+A continuación se explica como provee el recolector actual de D_ los servicios
+básicos que debe proveer cualquier recolector, como se presentó en la sección
+:ref:`gc_intro_services`.
+
+Cabe aclarar que se presenta una versión simplificada del algoritmo, o más
+precisamente, de la implementación del algoritmo, ya que no se exponen en esta
+sección muchas optimizaciones que harían muy compleja la tarea de explicar
+como funciona conceptualmente. En la siguiente sección, :ref:`dgc_impl`, se
+darán más detalles sobre las optimizaciones importantes y diferencias con el
+algoritmo aquí presentado, junto con detalles sobre como se implementa la
+organización del *heap* que se explicó en la sección anterior.
+
+
+.. _dgc_algo_collect:
+
+Recolección
+^^^^^^^^^^^
+A grandes rasgos el algoritmo de recolección puede resumirse de las dos fases
+básicas de cualquier algoritmo de :ref:`marcado y barrido <gc_mark_sweep>`::
+
+ function collect() is
+ mark_phase()
+ sweep_phase()
+
+
+.. _dgc_algo_mark:
+
+Fase de marcado
+^^^^^^^^^^^^^^^
+Esta fase consiste de varios pasos, que pueden resumirse en el siguiente
+algoritmo::
+
+ function mark_phase() is
+ global more_to_scan = false
+ stop_the_world()
+ clear_mark_scan_bits()
+ mark_free_lists()
+ mark_static_data()
+ push_registers_into_stack()
+ thread_self.stack.end = get_stack_top()
+ mark_stacks()
+ pop_registers_from_stack()
+ mark_user_roots()
+ mark_heap()
+ start_the_world()
+
+La variable **global** ``more_to_scan`` indica al algoritmo iterativo cuando
+debe finalizar: la función ``mark_range()`` (que veremos más adelante) lo pone
+en ``true`` cuando una nueva celda debe ser visitada, por lo tanto la
+iteración se interrumpe cuando no hay más celdas por visitar.
+
+Las funciones ``stop_the_world()`` y ``start_the_world()`` pausan y reanudan
+todos los hilos respectivamente (salvo el actual). Al pausar los hilos además
+se guardan los registros del procesador en el *stack* y se guarda la posición
+actual del *stack* para que la fase de marcado pueda recorrerlos::
+
+ function stop_the_world() is
+ foreach thread in threads
+ if thread is thread_self
+ continue
+ thread.pause()
+ push_registers_into_stack()
+ thread.stack.end = get_stack_top()
+
+ function start_the_world() is
+ foreach thread in threads
+ if thread is thread_self
+ continue
+ pop_registers_from_stack()
+ thread.resume()
+
+La función ``clear_mark_scan_bits()`` se encarga de restablecer todos los
+atributos *mark* y *scan* de cada bloque del *heap*::
+
+ function clear_mark_scan_bits() is
+ foreach pool in heap
+ foreach page in pool
+ foreach block in page
+ block.mark = false
+ block.scan = false
+
+La función ``mark_free_lists()`` por su parte se encarga de activar el bit
+*mark* de todos los bloques de las listas de libres de manera de que la fase
+de marcado (que es iterativa y realiza varias pasadas sobre **todo** el
+*heap*, incluyendo las celdas libres) no visite las celdas libres perdiendo
+tiempo sin sentido y potencialmente manteniendo *vivas* celdas que en
+realidad son *basura* (falsos positivos)::
+
+ function mark_free_lists() is
+ foreach free_list in heap
+ foreach block in free_list
+ block.mark = true
+ block.free = true
+
+Notar que los bloques libres quedan entonces marcados aunque sean *basura* por
+definición. Para evitar que en la etapa de barrido se tomen estos bloques como
+celdas vivas, a todos los bloques en la lista de libres también se los marca
+con el bit *free*, así el barrido puede tomar como *basura* estos bloques
+aunque estén marcados.
+
+El *root set* está compuesto por el área de memoria estática (variables
+globales), los *stacks* de todos los hilos y los registros del procesador.
+Primero se marca el área de memoria estática de manera :ref:`conservativa
+<gc_conserv>` (es decir, tomando cada *word* como si fuera un puntero)::
+
+ function mark_static_data() is
+ mark_range(static_data.begin, static_data.end)
+
+Para poder tomar los registros como parte del *root set* primero se apilan
+en el *stack* a través de la función::
+
+ function push_registers_into_stack() is
+ foreach register in registers
+ push(register)
+
+Y luego se descartan (no es necesario ni correcto restablecer los valores ya
+que podrían tener nuevos valores) al sacarlos de la pila::
+
+ function pop_registers_from_stack() is
+ foreach register in reverse(registers)
+ pop()
+
+Una vez hecho esto, basta marcar (de forma conservativa) los *stacks* de todos
+los threads para terminar de marcar el *root set*::
+
+ function mark_stacks() is
+ foreach thread in threads
+ mark_range(thread.stack.begin, thread.stack.end)
+
+Dado que D_ soporta manejo de memoria manual al mismo tiempo que memoria
+automática, es posible que existan celdas de memoria que no estén en el *root
+set* convencional ni en el *heap* del recolector. Para evitar que se libere
+alguna celda a la cual todavía existen referencias desde memoria administrada
+por el usuario, éste debe informarle al recolector sobre la existencia de
+estas nuevas raíces. Es por esto que para concluir el marcado del *root set*
+completo se procede a marcar las raíces definidas por el usuario::
+
+ function mark_user_roots() is
+ foreach root_range in user_roots
+ mark_range(root_range.begin, root_range.end)
+
+El algoritmo de marcado no es recursivo sino iterativo por lo tanto al marcar
+una celda (o bloque) no se siguen sus *hijas*, solo se activa el bit de *scan*
+(a menos que la celda no contenga punteros, es decir, tenga el bit *noscan*)::
+
+ function mark_range(begin, end) is
+ pointer = begin
+ while pointer < end
+ [pool, page, block] = find_block(pointer)
+ if block is not null and block.mark is false
+ block.mark = true
+ if block.noscan is false
+ block.scan = true
+ global more_to_scan = true
+ pointer++
+
+Por lo tanto en este punto, tenemos todas las celdas inmediatamente
+alcanzables desde el *root set* marcadas y con el bit *scan* activado si la
+celda puede contener punteros. Por lo tanto solo resta marcar (nuevamente de
+forma conservativa) iterativamente todo el *heap* hasta que no hayan más
+celdas para visitar (con el bit *scan* activo)::
+
+ function mark_heap() is
+ while global more_to_scan
+ global more_to_scan = false
+ foreach pool in heap
+ foreach page in pool
+ if page.block_size <= PAGE // saltea FREE y CONTINUATION
+ foreach block in page
+ if block.scan is true
+ block.scan = false
+ if page.block_size is PAGE // objeto grande
+ begin = cast(byte*) page
+ end = find_big_object_end(pool, page)
+ mark_range(begin, end)
+ else // objeto pequeño
+ mark_range(block.begin, block.end)
+
+Aquí puede verse, con un poco de esfuerzo, la utilización de la
+:ref:`abstracción tricolor <gc_intro_tricolor>`: todas las celdas alcanzables
+desde el *root set* son pintadas de *gris* (tienen los bits *mark* y *scan*
+activados), excepto aquellas celdas atómicas (es decir, que se sabe que no
+tienen punteros) que son marcadas directamente de *negro*. Luego se van
+obteniendo celdas del conjunto de las *grises*, se las pinta de *negro* (es
+decir, se desactiva el bit *scan*) y se pintan todas sus *hijas* de *gris* (o
+*negro* directamente si no tienen punteros). Este procedimiento se repite
+mientras el conjunto de celdas *grises* no sea vacío (es decir, que
+``more_to_scan`` sea ``true``).
+
+A continuación se presenta la implementación de las funciones suplementarias
+utilizadas en la fase de marcado::
+
+ function find_big_object_end(pool, page) is
+ pool_end = cast(byte*) pool.pages + (PAGE_SIZE * pool.number_of_pages)
+ do
+ page = cast(byte*) page + PAGE_SIZE
+ while page.block_size is CONTINUATION and page < pool_end
+ return page
+
+ function find_block(pointer) is
+ foreach pool in heap
+ foreach page in pool
+ if page.block_size is PAGE
+ big_object_start = cast(byte*) page
+ big_object_end = find_big_object_end(pool, page)
+ if big_object_start <= pointer < big_object_end
+ return [pool, page, big_object_start]
+ else if page.bloc_size < PAGE
+ foreach block in page
+ block_start = cast(byte*) block
+ block_end = block_start + page.block_size
+ if block_start <= pointer < block_end
+ return [pool, page, block_start]
+ return [null, null, null]
+
+Cabe destacar que la función ``find_block()`` devuelve el *pool*, la página
+y el comienzo del bloque al que apunta el puntero, es decir, soporta punteros
+*interiores*.
+
+
+.. _dgc_algo_sweep:
+
+Fase de barrido
+^^^^^^^^^^^^^^^
+Esta fase es considerablemente más sencilla que el marcado; el algoritmo puede
+dividirse en dos pasos básicos::
+
+ function sweep_phase() is
+ sweep()
+ rebuild_free_lists()
+
+El barrido se realiza con una pasada por sobre todo el *heap* de la siguiente
+manera::
+
+ function sweep() is
+ foreach pool in heap
+ foreach page in pool
+ if page.block_size <= PAGE // saltea FREE y CONTINUATION
+ foreach block in page
+ if block.mark is false
+ if block.final is true
+ finalize(block)
+ block.free = true
+ block.final = false
+ block.noscan = false
+ if page.block_size is PAGE // objeto grande
+ free_big_object(pool, page)
+
+Como se observa, se recorre todo el *heap* en busca de bloques y páginas
+libres. Los bloques libres son marcados con el atributo ``free`` y las páginas
+libres son marcadas con el tamaño de bloque simbólico ``FREE``. Para los
+objetos grandes se marcan todas las páginas que utilizaban como ``FREE``::
+
+ function free_big_object(pool, page) is
+ pool_end = cast(byte*) pool.pages + (PAGE_SIZE * pool.number_of_pages)
+ do
+ page.block_size = FREE
+ page = cast(byte*) page + PAGE_SIZE
+ while page < pool_end and page.block_size is CONTINUATION
+
+Además, los bloques que tienen en atributo ``final`` son finalizados llamando
+a la función ``finalize()``. Esta función es un servicio que provee la
+biblioteca *runtime* y en última instancia llama al destructor del objeto
+almacenado en el bloque a liberar.
+
+Una vez marcados todos los bloques y páginas como libre, se procede
+a reconstruir las listas de libres. En el proceso buscan las páginas que
+tengan todos los bloques libres para marcar la página completa como libre (de
+manera que pueda utilizarse para albergar otro tamaño de bloque u objetos
+grandes de ser necesario)::
+
+ function rebuild_free_lists() is
+ foreach free_list in heap
+ free_list.clear()
+ foreach pool in heap
+ foreach page in pool
+ if page.block_size < PAGE // objetos pequeños
+ if is_page_free(page)
+ page.block_size = FREE
+ else
+ foreach block in page
+ if block.free is true
+ free_lists[page.block_size].link(block)
+
+Esta reorganización de listas libres además mejoran la localidad de
+referencia y previenen la fragmentación. La localidad de referencia se ve
+mejorada debido a que asignaciones de memoria próximas en el tiempo serán
+también próximas en espacio porque pertenecerán a la misma página (al menos si
+las asignaciones son todas del mismo tamaño). La fragmentación se minimiza por
+el mismo efecto, primero se asignarán todos los bloques de la misma página.
+
+A continuación se presenta la implementación de una de las funciones
+suplementarias de la fase de barrido::
+
+ function is_page_free(page) is
+ foreach block in page
+ if block.free is false
+ return false
+ return true
+
+Las demás funciones suplementarias pertenecen a la manipulación de listas
+libres que no son más que operaciones sobre una lista simplemente enlazada. En
+la sección :ref:`dgc_impl` se verá con más detalles como las implementa el
+recolector actual.
+
+
+.. _dgc_algo_alloc:
+
+Asignación de memoria
+^^^^^^^^^^^^^^^^^^^^^
+La asignación de memoria del recolector es relativamente compleja, excepto
+cuando se asigna un objeto pequeño y ya existe algún bloque con el tamaño
+preciso en la lista de libres. Para el resto de los casos la cantidad de
+trabajo que debe hacer el recolector para asignar la memoria es considerable.
+
+El algoritmo de asignación de memoria se puede resumir así::
+
+ function new(size, attrs) is
+ block_size = find_block_size(size)
+ if block_size < PAGE
+ block = new_small(block_size)
+ else
+ block = new_big(size)
+ if block is null
+ throw out_of_memory
+ if final in attrs
+ block.final = true
+ if noscan in attrs
+ block.noscan = true
+ return cast(void*) block
+
+La función ``find_block_size()`` sencillamente busca el tamaño de bloque se
+mejor se ajuste al tamaño solicitado (es decir, el bloque más pequeño lo
+suficientemente grande como para poder almacenar el tamaño solicitado). Una
+vez más el algoritmo distingue objetos grandes de pequeños. Los pequeños se
+asignan de las siguiente manera::
+
+ function new_small(block_size) is
+ block = find_block_with_size(block_size)
+ if block is null
+ collect()
+ block = find_block_with_size(block_size)
+ if block is null
+ new_pool()
+ block = find_block_with_size(block_size)
+ return block
+
+Se intenta reiteradas veces conseguir un bloque del tamaño correcto libre,
+realizando diferentes acciones si no se tiene éxito. Primero se intenta hacer
+una :ref:`recolección <dgc_algo_collect>` y si no se puede encontrar
+suficiente espacio luego de ella se intenta crear un nuevo *pool* de memoria
+pidiendo memoria al *low level allocator* (el sistema operativo generalmente).
+
+Para intentar buscar un bloque de memoria libre se realiza lo siguiente::
+
+ function find_block_with_size(block_size) is
+ block = free_lists[block_size].pop_first()
+ if block is null
+ assign_page(block_size)
+ block = free_lists[block_size].pop_first()
+ return block
+
+Si no se puede obtener un bloque de la lista de libres correspondiente, se
+busca asignar una página libre al tamaño de bloque deseado de forma de
+*alimentar* la lista de libres con dicho tamaño::
+
+ function assign_page(block_size) is
+ foreach pool in heap
+ foreach page in pool
+ if page.block_size is FREE
+ page.block_size = block_size
+ foreach block in page
+ free_lists[page.block_size].link(block)
+
+Cuando todo ello falla, el último recurso consiste en pedir memoria al sistema
+operativo, creando un nuevo *pool*::
+
+ function new_pool(number_of_pages = 1) is
+ pool = alloc(pool.sizeof)
+ if pool is null
+ return null
+ pool.number_of_pages = number_of_pages
+ pool.pages = alloc(number_of_pages * PAGE_SIZE)
+ if pool.pages is null
+ free(pool)
+ return null
+ heap.add(pool)
+ foreach page in pool
+ page.block_size = FREE
+ return pool
+
+Se recuerda que la función ``alloc()`` es un :ref:`servicio
+<gc_intro_services>` provisto por el *low level allocator* y en la
+implementación actual de D_ en general es el sistema operativo (aunque
+opcionalmente puede utilizarse la biblioteca estándar de C, que a su vez
+utiliza el sistema operativo).
+
+Cualquier error en estas funciones es propagado y en última instancia, cuando
+todo falla, la función ``new()`` termina lanzando una excepción indicando que
+se agotó la memoria.
+
+Si el tamaño de bloque necesario para cumplir con la asignación de memoria es
+de una página, entonces se utiliza otro algoritmo para alocar un objeto
+grande::
+
+ function new_big(size) is
+ number_of_pages = ceil(size / PAGE_SIZE)
+ pages = find_pages(number_of_pages)
+ if pages is null
+ collect()
+ pages = find_pages(number_of_pages)
+ if pages is null
+ minimize()
+ pool = new_pool(number_of_pages)
+ if pool is null
+ return null
+ pages = assign_pages(pool, number_of_pages)
+ pages[0].block_size = PAGE
+ foreach page in pages[1..end]
+ page.block_size = CONTINUATION
+ return pages[0]
+
+De forma similar a la asignación de objetos pequeños, se intenta encontrar una
+serie de páginas contiguas, dentro de un mismo *pool*, suficientes para
+almacenar el tamaño requerido y si esto falla, se realizan diferentes pasos
+y se vuelve a intentar. Puede observarse que, a diferencia de la asignación de
+objetos pequeños, si luego de la recolección no se pudo encontrar lugar
+suficiente, se trata de minimizar el uso de memoria física utilizando la
+siguiente función, que devuelve al *low level allocator* los *pools*
+completamente libres::
+
+ function minimize() is
+ for pool in heap
+ all_free = true
+ for page in pool
+ if page.block_size is not FREE
+ all_free = false
+ break
+ if all_free is true
+ free(pool.pages)
+ free(pool)
+ heap.remove(pool)
+
+Volviendo a la función ``new_big()``, para hallar una serie de páginas
+contiguas se utiliza el siguiente algoritmo::
+
+ function find_pages(number_of_pages) is
+ foreach pool in heap
+ pages = assign_pages(pool, number_of_pages)
+ if pages
+ return pages
+ return null
+
+Como se dijo, las páginas deben estar contenidas en un mismo *pool* (para
+tener la garantía de que sean contiguas), por lo tanto se busca *pool* por
+*pool* dicha cantidad de páginas libres consecutivas a través del siguiente
+algoritmo::
+
+ function assign_pages(pool, number_of_pages) is
+ pages_found = 0
+ first_page = null
+ foreach page in pool
+ if page.block_size is FREE
+ if pages_found is 0
+ pages_found = 1
+ first_page = page
+ else
+ pages_found = pages_found + 1
+ if pages_found is number_of_pages
+ return [first_page .. page]
+ else
+ pages_found = 0
+ first_page = null
+ return null
+
+Una vez más, cuando todo ello falla (incluso luego de una recolección), se
+intenta alocar un nuevo *pool*, esta vez con una cantidad de páginas
+suficientes como para almacenar el objeto grande y si esto falla el error se
+propaga hasta la función ``new()`` que lanza una excepción.
+
+
+.. _dgc_algo_free:
+
+Liberación de memoria
+^^^^^^^^^^^^^^^^^^^^^
+La liberación de la memoria asignada puede hacerse explícitamente. Esto
+saltea el mecanismo de recolección, y es utilizado para dar soporte a manejo
+explícito de memoria asignada en el *heap* del recolector. En general el
+usuario no debe utilizar liberación explícita, pero puede ser útil en casos
+muy particulares::
+
+ function delete(pointer) is
+ [pool, page, block_start] = find_block(pointer)
+ if block is not null
+ block.free = true
+ block.final = false
+ block.noscan = false
+ if page.block_size is PAGE // objeto grande
+ free_big_object(pool, page)
+ else // objeto pequeño
+ free_lists[page.block_size].link(block)
+
+Como se puede observar, si el objeto es pequeño se enlaza a la lista de libres
+correspondiente y si es grande se liberan todas las páginas asociadas a éste,
+de forma similar a la :ref:`fase de barrido <dgc_algo_sweep>`. A diferencia de
+ésta, no se finaliza el objeto (es decir, no se llama a su destructor).
+
+
+.. _dgc_algo_final:
+
+Finalización
+^^^^^^^^^^^^
+Al finalizar el programa, el recolector es finalizado también y lo que realiza
+actualmente, además de liberar la memoria propia del recolector, es realizar
+una recolección. Es decir, si hay objetos que son todavía alcanzables desde el
+*root set*, esos objetos no son finalizados (y por lo tanto sus destructores
+no son ejecutados).
+
+Como se ha visto, esto es perfectamente válido ya que D_ no garantiza que los
+objetos sean finalizados.
+
+
+
+.. _dgc_impl:
+
+Detalles de implementación
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Hay varias diferencias a nivel de implementación entre lo que se presentó en
+las secciones anteriores y como está implementado realmente el recolector
+actual. Con los conceptos e ideas principales del ya explicadas, se procede
+a ahondar con más detalle en como está construido el recolector y algunas de
+sus optimizaciones principales.
+
+Vale aclarar que el recolector de basura actual está implementado en D_.
+
+
+Estructuras de datos del recolector
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+El recolector está principalmente contenido en la estructura llamada ``Gcx``.
+Dicha estructura tiene los siguientes atributos (divididos en categorías para
+facilitar la comprensión):
+
+Raíces definidas por el usuario
+ *roots* (*nroots*, *rootdim*)
+ arreglo variable de punteros simples que son tomados como raíces
+ provistas por el usuario.
+
+ *ranges* (*nranges*, *rangedim*)
+ arreglo variable de rangos de memoria que deben ser revisados (de forma
+ conservativa) como raíces provistas por el usuario. Un rango es una
+ estructura con dos punteros: ``pbot`` y ``ptop``. Toda la memoria entre
+ estos dos punteros se toma, palabra por palabra, como una raíz del
+ recolector.
+
+Estado interno del recolector
+ *anychanges*
+ variable que indica si en la fase de marcado se encontraron nuevas
+ celdas con punteros que deban ser visitados. Otra forma de verlo es como
+ un indicador de si el conjunto de celdas *grises* está vacío luego de
+ una iteración de marcado (utilizando la :ref:`abstracción tricolor
+ <gc_intro_tricolor>`). Es análoga a la variable ``more_to_scan``
+ presentada en :ref:`dgc_algo_mark`.
+
+ *inited*
+ indica si el recolector fue inicializado.
+
+ *stackBottom*
+ puntero a la base del *stack* (asumiendo que el stack crece hacia arriba).
+ Se utiliza para saber por donde comenzar a visitar el *stack* de forma
+ conservativa, tomándolo con una raíz del recolector.
+
+ *Pools* (*pooltable*, *npools*)
+ arreglo variable de punteros a estructuras ``Pool`` (ver más adelante).
+ Este arreglo se mantiene siempre ordenado de menor a mayor según la
+ dirección de memoria de la primera página que almacena.
+
+ *bucket*
+ listas de libres. Es un arreglo de estructuras ``List`` utilizadas para
+ guardar la listas de libres de todos los tamaños de bloques posibles (ver
+ más adelante).
+
+Atributos que cambian el comportamiento
+ *noStack*
+ indica que no debe tomarse al *stack* como raíz del recolector. Esto es
+ muy poco seguro y no debería ser utilizado nunca, salvo casos
+ extremadamente excepcionales.
+
+ *log*
+ indica si se debe guardar un registro de la actividad del recolector. Es
+ utilizado principalmente para depuración.
+
+ *disabled*
+ indica que no se deben realizar recolecciones implícitamente. Si al
+ tratar de asignar memoria no se puede hallar celdas libres en el *heap*
+ del recolector, se pide más memoria al sistema operativo sin correr una
+ recolección para intentar recuperar espacio. Esto es particularmente
+ útil para secciones de un programa donde el rendimiento es crítico y no
+ se pueden tolerar grandes pausas como las que puede provocar el
+ recolector.
+
+Optimizaciones
+ *p_cache*, *size_cache*
+ obtener el tamaño de un bloque dado un puntero es una tarea costosa
+ y común. Para evitarla en casos donde se calcula de forma sucesiva el
+ tamaño del mismo bloque (como puede ocurrir al concatenar arreglos
+ dinámicos) se guarda el último calculado en estas variables a modo de
+ *caché*.
+
+ *minAddr*, *maxAddr*
+ punteros al principio y fin del *heap*. Pueden haber *huecos* entre
+ estos dos punteros que no pertenezcan al *heap* pero siempre se cumple
+ que si un puntero apunta al *heap* debe estar en este rango. Esto es
+ útil para hacer un cálculo rápido para descartar punteros que fueron
+ tomados de forma conservativa y en realidad no apuntan al *heap* (ver la
+ función ``find_block()`` en :ref:`dgc_algo_mark`).
+
+
+*Pools*
+^^^^^^^
+La primera diferencia es como está organizado el *heap*. Si bien la
+explicación presentada en la sección :ref:`dgc_org` es correcta, la forma en
+la que está implementado no es tan *naïve* como los algoritmos presentados en
+:ref:`dgc_algo` sugieren.
+
+El recolector guarda un arreglo variable de estructuras ``Pool``. Cabe
+destacar que para implementar el recolector no se pueden utilizar los arreglos
+dinámicos de D_ (ver sección :ref:`d_high_level`) dado que éstos utilizan de
+forma implícita el recolector de basura, por lo tanto todos los arreglos
+variables del recolector se implementan utilizando las funciones de
+C ``malloc()``, ``realloc()`` y ``free()`` directamente.