:sol-conalloc-4cpu`), más allá de
-las diferencias mencionadas para 1 procesador, no se observan grandes cambios
-con respecto a lo observado para ``concpu``, excepto que los tiempos de pausa
-(real y *stop-the-world*) son notablemente más pequeños, lo que pareciera
-confirmar un error en la medición de ``concpu``.
-
-``split``
-^^^^^^^^^
-.. fig:: fig:sol-split-1cpu
+.. flt:: fig:sol-split-1cpu
- Resultados para ``split`` (utilizando 1 procesador).
+ Resultados para ``split`` (utilizando 1 procesador)
Resultados para ``split`` (utilizando 1 procesador). Se presenta el mínimos
(en negro), la media centrada entre dos desvíos estándar (en gris), y el
máximo (en blanco) calculados sobre 50 corridas (para tiempo de ejecución)
o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-split-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-split-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-split-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-split-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-split-1cpu.pdf
+``conalloc``
+^^^^^^^^^^^^
+En la figura :vref:`fig:sol-conalloc-1cpu` se pueden observar los resultados
+para ``conalloc`` al utilizar un solo procesador. Los cambios con respecto
+a lo observado para ``concpu`` son mínimos. El efecto de la mejoría al usar
+marcado concurrente pero no *eager allocation* no se observa más, dado que
+``conalloc`` pide memoria en todos los hilos, se crea un cuello de botella. Se
+ve claramente como tampoco baja la cantidad de recolecciones hecha debido
+a esto y se invierte la variabilidad entre los tiempos pico de pausa real
+y *stop-the-world* (sin una razón obvia, pero probablemente relacionado que
+todos los hilos piden memoria).
+
+Al utilizar 4 procesadores (figura :vref:`fig:sol-conalloc-4cpu`), más allá de
+las diferencias mencionadas para 1 procesador, no se observan grandes cambios
+con respecto a lo observado para ``concpu``, excepto que los tiempos de pausa
+(real y *stop-the-world*) son notablemente más pequeños, lo que pareciera
+confirmar un error en la medición de ``concpu``.
+
+``split``
+^^^^^^^^^
Este es el primer caso donde se aprecia la sustancial mejora proporcionada por
una pequeña optimización, el caché de ``findSize()`` (ver
:ref:`sol_minor_findsize`). En la figura :vref:`fig:sol-split-1cpu` se puede
Se omiten los resultados para más de un procesador por ser prácticamente
idénticos para este análisis.
-``mcore``
-^^^^^^^^^
-.. fig:: fig:sol-mcore-1cpu
+.. raw:: latex
- Resultados para ``mcore`` (utilizando 1 procesador).
+ \clearpage
+
+.. flt:: fig:sol-mcore-1cpu
+
+ Resultados para ``mcore`` (utilizando 1 procesador)
Resultados para ``mcore`` (utilizando 1 procesador). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-mcore-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-mcore-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-mcore-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-mcore-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-mcore-1cpu.pdf
-.. fig:: fig:sol-mcore-4cpu
+.. flt:: fig:sol-mcore-4cpu
- Resultados para ``mcore`` (utilizando 4 procesadores).
+ Resultados para ``mcore`` (utilizando 4 procesadores)
Resultados para ``mcore`` (utilizando 4 procesadores). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-mcore-4cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-mcore-4cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-mcore-4cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-mcore-4cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-mcore-4cpu.pdf
-El caso de ``mcore`` es interesante por ser, funcionalmente, una combinación
-entre ``concpu`` y ``split``, con un agregado extra: el incremento notable de
-la competencia por utilizar el recolector entre los múltiples hilos.
-
-Los efectos observados (en la figura :vref:`fig:sol-mcore-1cpu` para
-1 procesador y en la figura :vref:`fig:sol-mcore-4cpu` para 4) confirman esto,
-al ser una suma de los efectos observados para ``concpu`` y ``split``, con el
-agregado de una particularidad extra por la mencionada competencia entre
-hilos. A diferencia de ``concpu`` donde el incremento de procesadores resulta
-en un decremento en el tiempo total de ejecución, en este caso resulta en una
-disminución, dado que se necesita mucha sincronización entre hilos, por
-utilizar todos de forma intensiva los servicios del recolector (y por lo tanto
-competir por su *lock* global).
-
-Otro efecto común observado es que cuando el tiempo de pausa es muy pequeño
-(del orden de los milisegundos), el marcado concurrente suele incrementarlo en
-vez de disminuirlo.
-
-``rnddata``
-^^^^^^^^^^^
-.. fig:: fig:sol-rnddata-1cpu
+.. flt:: fig:sol-rnddata-1cpu
- Resultados para ``rnddata`` (utilizando 1 procesador).
+ Resultados para ``rnddata`` (utilizando 1 procesador)
Resultados para ``rnddata`` (utilizando 1 procesador). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-rnddata-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-rnddata-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-rnddata-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-rnddata-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-rnddata-1cpu.pdf
+``mcore``
+^^^^^^^^^
+El caso de ``mcore`` es interesante por ser, funcionalmente, una combinación
+entre ``concpu`` y ``split``, con un agregado extra: el incremento notable de
+la competencia por utilizar el recolector entre los múltiples hilos.
+
+Los efectos observados (en la figura :vref:`fig:sol-mcore-1cpu` para
+1 procesador y en la figura :vref:`fig:sol-mcore-4cpu` para 4) confirman esto,
+al ser una suma de los efectos observados para ``concpu`` y ``split``, con el
+agregado de una particularidad extra por la mencionada competencia entre
+hilos. A diferencia de ``concpu`` donde el incremento de procesadores resulta
+en un decremento en el tiempo total de ejecución, en este caso resulta en una
+disminución, dado que se necesita mucha sincronización entre hilos, por
+utilizar todos de forma intensiva los servicios del recolector (y por lo tanto
+competir por su *lock* global).
+
+Otro efecto común observado es que cuando el tiempo de pausa es muy pequeño
+(del orden de los milisegundos), el marcado concurrente suele incrementarlo en
+vez de disminuirlo.
+
+``rnddata``
+^^^^^^^^^^^
En la figura :vref:`fig:sol-rnddata-1cpu` se presentan los resultados para
``rnddata`` utilizando 1 procesador. Una vez más estamos ante un caso en el
cual se observa claramente la mejoría gracias a una modificación en particular
El aumento en el variación de los tiempos de ejecución al usar marcado preciso
probablemente se debe a lo siguiente: con marcado conservativo, debe estar
sobreviviendo a las recolecciones el total de memoria pedida por el programa,
-debido a falsos punteros (por eso no se observa prácticamente variación en el
+debido a *falsos positivos* (por eso no se observa prácticamente variación en el
tiempo de ejecución y memoria máxima consumida); al marcar con precisión
-parcial, se logra disminuir mucho la cantidad de falsos punteros, pero el
+parcial, se logra disminuir mucho la cantidad de *falsos positivos*, pero el
*stack* y la memoria estática, se sigue marcado de forma conservativa, por lo
tanto dependiendo de los valores (aleatorios) generados por la prueba, aumenta
-o disminuye la cantidad de falsos punteros, variando así la cantidad de
+o disminuye la cantidad de *falsos positivos*, variando así la cantidad de
memoria consumida y el tiempo de ejecución.
No se muestran los resultados para más de un procesador por ser demasiado
afectar la forma en la que se comportan los cambios introducidos en este
trabajo.
+.. flt:: fig:sol-bh-1cpu
-Resultados para pruebas pequeñas
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-A continuación se presentan los resultados obtenidos para las pruebas pequeñas
-(ver :ref:`sol_bench_small`). Se recuerda que si bien este conjunto de pruebas
-se compone de programas reales, que efectúan una tarea útil, están diseñados
-para ejercitar la asignación de memoria y que no son recomendados para evaluar
-el desempeño de recolectores de basura. Sin embargo se las utiliza igual por
-falta de programas más realistas, por lo que hay que tomarlas como un grado de
-suspicacia.
-
-``bh``
-^^^^^^
-.. fig:: fig:sol-bh-1cpu
-
- Resultados para ``bh`` (utilizando 1 procesador).
+ Resultados para ``bh`` (utilizando 1 procesador)
Resultados para ``bh`` (utilizando 1 procesador). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-bh-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-bh-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-bh-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-bh-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-bh-1cpu.pdf
-En la figura :vref:`fig:sol-bh-1cpu` se pueden observar los resultados
-para ``bh`` al utilizar un solo procesador. Ya en una prueba un poco más
-realista se puede observar el efecto positivo del marcado preciso, en especial
-en la cantidad de recolecciones efectuadas (aunque no se traduzca en un menor
-consumo de memoria).
+.. raw:: latex
-Sin embargo se observa también un efecto nocivo del marcado preciso en el
-consumo de memoria que intuitivamente debería disminuir, pero crece, y de
-forma considerable (unas 3 veces en promedio). La razón de esta particularidad
-es el incremento en el espacio necesario para almacenar objetos debido a que
-el puntero a la información del tipo se guarda al final del bloque (ver
-:ref:`sol_precise`). En el cuadro :vref:`t:sol-prec-mem-bh` se puede observar
-la cantidad de memoria pedida por el programa, la cantidad de memoria
-realmente asignada por el recolector (y la memoria desperdiciada) cuando se
-usa marcado conservativo y preciso. Estos valores fueron tomados usando la
-opción ``malloc_stats_file`` (ver :ref:`sol_stats`).
+ \clearpage
+
+
+Resultados para pruebas pequeñas
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A continuación se presentan los resultados obtenidos para las pruebas pequeñas
+(ver :ref:`sol_bench_small`). Se recuerda que si bien este conjunto de pruebas
+se compone de programas reales, que efectúan una tarea útil, están diseñados
+para ejercitar la asignación de memoria y que no son recomendados para evaluar
+el desempeño de recolectores de basura. Sin embargo se las utiliza igual por
+falta de programas más realistas, por lo que hay que tomarlas como un grado de
+suspicacia.
-.. ftable:: t:sol-prec-mem-bh
+``bh``
+^^^^^^
+.. flt:: t:sol-prec-mem-bh
+ :type: table
- Memoria pedida y asignada para ``bh`` según modo de marcado.
+ Memoria pedida y asignada para ``bh`` según modo de marcado
Memoria pedida y asignada para ``bh`` según modo de marcado conservativo
o preciso (acumulativo durante toda la vida del programa).
Preciso 302.54 472.26 169.72 (36%)
============== ============== ============== =================
-Más allá de esto, los resultados son muy similares a los obtenidos para
-pruebas sintetizadas que se limitan a ejercitar el recolector (como ``bigarr``
-y ``sbtree``), lo que habla de lo mucho que también lo hace este pequeño
-programa.
-
-No se muestran los resultados para más de un procesador por ser extremadamente
-similares a los obtenidos utilizando solo uno.
-
-``bisort``
-^^^^^^^^^^
-.. fig:: fig:sol-bisort-1cpu
+.. flt:: fig:sol-bisort-1cpu
- Resultados para ``bisort`` (utilizando 1 procesador).
+ Resultados para ``bisort`` (utilizando 1 procesador)
Resultados para ``bisort`` (utilizando 1 procesador). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-bisort-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-bisort-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-bisort-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-bisort-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-bisort-1cpu.pdf
+En la figura :vref:`fig:sol-bh-1cpu` se pueden observar los resultados
+para ``bh`` al utilizar un solo procesador. Ya en una prueba un poco más
+realista se puede observar el efecto positivo del marcado preciso, en especial
+en la cantidad de recolecciones efectuadas (aunque no se traduzca en un menor
+consumo de memoria).
+
+Sin embargo se observa también un efecto nocivo del marcado preciso en el
+consumo de memoria que intuitivamente debería disminuir, pero crece, y de
+forma considerable (unas 3 veces en promedio). La razón de esta particularidad
+es el incremento en el espacio necesario para almacenar objetos debido a que
+el puntero a la información del tipo se guarda al final del bloque (ver
+:ref:`sol_precise`). En el cuadro :vref:`t:sol-prec-mem-bh` se puede observar
+la cantidad de memoria pedida por el programa, la cantidad de memoria
+realmente asignada por el recolector (y la memoria desperdiciada) cuando se
+usa marcado conservativo y preciso. Estos valores fueron tomados usando la
+opción ``malloc_stats_file`` (ver :ref:`sol_stats`).
+
+Más allá de esto, los resultados son muy similares a los obtenidos para
+pruebas sintetizadas que se limitan a ejercitar el recolector (como ``bigarr``
+y ``sbtree``), lo que habla de lo mucho que también lo hace este pequeño
+programa.
+
+No se muestran los resultados para más de un procesador por ser extremadamente
+similares a los obtenidos utilizando solo uno.
+
+``bisort``
+^^^^^^^^^^
La figura :vref:`fig:sol-bisort-1cpu` muestra los resultados para ``bisort``
al utilizar 1 procesador. En este caso el parecido es con los resultados para
la prueba sintetizada ``split``, con la diferencia que el tiempo de ejecución
Otra diferencia notable es la considerable reducción del tiempo de pausa real
al utilizar *early collection* (más de 3 veces menor en promedio comparado
-a cuando se marca conservativamente, y más de 2 veces menor que cuando se hace
-de forma precisa), lo que indica que la predicción de cuando se va a necesitar
-una recolección es más efectiva que para ``split``.
+a cuando se marca de forma conservativa, y más de 2 veces menor que cuando se
+hace de forma precisa), lo que indica que la predicción de cuando se va
+a necesitar una recolección es más efectiva que para ``split``.
No se muestran los resultados para más de un procesador por ser extremadamente
similares a los obtenidos utilizando solo uno.
-``em3d``
-^^^^^^^^
-.. fig:: fig:sol-em3d-1cpu
+.. raw:: latex
+
+ \clearpage
- Resultados para ``em3d`` (utilizando 1 procesador).
+.. flt:: fig:sol-em3d-1cpu
+
+ Resultados para ``em3d`` (utilizando 1 procesador)
Resultados para ``em3d`` (utilizando 1 procesador). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-em3d-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-em3d-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-em3d-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-em3d-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-em3d-1cpu.pdf
+``em3d``
+^^^^^^^^
Los resultados para ``em3d`` (figura :vref:`fig:sol-em3d-1cpu`) son
sorprendentemente similares a los de ``bisort``. La única diferencia es que en
este caso el marcado preciso y el uso de *early collection** no parecen
Una vez más no se muestran los resultados para más de un procesador por ser
extremadamente similares a los obtenidos utilizando solo uno.
-``tsp``
-^^^^^^^^
-.. fig:: fig:sol-tsp-1cpu
+.. flt:: fig:sol-tsp-1cpu
- Resultados para ``tsp`` (utilizando 1 procesador).
+ Resultados para ``tsp`` (utilizando 1 procesador)
Resultados para ``tsp`` (utilizando 1 procesador). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-tsp-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-tsp-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-tsp-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-tsp-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-tsp-1cpu.pdf
-Los resultados para ``tsp`` (figura :vref:`fig:sol-tsp-1cpu`) son
-prácticamente idénticos a los de ``bisort``. La única diferencia es que la
-reducción del tiempo de pausa real es un poco menor.
-
-Esto confirma en cierta medida la poca utilidad de este juego de pruebas para
-medir el rendimiento de un recolector, dado que evidentemente, si bien todas
-resuelven problemas diferentes, realizan todas el mismo tipo de trabajo.
+.. flt:: fig:sol-voronoi-1cpu
-Una vez más no se muestran los resultados para más de un procesador por ser
-extremadamente similares a los obtenidos utilizando solo uno.
-
-``voronoi``
-^^^^^^^^^^^
-.. fig:: fig:sol-voronoi-1cpu
-
- Resultados para ``voronoi`` (utilizando 1 procesador).
+ Resultados para ``voronoi`` (utilizando 1 procesador)
Resultados para ``voronoi`` (utilizando 1 procesador). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-voronoi-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-voronoi-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-voronoi-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-voronoi-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-voronoi-1cpu.pdf
-.. fig:: fig:sol-voronoi-4cpu
+.. flt:: fig:sol-voronoi-4cpu
- Resultados para ``voronoi`` (utilizando 4 procesadores).
+ Resultados para ``voronoi`` (utilizando 4 procesadores)
Resultados para ``voronoi`` (utilizando 4 procesadores). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-voronoi-4cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-voronoi-4cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-voronoi-4cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-voronoi-4cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-voronoi-4cpu.pdf
+``tsp``
+^^^^^^^^
+Los resultados para ``tsp`` (figura :vref:`fig:sol-tsp-1cpu`) son
+prácticamente idénticos a los de ``bisort``. La única diferencia es que la
+reducción del tiempo de pausa real es un poco menor.
+
+Esto confirma en cierta medida la poca utilidad de este juego de pruebas para
+medir el rendimiento de un recolector, dado que evidentemente, si bien todas
+resuelven problemas diferentes, realizan todas el mismo tipo de trabajo.
+
+Una vez más no se muestran los resultados para más de un procesador por ser
+extremadamente similares a los obtenidos utilizando solo uno.
+
+``voronoi``
+^^^^^^^^^^^
En la figura :vref:`fig:sol-voronoi-1cpu` se presentan los resultados para
``voronoi``, probablemente la prueba más interesante de este conjunto de
pruebas pequeñas.
para TBGC se ve una variación entre los resultados muy grande que desaparece
al cambiar a CDGC, esto no puede ser explicado por esa optimización. En
general la disminución de la variación de los resultados hemos visto que está
-asociada al incremento en la precisión en el marcado, dado que los falsos
-punteros ponen una cuota de aleatoriedad importante. Pero este tampoco parece
-ser el caso, ya que no se observan cambios apreciables al pasar a usar marcado
-preciso.
+asociada al incremento en la precisión en el marcado, dado que los *falsos
+positivos* ponen una cuota de aleatoriedad importante. Pero este tampoco
+parece ser el caso, ya que no se observan cambios apreciables al pasar a usar
+marcado preciso.
Lo que se observa en esta oportunidad es un caso patológico de un mal factor
de ocupación del *heap* (ver :ref:`sol_ocup`). Lo que muy probablemente está
de otros cambios en el nivel de variación, pero en general las medias no
cambian).
-
Resultados para pruebas reales
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-A continuación se presentan los resultados obtenidos para las pruebas reales
-(ver :ref:`sol_bench_real`). Recordamos que solo se pudo halla un programa que
-pueda ser utilizado a este fin, Dil_, y que el objetivo principal de este
-trabajo se centra alrededor de obtener resultados positivos para este
-programa, por lo que a pesar de ser una única prueba, se le presta particular
-atención.
-
-``dil``
-^^^^^^^
-.. fig:: fig:sol-dil-1cpu
+.. flt:: fig:sol-dil-1cpu
- Resultados para ``dil`` (utilizando 1 procesador).
+ Resultados para ``dil`` (utilizando 1 procesador)
Resultados para ``dil`` (utilizando 1 procesador). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-dil-1cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-dil-1cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-dil-1cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-dil-1cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-dil-1cpu.pdf
-.. fig:: fig:sol-dil-4cpu
+A continuación se presentan los resultados obtenidos para las pruebas reales
+(ver :ref:`sol_bench_real`). Recordamos que solo se pudo halla un programa que
+pueda ser utilizado a este fin, Dil_, y que el objetivo principal de este
+trabajo se centra alrededor de obtener resultados positivos para este
+programa, por lo que a pesar de ser una única prueba, se le presta particular
+atención.
+
+``dil``
+^^^^^^^
+En la figura :vref:`fig:sol-dil-1cpu` se presentan los resultados para
+``dil`` al utilizar un procesador. Una vez más vemos una mejoría inmediata del
+tiempo total de ejecución al pasar de TBGC a CDGC, y una vez más se debe
+principalmente al mal factor de ocupación del *heap* de TBGC, dado que
+utilizando CDGC con la opción ``min_free=0`` se obtiene una media del orden de
+los 80 segundos, bastante más alta que el tiempo obtenido para TBGC.
- Resultados para ``dil`` (utilizando 4 procesadores).
+.. flt:: fig:sol-dil-4cpu
+ :placement: t
+
+ Resultados para ``dil`` (utilizando 4 procesadores)
Resultados para ``dil`` (utilizando 4 procesadores). Se presenta el
mínimos (en negro), la media centrada entre dos desvíos estándar (en gris),
y el máximo (en blanco) calculados sobre 50 corridas (para tiempo de
ejecución) o 20 corridas (para el resto).
- .. subfig::
+ .. subflt::
Tiempo de ejecución (seg)
.. image:: plots/time-dil-4cpu.pdf
- .. subfig::
+ .. subflt::
Cantidad de recolecciones
.. image:: plots/ncol-dil-4cpu.pdf
- .. subfig::
+ .. subflt::
Uso máximo de memoria (MiB)
.. image:: plots/mem-dil-4cpu.pdf
- .. subfig::
+ .. subflt::
*Stop-the-world* máximo (seg)
.. image:: plots/stw-dil-4cpu.pdf
- .. subfig::
+ .. subflt::
Pausa real máxima (seg)
.. image:: plots/pause-dil-4cpu.pdf
-En la figura :vref:`fig:sol-dil-1cpu` se presentan los resultados para
-``dil`` al utilizar un procesador. Una vez más vemos una mejoría inmediata del
-tiempo total de ejecución al pasar de TBGC a CDGC, y una vez más se debe
-principalmente al mal factor de ocupación del *heap* de TBGC, dado que
-utilizando CDGC con la opción ``min_free=0`` se obtiene una media del orden de
-los 80 segundos, bastante más alta que el tiempo obtenido para TBGC.
-
Sin embargo se observa un pequeño incremento del tiempo de ejecución al
introducir marcado preciso, y un incremento bastante más importante (de
alrededor del 30%) en el consumo máximo de memoria. Nuevamente, como pasa con
En el cuadro :vref:`t:sol-prec-mem-dil` se puede observar la diferencia de
memoria desperdiciada entre el modo conservativo y preciso.
-El pequeño incremento en el tiempo total de ejecución podría estar dado por la
-mayor probabilidad de tener *falsos punteros* debido al incremento del tamaño
-del *heap*; se recuerda que el *stack* y memoria estática se siguen marcado de
-forma conservativa, incluso en modo preciso.
-
-.. ftable:: t:sol-prec-mem-dil
+.. flt:: t:sol-prec-mem-dil
+ :type: table
+ :placement: b
- Memoria pedida y asignada para ``dil`` según modo de marcado.
+ Memoria pedida y asignada para ``dil`` según modo de marcado
Memoria pedida y asignada para ``dil`` según modo de marcado conservativo
o preciso (acumulativo durante toda la vida del programa).
Preciso 307.48 460.24 152.76 (33%)
============== ============== ============== =================
+El pequeño incremento en el tiempo total de ejecución podría estar dado por la
+mayor probabilidad de tener *falsos positivos* debido al incremento del tamaño
+del *heap*; se recuerda que el *stack* y memoria estática se siguen marcado de
+forma conservativa, incluso en modo preciso.
+
También se puede observar una gran disminución del tiempo total de ejecución
(cerca de un 60%, y más de un 200% comparado con TBGC) alrededor de la mitad)
al empezar a usar *eager allocation*, acompañado como es usual de una baja en