X-Git-Url: https://git.llucax.com/z.facultad/75.00/informe.git/blobdiff_plain/fab93f4ca29956078917a525e26060865105345e..refs/heads/master:/source/dgc.rst?ds=sidebyside diff --git a/source/dgc.rst b/source/dgc.rst index 4fbdf29..497e20e 100644 --- a/source/dgc.rst +++ b/source/dgc.rst @@ -1,31 +1,24 @@ -.. Describe más detalladamente los problemas actuales del recolector de - basura de D, sentando las bases para el análisis de los requerimientos - de recolección de basura en dicho lenguaje (se explica por qué las - particularidades descriptas en la sección anterior complican la - recolección de basura y cuales son las que más molestan). - ESTADO: TERMINADO, CORREGIDO - - .. _dgc: Recolección de basura en D ============================================================================ D_ propone un nuevo desafío en cuanto al diseño de un recolector de basura, -debido a la gran cantidad características que tiene y paradigmas que soporta. +debido a la gran cantidad de características que tiene y paradigmas que +soporta. D_ ya cuenta con un recolector que hace lo necesario para funcionar de forma -aceptable, pero su diseño e implementación son relativamente sencillas -comparadas con el :ref:`estado del arte ` de la recolección de basura +aceptable, pero su diseño e implementación son relativamente sencillos +comparados con el :ref:`estado del arte ` de la recolección de basura en general. Además la implementación actual presenta una serie de problemas que se evidencia en las quejas que regularmente la comunidad de usuarios de D_ menciona en el grupo de noticias. En esta sección se analizarán las necesidades particulares de D_ con respecto a la recolección de basura. También se analiza el diseño e implementación del -recolector actual y finalmente se presenta una recompilación de los -principales problemas que presenta. +recolector actual, presentando sus fortalezas y debilidades. Finalmente se +analiza la viabilidad de los diferentes algoritmos vistos en :ref:`gc_art`. @@ -60,11 +53,11 @@ memoria de éste. Esta característica es muy inusual en un recolector, a excepción de recolectores conservativos diseñados para C/C++ que tienen las mismas (o más) limitaciones. -El control sobre la alineación de memoria es otra complicación sobre el -recolector de basura, incluso aunque éste sea conservativo. Dado que tratar la -memoria de forma conservativa byte a byte sería impracticable (tanto por la -cantidad de falsos positivos que esto provocaría como por el impacto en el -rendimiento por el exceso de posibles punteros a revisar, además de lo +La posibilidad de controlar la alineación de memoria es otra complicación +sobre el recolector de basura, incluso aunque éste sea conservativo. Dado que +tratar la memoria de forma conservativa byte a byte sería impracticable (tanto +por la cantidad de *falsos positivos* que esto provocaría como por el impacto +en el rendimiento por el exceso de posibles punteros a revisar, además de lo ineficiente que es operar sobre memoria no alineada), en general el recolector asume que el usuario nunca va a tener la única referencia a un objeto en una estructura no alineada al tamaño de palabra. @@ -130,7 +123,7 @@ una función miembro llamada *destructor*, o ``~this()`` en D_). Esto significa que el recolector, al encontrar que no hay más referencias a un objeto, debe ejecutar el destructor. -La especificación dice: +La especificación dice [DWDE]_: The garbage collector is not guaranteed to run the destructor for all unreferenced objects. Furthermore, the order in which the garbage collector @@ -142,7 +135,7 @@ La especificación dice: Afortunadamente el orden de finalización no está definido, ya que esto sería extremadamente difícil de proveer por un recolector (si no imposible). Esto -significa que si bien se ejecutan el destructores de los objetos que dejan de +significa que si bien se ejecutan los destructores de los objetos que dejan de ser alcanzables desde el *root set*, no se define en que orden se hace, y por lo tanto un objeto no puede acceder a sus atributos que sean referencias a otros objetos en un destructor. @@ -155,17 +148,17 @@ los atributos que sean referencias a otros objetos creados con ``scope`` si el orden en que fueron creados (y por lo tanto en que serán destruidos) se lo permite. -Sin embargo no hay forma actualmente de saber dentro de un destructor si este +Sin embargo no hay forma actualmente de saber dentro de un destructor si éste fue llamado determinísticamente o no, por lo tanto es virtualmente imposible hacer uso de esta distinción, a menos que una clase sea declarada para ser creada solamente utilizando la palabra reservada ``scope``. -Cabe aclarar que estrictamente hablando, según la especificación de D_, el +Cabe aclarar que, estrictamente hablando y según la especificación de D_, el recolector no debe garantizar la finalización de objetos bajo ninguna circunstancia, es decir, el recolector podría no llamar a ningún destructor. -Sin embargo esto es probablemente un problema de redacción vaga y dadas las +Sin embargo esto es probablemente una vaguedad en la redacción y dadas las garantías que provee la implementación actual la comunidad de D_ cuenta con -ellas porque además son deseables (y sencillas de implementar). +ellas. @@ -176,15 +169,14 @@ Recolector de basura actual de D Como paso básico fundamental para poder mejorar el recolector de basura de D_, primero hay que entender la implementación actual, de forma de conocer sus -puntos fuertes, problemas y limitaciones, de manera tal de poder analizar -formas de mejorarlo. +puntos fuertes, problemas y limitaciones. -Como se mencionó en la sección :ref:`d_lang`, en D_ hay dos bibliotecas base -para soportar el lenguaje (*runtimes*): Phobos_ y Tango_. La primera es la +Como se mencionó en la sección :ref:`d_lang`, hay dos bibliotecas base para +soportar el lenguaje (*runtimes*): Phobos_ y Tango_. La primera es la biblioteca estándar de D_, la segunda un proyecto más abierto y dinámico que -surgió como alternativa a Phobos_ debido a que Phobos_ es muy descuidada y que -era muy difícil impulsar cambios en ella. Ahora Phobos_ tiene el agravante de -estar *congelada* en su versión 1 (solo se realizan correcciones de errores). +surgió como alternativa a Phobos_ dado que estaba muy descuidada y que era muy +difícil impulsar cambios en ella. Ahora Phobos_ tiene el agravante de estar +*congelada* en su versión 1 (solo se realizan correcciones de errores). Dado que Tango_ está mejor organizada, su desarrollo es más abierto (aceptan cambios y mejoras) y que hay una mayor disponibilidad de programas @@ -238,9 +230,9 @@ dicho objeto. para indicar la continuación de un objeto grande (que ocupan más de una página). -.. fig:: fig:dgc-org +.. flt:: fig:dgc-org - Organización del *heap* del recolector de basura actual de D. + Organización del *heap* del recolector de basura actual de D Organización del *heap*. En este ejemplo todos los *pools* tienen 2 páginas excepto el *pool* 2 que tiene una sola. El tamaño de bloque que almacena @@ -296,17 +288,17 @@ dicho objeto. | +----------+ +----------+ +----------+ +----------+ | +----------------------------------------------------------------------+ -Cada página de un *pool* puede estar asignada a contener bloques de un tamaño -específico o puede estar libre. A su vez, cada bloque puede estar ocupado por -una celda o estar libre. Los bloques libres de un tamaño específico (a -excepción de aquellos bloques que ocupen una página entera) además forman -parte de una :ref:`lista de libres ` (ver figura -:vref:`fig:dgc-free-list`). Esto permite asignar objetos relativamente -pequeños de forma bastante eficiente. +Cada página de un *pool* puede tener asignado un tamaño de bloque específico +o puede estar libre. A su vez, cada bloque puede estar ocupado por una celda +o estar libre. Los bloques libres de un tamaño específico (a excepción de +aquellos bloques que ocupen una página entera) además forman parte de una +:ref:`lista de libres ` (ver figura :vref:`fig:dgc-free-list`). +Esto permite asignar objetos relativamente pequeños de forma bastante +eficiente. -.. fig:: fig:dgc-free-list +.. flt:: fig:dgc-free-list - Ejemplo de listas de libres. + Ejemplo de listas de libres .. digraph:: dgc_free_list @@ -338,11 +330,11 @@ Atributos de *pool* Cada *pool* tiene la siguiente información asociada: *number_of_pages* - cantidad de páginas que tiene. Esta cantidad es fija en toda la vida de un + Cantidad de páginas que tiene. Esta cantidad es fija en toda la vida de un *pool*. *pages* - bloque de memoria contiguo de tamaño ``PAGE_SIZE * number_of_pages`` + Bloque de memoria contiguo de tamaño ``PAGE_SIZE * number_of_pages`` (siendo ``PAGE_SIZE`` el tamaño de página, que normalmente son 4096 bytes). @@ -357,17 +349,17 @@ Una página siempre almacena bloques del mismo tamaño, que pueden ser 16, 32, significado especial: ``FREE`` - indica que la página está completamente libre y que la página está - disponible para albergar cualquier tamaño de bloque que sea necesario (pero - una vez que se le asignó un nuevo tamaño de bloque ya no puede ser cambiado - hasta que la página vuelva a liberarse por completo). + Indica que la página está completamente libre y disponible para albergar + cualquier tamaño de bloque que sea necesario (pero una vez que se le asignó + un nuevo tamaño de bloque ya no puede ser cambiado hasta que la página + vuelva a liberarse por completo). ``CONTINUATION`` - indica que esta página es la continuación de un objeto grande (es decir, - que ocupa una o más páginas). Luego se presentan más detalles sobre objetos + Indica que esta página es la continuación de un objeto grande (es decir, + que ocupa dos o más páginas). Luego se presentan más detalles sobre objetos grandes. -Las páginas con esto tamaños de bloque especiales (conceptualmente) no +Las páginas con estos tamaños de bloque especiales conceptualmente no contienen bloques. @@ -376,29 +368,29 @@ Atributos de bloque Cada bloque tiene asociados varios atributos: *mark* - utilizado en la fase de :ref:`marcado `, indica que un nodo + Utilizado en la fase de :ref:`marcado `, indica que un nodo ya fue visitado (serían las celdas *negras* en la :ref:`abstracción tricolor `). *scan* - utilizado también en la fase de :ref:`marcado `, indica que + Utilizado también en la fase de :ref:`marcado `, indica que una celda visitada todavía tiene *hijas* sin marcar (serían las celdas *grises* en la :ref:`abstracción tricolor `). *free* - indica que el bloque está libre (no está siendo utilizado por ningún objeto + Indica que el bloque está libre (no está siendo utilizado por ningún objeto *vivo*). Esto es necesario solo por la forma en la que realiza el :ref:`marcado ` y :ref:`barrido ` en el - :ref:`algoritmo actual ` (las celdas con el atributo este - atributo son tomadas como *basura* aunque estén marcadas con *mark*). + :ref:`algoritmo actual ` (las celdas con este atributo son + tomadas como *basura* aunque estén marcadas con *mark*). *final* - indica que el bloque contiene un objeto que tiene un destructor (que debe + Indica que el bloque contiene un objeto que tiene un destructor (que debe ser llamado cuando la celda pasa de *viva* a *basura*). *noscan* - indica que el bloque contiene un objeto que no tiene punteros y por lo - tanto no debe ser marcado de forma conservativa (no tiene *hijas*). + Indica que el bloque contiene un objeto que no tiene punteros y por lo + tanto no debe ser escaneado (no tiene *hijas*). Objetos grandes @@ -451,7 +443,7 @@ básicas de cualquier algoritmo de :ref:`marcado y barrido `:: Fase de marcado ^^^^^^^^^^^^^^^ -Esta fase consiste de varios pasos, que pueden resumirse en el siguiente +Esta fase consiste de varios pasos, que pueden describirse con el siguiente algoritmo:: function mark_phase() is @@ -460,8 +452,10 @@ algoritmo:: clear_mark_scan_bits() mark_free_lists() mark_static_data() - push_registers_into_stack() + push_registers_into_stack(thread_self) + thread_self.stack.end = get_stack_top() mark_stacks() + pop_registers_from_stack(thread_self) mark_user_roots() mark_heap() start_the_world() @@ -471,17 +465,32 @@ debe finalizar: la función ``mark_range()`` (que veremos más adelante) lo pone en ``true`` cuando una nueva celda debe ser visitada, por lo tanto la iteración se interrumpe cuando no hay más celdas por visitar. -Las funciones ``stop_the_world()`` y ``start_the_world()`` sencillamente -pausan y reanudan todos los hilos respectivamente:: +Las funciones ``stop_the_world()`` y ``start_the_world()`` pausan y reanudan +todos los hilos respectivamente (salvo el actual). Al pausar los hilos además +se apilan los registros del procesador en el *stack* y se guarda la posición +actual del *stack* para que la fase de marcado pueda recorrerlos [#dgcstw]_:: function stop_the_world() is foreach thread in threads + if thread is thread_self + continue thread.pause() + push_registers_into_stack(thread) + thread.stack.end = get_stack_top() function start_the_world() is - foreach thread in threads + foreach thread in reversed(threads) + if thread is thread_self + continue + pop_registers_from_stack(thread) thread.resume() +.. [#dgcstw] El procedimiento para apilar y desapilar los registros en el + *stack* se realiza en realidad utilizando las señales ``SIGUSR1`` + y ``SIGUSR2`` (respectivamente). Es el manejador de la señal el que en + realidad apila y desapila los registros y guarda el puntero al *stack*. Se + omiten los detalles para simplificar la explicación del algoritmo. + La función ``clear_mark_scan_bits()`` se encarga de restablecer todos los atributos *mark* y *scan* de cada bloque del *heap*:: @@ -497,10 +506,10 @@ La función ``mark_free_lists()`` por su parte se encarga de activar el bit de marcado (que es iterativa y realiza varias pasadas sobre **todo** el *heap*, incluyendo las celdas libres) no visite las celdas libres perdiendo tiempo sin sentido y potencialmente manteniendo *vivas* celdas que en -realidad son *basura* (falsos positivos):: +realidad son *basura* (*falsos positivos*):: function mark_free_lists() is - foreach free_list in heap + foreach free_list in free_lists foreach block in free_list block.mark = true block.free = true @@ -522,10 +531,18 @@ Primero se marca el área de memoria estática de manera :ref:`conservativa Para poder tomar los registros como parte del *root set* primero se apilan en el *stack* a través de la función:: - function push_registers_into_stack() is - foreach register in registers + function push_registers_into_stack(thread) is + foreach register in thread.registers push(register) +Y luego, al reiniciar los hilos cuando se termina de marcar, se descartan +sacándolos de la pila (no es necesario ni correcto restablecer los valores ya +que podrían tener nuevos valores):: + + function pop_registers_from_stack(thread) is + foreach register in reverse(thread.registers) + pop() + Una vez hecho esto, basta marcar (de forma conservativa) los *stacks* de todos los threads para terminar de marcar el *root set*:: @@ -611,7 +628,7 @@ utilizadas en la fase de marcado:: big_object_end = find_big_object_end(pool, page) if big_object_start <= pointer < big_object_end return [pool, page, big_object_start] - else if page.bloc_size < PAGE + else if page.block_size < PAGE foreach block in page block_start = cast(byte*) block block_end = block_start + page.block_size @@ -660,23 +677,23 @@ objetos grandes se marcan todas las páginas que utilizaban como ``FREE``:: function free_big_object(pool, page) is pool_end = cast(byte*) pool.pages + (PAGE_SIZE * pool.number_of_pages) do - page = cast(byte*) page + PAGE_SIZE page.block_size = FREE - while page.block_size is CONTINUATION and page < pool_end + page = cast(byte*) page + PAGE_SIZE + while page < pool_end and page.block_size is CONTINUATION Además, los bloques que tienen en atributo ``final`` son finalizados llamando a la función ``finalize()``. Esta función es un servicio que provee la biblioteca *runtime* y en última instancia llama al destructor del objeto almacenado en el bloque a liberar. -Una vez marcados todos los bloques y páginas como libre, se procede -a reconstruir las listas de libres. En el proceso buscan las páginas que -tengan todos los bloques libres para marcar la página completa como libre (de -manera que pueda utilizarse para albergar otro tamaño de bloque u objetos -grandes de ser necesario):: +Una vez marcados todos los bloques y páginas con ``free``, se procede +a reconstruir las listas de libres. Como parte de este proceso se buscan las +páginas que tengan todos los bloques libres para marcar la página completa +como libre (de manera que pueda utilizarse para albergar otro tamaño de bloque +u objetos grandes de ser necesario):: function rebuild_free_lists() is - foreach free_list in heap + foreach free_list in free_lists free_list.clear() foreach pool in heap foreach page in pool @@ -741,16 +758,15 @@ suficientemente grande como para poder almacenar el tamaño solicitado). Una vez más el algoritmo distingue objetos grandes de pequeños. Los pequeños se asignan de las siguiente manera:: - function new_small(block_size) is + function new_small(block_size) is + block = find_block_with_size(block_size) + if block is null + collect() block = find_block_with_size(block_size) if block is null - collect() + new_pool() block = find_block_with_size(block_size) - if block is null - new_pool() - block = find_block_with_size(block_size) - return null - return block + return block Se intenta reiteradas veces conseguir un bloque del tamaño correcto libre, realizando diferentes acciones si no se tiene éxito. Primero se intenta hacer @@ -760,39 +776,42 @@ pidiendo memoria al *low level allocator* (el sistema operativo generalmente). Para intentar buscar un bloque de memoria libre se realiza lo siguiente:: - function find_block_with_size(block_size) is + function find_block_with_size(block_size) is + block = free_lists[block_size].pop_first() + if block is null + assign_page(block_size) block = free_lists[block_size].pop_first() - if block is null - assign_page(block_size) - block = free_lists[block_size].pop_first() - return block + return block -Si no se puede obtener un bloque de la lista de libres correspondiente, se -busca asignar una página libre al tamaño de bloque deseado de forma de -*alimentar* la lista de libres con dicho tamaño:: +Donde ``pop_first()`` retorna ``null`` si la lista estaba vacía. Si no se +puede obtener un bloque de la lista de libres correspondiente, se busca +asignar una página libre al tamaño de bloque deseado de forma de *alimentar* +la lista de libres con dicho tamaño:: - function assign_page(block_size) is - foreach pool in heap - foreach page in pool - if page.block_size is FREE - page.block_size = block_size - foreach block in page - free_lists[page.block_size].link(block) + function assign_page(block_size) is + foreach pool in heap + foreach page in pool + if page.block_size is FREE + page.block_size = block_size + foreach block in page + free_lists[page.block_size].link(block) Cuando todo ello falla, el último recurso consiste en pedir memoria al sistema operativo, creando un nuevo *pool*:: - funciones new_pool(number_of_pages = 1) is - pool = alloc(pool.sizeof) - if pool is null - return null - pool.number_of_pages = number_of_pages - pool.pages = alloc(number_of_pages * PAGE_SIZE) - if pool.pages is null - free(pool) - return null - heap.add(pool) - return pool + function new_pool(number_of_pages = 1) is + pool = alloc(pool.sizeof) + if pool is null + return null + pool.number_of_pages = number_of_pages + pool.pages = alloc(number_of_pages * PAGE_SIZE) + if pool.pages is null + free(pool) + return null + heap.add(pool) + foreach page in pool + page.block_size = FREE + return pool Se recuerda que la función ``alloc()`` es un :ref:`servicio ` provisto por el *low level allocator* y en la @@ -805,25 +824,25 @@ todo falla, la función ``new()`` termina lanzando una excepción indicando que se agotó la memoria. Si el tamaño de bloque necesario para cumplir con la asignación de memoria es -de una página, entonces se utiliza otro algoritmo para alocar un objeto +de una o más páginas, entonces se utiliza otro algoritmo para alocar un objeto grande:: - function new_big(size) is - number_of_pages = ceil(size / PAGE_SIZE) + function new_big(size) is + number_of_pages = ceil(size / PAGE_SIZE) + pages = find_pages(number_of_pages) + if pages is null + collect() pages = find_pages(number_of_pages) if pages is null - collect() - pages = find_pages(number_of_pages) - if pages is null - minimize() - pool = new_pool(number_of_pages) - if pool is null - return null - pages = assign_pages(pool, number_of_pages) - pages[0].block_size = PAGE - foreach page in pages[1..end] - page.block_size = CONTINUATION - return pages[0] + minimize() + pool = new_pool(number_of_pages) + if pool is null + return null + pages = assign_pages(pool, number_of_pages) + pages[0].block_size = PAGE + foreach page in pages[1..end] + page.block_size = CONTINUATION + return pages[0] De forma similar a la asignación de objetos pequeños, se intenta encontrar una serie de páginas contiguas, dentro de un mismo *pool*, suficientes para @@ -835,9 +854,9 @@ siguiente función, que devuelve al *low level allocator* los *pools* completamente libres:: function minimize() is - for pool in heap + foreach pool in heap all_free = true - for page in pool + foreach page in pool if page.block_size is not FREE all_free = false break @@ -849,34 +868,34 @@ completamente libres:: Volviendo a la función ``new_big()``, para hallar una serie de páginas contiguas se utiliza el siguiente algoritmo:: - function find_pages(number_of_pages) is - foreach pool in heap - pages = assign_pages(pool, number_of_pages) - if pages - return pages - return null + function find_pages(number_of_pages) is + foreach pool in heap + pages = assign_pages(pool, number_of_pages) + if pages + return pages + return null Como se dijo, las páginas deben estar contenidas en un mismo *pool* (para tener la garantía de que sean contiguas), por lo tanto se busca *pool* por *pool* dicha cantidad de páginas libres consecutivas a través del siguiente algoritmo:: - function assign_pages(pool, number_of_pages) is - pages_found = 0 - first_page = null - foreach page in pool - if page.block_size is FREE - if pages_found is 0 - pages_found = 1 - first_page = page - else - pages_found = pages_found + 1 - if pages_found is number_of_pages - return [first_page .. page] + function assign_pages(pool, number_of_pages) is + pages_found = 0 + first_page = null + foreach page in pool + if page.block_size is FREE + if pages_found is 0 + pages_found = 1 + first_page = page else - pages_found = 0 - first_page = null - return null + pages_found = pages_found + 1 + if pages_found is number_of_pages + return [first_page .. page] + else + pages_found = 0 + first_page = null + return null Una vez más, cuando todo ello falla (incluso luego de una recolección), se intenta alocar un nuevo *pool*, esta vez con una cantidad de páginas @@ -932,10 +951,10 @@ Detalles de implementación ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Hay varias diferencias a nivel de implementación entre lo que se presentó en -las secciones anteriores y como está implementado realmente el recolector -actual. Con los conceptos e ideas principales del ya explicadas, se procede -a ahondar con más detalle en como está construido el recolector y algunas de -sus optimizaciones principales. +las secciones anteriores y como está escrito realmente el recolector actual. +Con los conceptos e ideas principales ya explicadas, se procede a ahondar con +más detalle en como está construido el recolector y algunas de sus +optimizaciones principales. Vale aclarar que el recolector de basura actual está implementado en D_. @@ -948,11 +967,11 @@ facilitar la comprensión): Raíces definidas por el usuario *roots* (*nroots*, *rootdim*) - arreglo variable de punteros simples que son tomados como raíces + Arreglo variable de punteros simples que son tomados como raíces provistas por el usuario. *ranges* (*nranges*, *rangedim*) - arreglo variable de rangos de memoria que deben ser revisados (de forma + Arreglo variable de rangos de memoria que deben ser revisados (de forma conservativa) como raíces provistas por el usuario. Un rango es una estructura con dos punteros: ``pbot`` y ``ptop``. Toda la memoria entre estos dos punteros se toma, palabra por palabra, como una raíz del @@ -960,43 +979,43 @@ Raíces definidas por el usuario Estado interno del recolector *anychanges* - variable que indica si en la fase de marcado se encontraron nuevas + Variable que indica si en la fase de marcado se encontraron nuevas celdas con punteros que deban ser visitados. Otra forma de verlo es como un indicador de si el conjunto de celdas *grises* está vacío luego de una iteración de marcado (utilizando la :ref:`abstracción tricolor `). Es análoga a la variable ``more_to_scan`` presentada en :ref:`dgc_algo_mark`. - *inited* - indica si el recolector fue inicializado. + *inited* (sic) + Indica si el recolector fue inicializado. *stackBottom* - puntero a la base del *stack* (asumiendo que el stack crece hacia arriba). + Puntero a la base del *stack* (asumiendo que el stack crece hacia arriba). Se utiliza para saber por donde comenzar a visitar el *stack* de forma conservativa, tomándolo con una raíz del recolector. *Pools* (*pooltable*, *npools*) - arreglo variable de punteros a estructuras ``Pool`` (ver más adelante). + Arreglo variable de punteros a estructuras ``Pool`` (ver más adelante). Este arreglo se mantiene siempre ordenado de menor a mayor según la dirección de memoria de la primera página que almacena. *bucket* - listas de libres. Es un arreglo de estructuras ``List`` utilizadas para + Listas de libres. Es un arreglo de estructuras ``List`` utilizadas para guardar la listas de libres de todos los tamaños de bloques posibles (ver más adelante). Atributos que cambian el comportamiento *noStack* - indica que no debe tomarse al *stack* como raíz del recolector. Esto es + Indica que no debe tomarse al *stack* como raíz del recolector. Esto es muy poco seguro y no debería ser utilizado nunca, salvo casos extremadamente excepcionales. *log* - indica si se debe guardar un registro de la actividad del recolector. Es + Indica si se debe guardar un registro de la actividad del recolector. Es utilizado principalmente para depuración. *disabled* - indica que no se deben realizar recolecciones implícitamente. Si al + Indica que no se deben realizar recolecciones implícitamente. Si al tratar de asignar memoria no se puede hallar celdas libres en el *heap* del recolector, se pide más memoria al sistema operativo sin correr una recolección para intentar recuperar espacio. Esto es particularmente @@ -1006,14 +1025,14 @@ Atributos que cambian el comportamiento Optimizaciones *p_cache*, *size_cache* - obtener el tamaño de un bloque dado un puntero es una tarea costosa - y común. Para evitarla en casos donde se calcula de forma sucesiva el - tamaño del mismo bloque (como puede ocurrir al concatenar arreglos - dinámicos) se guarda el último calculado en estas variables a modo de - *caché*. + Caché del tamaño de bloque para un puntero dado. Obtener el tamaño de un + bloque es una tarea costosa y común. Para evitarla en casos donde se + calcula de forma sucesiva el tamaño del mismo bloque (como puede ocurrir + al concatenar arreglos dinámicos) se guarda en un caché (de un solo + elemento) el último valor calculado. *minAddr*, *maxAddr* - punteros al principio y fin del *heap*. Pueden haber *huecos* entre + Punteros al principio y fin del *heap*. Pueden haber *huecos* entre estos dos punteros que no pertenezcan al *heap* pero siempre se cumple que si un puntero apunta al *heap* debe estar en este rango. Esto es útil para hacer un cálculo rápido para descartar punteros que fueron @@ -1033,67 +1052,68 @@ destacar que para implementar el recolector no se pueden utilizar los arreglos dinámicos de D_ (ver sección :ref:`d_high_level`) dado que éstos utilizan de forma implícita el recolector de basura, por lo tanto todos los arreglos variables del recolector se implementan utilizando las funciones de -C ``malloc()``, ``realloc()`` y ``free()`` directamente. +C :manpage:`malloc(3)`, :manpage:`realloc(3)` y :manpage:`free(3)` +directamente. La estructura ``Pool`` está compuesta por los siguientes atributos (ver figura :vref:`fig:dgc-pool`): +.. flt:: fig:dgc-pool + + Vista gráfica de la estructura de un *pool* de memoria + + .. aafig:: + :scale: 120 + + /--- "baseAddr" "ncommitted = i" "topAddr" ---\ + | V | + |/ |/ |/ + +---- "committed" -----+------- "no committed" ----------+ + /| /| /| + V V V + +--------+--------+-----+--------+-----+-------------------+ + páginas | 0 | 0 | ... | i | ... | "npages - 1" | + +--------+--------+-----+--------+-----+-------------------+ + A A A A A A + | | | | | | + +--------+--------+-----+--------+-----+-------------------+ + pagetable | Bins 0 | Bins 1 | ... | Bins i | ... | "Bins (npages-1)" | + +--------+--------+-----+--------+-----+-------------------+ + *baseAddr* y *topAddr* - punteros al comienzo y fin de la memoria que almacena todas las páginas del + Punteros al comienzo y fin de la memoria que almacena todas las páginas del *pool* (*baseAddr* es análogo al atributo *pages* utilizado en las secciones anteriores para mayor claridad). *mark*, *scan*, *freebits*, *finals*, *noscan* - conjunto de bits (*bitsets*) para almacenar los indicadores descriptos en + Conjuntos de bits (*bitsets*) para almacenar los indicadores descriptos en :ref:`dgc_org` para todos los bloques de todas las páginas del *pool*. *freebits* es análogo a *free* y *finals* a *final* en los atributos descriptos en las secciones anteriores. *npages* - cantidad de páginas que contiene este *pool* (fue nombrado + Cantidad de páginas que contiene este *pool* (fue nombrado *number_of_pages* en las secciones anteriores para mayor claridad). *ncommitted* - cantidad de páginas *encomendadas* al sistema operativo (*committed* en + Cantidad de páginas *encomendadas* al sistema operativo (*committed* en inglés). Este atributo no se mencionó anteriormente porque el manejo de páginas encomendadas le agrega una complejidad bastante notable al recolector y es solo una optimización para un sistema operativo en particular (Microsoft Windows). *pagetable* - arreglo de indicadores de tamaño de bloque de cada página de este *pool*. + Arreglo de indicadores de tamaño de bloque de cada página de este *pool*. Los indicadores válidos son ``B_16`` a ``B_2048`` (pasando por los valores posibles de bloque mencionados anteriormente, todos con el prefijo "``B_``"), ``B_PAGE``, ``B_PAGEPLUS`` (análogo a ``CONTINUATION``), ``B_UNCOMMITTED`` (valor que tienen las páginas que no fueron encomendadas aún) y ``B_FREE``. -.. fig:: fig:dgc-pool - - Vista gráfica de la estructura de un *pool* de memoria. - - .. aafig:: - :scale: 120 - - /--- "baseAddr" "ncommitted = i" "topAddr" ---\ - | V | - |/ |/ |/ - +---- "committed" -----+------- "no committed" ----------+ - /| /| /| - V V V - +--------+--------+-----+--------+-----+-------------------+ - páginas | 0 | 0 | ... | i | ... | "npages - 1" | - +--------+--------+-----+--------+-----+-------------------+ - A A A A A A - | | | | | | - +--------+--------+-----+--------+-----+-------------------+ - pagetable | Bins 0 | Bins 1 | ... | Bins i | ... | "Bins (npages-1)" | - +--------+--------+-----+--------+-----+-------------------+ - Como se observa, además de la información particular del *pool* se almacena toda la información de páginas y bloques enteramente en el *pool* también. -Esto simplifica el manejo de que lo es memoria *pura* del *heap*, ya que queda +Esto simplifica el manejo de lo que es memoria *pura* del *heap*, ya que queda una gran porción continua de memoria sin estar intercalada con meta-información del recolector. @@ -1114,7 +1134,7 @@ no predomina un tamaño de bloque pequeño. Listas de libres ^^^^^^^^^^^^^^^^ Las listas de libres se almacenan en el recolector como un arreglo de -estructuras ``Lista``, que se compone solamente de un atributo ``List* next`` +estructuras ``List``, que se compone solamente de un atributo ``List* next`` (es decir, un puntero al siguiente). Entonces cada elemento de ese arreglo es un puntero al primer elemento de la lista en particular. @@ -1129,7 +1149,7 @@ Algoritmos ^^^^^^^^^^ Los algoritmos en la implementación real son considerablemente menos modulares que los presentados en la sección :ref:`dgc_algo`. Por ejemplo, la función -``collect()`` es una gran función de 300 líneas de código. +``collect()`` es una gran función de 300 líneas de código fuente. A continuación se resumen las funciones principales, separadas en categorías para facilitar la comprensión. Los siguientes son métodos de la estructura @@ -1137,33 +1157,33 @@ para facilitar la comprensión. Los siguientes son métodos de la estructura Inicialización y terminación *initialize()* - inicializa las estructuras internas del recolector para que pueda ser + Inicializa las estructuras internas del recolector para que pueda ser utilizado. Esta función la llama la biblioteca *runtime* antes de que el programa comience a correr. *Dtor()* - libera todas las estructuras que utiliza el recolector. + Libera todas las estructuras que utiliza el recolector. Manipulación de raíces definidas por el usuario *addRoot(p)*, *removeRoot(p)*, *rootIter(dg)* - agrega, remueve e itera sobre las raíces simples definidas por el + Agrega, remueve e itera sobre las raíces simples definidas por el usuario. *addRange(pbot, ptop)*, *remove range(pbot)*, *rangeIter(dg)* - agrega, remueve e itera sobre los rangos de raíces definidas por el + Agrega, remueve e itera sobre los rangos de raíces definidas por el usuario. -Manipulación de indicadores +Manipulación de bits indicadores *getBits(pool, biti)* - obtiene los indicadores especificados para el bloque de índice ``biti`` + Obtiene los indicadores especificados para el bloque de índice ``biti`` en el *pool* ``pool``. *setBits(pool, biti, mask)* - establece los indicadores especificados en ``mask`` para el bloque de + Establece los indicadores especificados en ``mask`` para el bloque de índice ``biti`` en el *pool* ``pool``. *clrBits(pool, biti, mask)* - limpia los indicadores especificados en ``mask`` para el bloque de + Limpia los indicadores especificados en ``mask`` para el bloque de índice ``biti`` en el *pool* ``pool``. Cada bloque (*bin* en la terminología de la implementación del recolector) @@ -1175,15 +1195,15 @@ Manipulación de indicadores compuesta por la conjunción de los siguientes valores: *FINALIZE* - el objeto almacenado en el bloque tiene un destructor (indicador + El objeto almacenado en el bloque tiene un destructor (indicador *finals*). *NO_SCAN* - el objeto almacenado en el bloque no contiene punteros (indicador + El objeto almacenado en el bloque no contiene punteros (indicador *noscan*). *NO_MOVE* - el objeto almacenado en el bloque no debe ser movido [#dgcmove]_. + El objeto almacenado en el bloque no debe ser movido [#dgcmove]_. .. [#dgcmove] Si bien el recolector actual no tiene la capacidad de mover objetos, la interfaz del recolector hacer que sea posible una @@ -1193,38 +1213,38 @@ Manipulación de indicadores Búsquedas *findPool(p)* - busca el *pool* al que pertenece el objeto apuntado por ``p``. + Busca el *pool* al que pertenece el objeto apuntado por ``p``. *findBase(p)* - busca la dirección base (el inicio) del bloque apuntado por ``p`` + Busca la dirección base (el inicio) del bloque apuntado por ``p`` (``find_block()`` según la sección :ref:`dgc_algo_mark`). *findSize(p)* - busca el tamaño del bloque apuntado por ``p``. + Busca el tamaño del bloque apuntado por ``p``. *getInfo(p)* - obtiene información sobre el bloque apuntado por ``p``. Dicha + Obtiene información sobre el bloque apuntado por ``p``. Dicha información se retorna en una estructura ``BlkInfo`` que contiene los siguientes atributos: ``base`` (dirección del inicio del bloque), ``size`` (tamaño del bloque) y ``attr`` (atributos o indicadores del bloque, los que se pueden obtener con ``getBits()``). *findBin(size)* - calcula el tamaño de bloque más pequeño que pueda contener un objeto de + Calcula el tamaño de bloque más pequeño que pueda contener un objeto de tamaño ``size`` (``find_block_size()`` según lo visto en :ref:`dgc_algo_alloc`). Asignación de memoria *reserve(size)* - reserva un nuevo *pool* de al menos ``size`` bytes. El algoritmo nunca + Reserva un nuevo *pool* de al menos ``size`` bytes. El algoritmo nunca crea un *pool* con menos de 256 páginas (es decir, 1 MiB). *minimize()* - minimiza el uso de la memoria retornando *pools* sin páginas usadas al + Minimiza el uso de la memoria retornando *pools* sin páginas usadas al sistema operativo. *newPool(n)* - reserva un nuevo *pool* con al menos ``n`` páginas. Junto con + Reserva un nuevo *pool* con al menos ``n`` páginas. Junto con ``Pool.initialize()`` es análoga a ``new_pool()``, solo que esta función siempre incrementa el número de páginas a, al menos, 256 páginas (es decir, los *pools* son siempre mayores a 1 MiB). Si la cantidad de @@ -1236,7 +1256,7 @@ Asignación de memoria *pools* de 8 MiB o la cantidad pedida, si ésta es mayor. *Pool.initialize(n_pages)* - inicializa un nuevo *pool* de memoria. Junto con ``newPool()`` es + Inicializa un nuevo *pool* de memoria. Junto con ``newPool()`` es análoga a ``new_pool()``. Mientras ``newPool()`` es la encargada de calcular la cantidad de páginas y crear el objeto *pool*, esta función es la que pide la memoria al sistema operativo. Además inicializa los @@ -1246,7 +1266,7 @@ Asignación de memoria ``finals`` de todo el *pool*. *allocPage(bin)* - asigna a una página libre el tamaño de bloque ``bin`` y enlaza los + Asigna a una página libre el tamaño de bloque ``bin`` y enlaza los nuevos bloques libres a la lista de libres correspondiente (análogo a ``assign_page()``). @@ -1255,14 +1275,14 @@ Asignación de memoria a ``find_pages(n)``). *malloc(size, bits)* - asigna memoria para un objeto de tamaño ``size`` bytes. Análoga al + Asigna memoria para un objeto de tamaño ``size`` bytes. Análoga al algoritmo ``new(size, attr)`` presentado, excepto que introduce además un caché para no recalcular el tamaño de bloque necesario si se realizan múltiples asignaciones consecutivas de objetos del mismo tamaño y que la asignación de objetos pequeños no está separada en una función aparte. *bigAlloc(size)* - asigna un objeto grande (análogo a ``new_big()``). La implementación es + Asigna un objeto grande (análogo a ``new_big()``). La implementación es mucho más compleja que la presentada en ``new_big()``, pero la semántica es la misma. La única diferencia es que esta función aprovecha que ``fullcollectshell()`` / ``fullcollect()`` retornan la cantidad de @@ -1271,7 +1291,7 @@ Asignación de memoria objeto grande y pasar directamente a crear un nuevo *pool*. *free(p)* - libera la memoria apuntada por ``p`` (análoga a ``delete()`` de la + Libera la memoria apuntada por ``p`` (análoga a ``delete()`` de la sección anterior). Recordar que la ``pooltable`` siempre se mantiene ordenada según la @@ -1279,19 +1299,18 @@ Asignación de memoria Recolección *mark(pbot, ptop)* - marca un rango de memoria. Este método es análogo al ``mark_range()`` + Marca un rango de memoria. Este método es análogo al ``mark_range()`` presentado en la sección :ref:`dgc_algo_mark`. *fullcollectshell()* - guarda los registros en el *stack* y llama a ``fullcollect()``. El - algoritmo presentado en :ref:`dgc_algo_mark` es simbólico, ya que si los - registros se apilaran en el *stack* dentro de otra función, al salir de - esta se volverían a des-apilar, por lo tanto debe ser hecho en la misma - función ``collect()`` o en una función que luego la llame (como en este - caso). + Guarda los registros del procesador asignado al hilo actual en su + *stack* y llama a ``fullcollect()``. El resto de los hilos son pausados + y sus registros apilados por la función del *runtime* + ``thread_suspendAll()`` (y restablecidos y reiniciados por + ``thread_resumeAll()``. *fullcollect(stackTop)* - realiza la recolección de basura. Es análoga a ``collect()`` pero es + Realiza la recolección de basura. Es análoga a ``collect()`` pero es considerablemente menos modular, todos los pasos se hacen directamente en esta función: marcado del *root set*, marcado iterativo del *heap*, barrido y reconstrucción de la lista de libres. Además devuelve la @@ -1312,15 +1331,17 @@ a ningún destructor), para el usuario puede ser una garantía muy débil y proveer finalización asegurada puede ser muy deseable. +.. _dgc_committed: + Memoria *encomendada* ^^^^^^^^^^^^^^^^^^^^^ El algoritmo actual divide un *pool* en dos áreas: memoria *encomendada* (*committed* en inglés) y *no-encomendada*. Esto se debe a que originalmente el compilador de D_ DMD_ solo funcionaba en Microsoft Windows y este sistema -operativo puede asignar memoria en dos niveles. Por un lado puede asignar al -proceso un espacio de memoria (*address space*) pero sin asignarle la memoria -correspondiente. En un paso posterior se puede *encomendar* la memoria (es -decir, asignar realmente la memoria). +operativo puede asignar memoria en dos niveles. En principio se puede asignar +al proceso un espacio de memoria (*address space*) pero sin asignarle la +memoria virtual correspondiente. En un paso posterior se puede *encomendar* la +memoria (es decir, asignar realmente la memoria virtual). Para aprovechar esta característica el recolector diferencia estos dos niveles. Sin embargo, esta diferenciación introduce una gran complejidad (que @@ -1329,9 +1350,10 @@ y convierte lo que es una ventaja en un sistema operativo en una desventaja para todos los demás (ya que los cálculos extra se realizan pero sin ningún sentido). De hecho hay sistemas operativos, como Linux_, que realizan este trabajo automáticamente (la memoria no es asignada realmente al programa hasta -que el programa no haga uso de ella; esta capacidad se denomina *overcommit*). +que el programa no haga uso de ella; a esta capacidad se la denomina +*overcommit*). -Como se vio en la figura :vref:`fig:dgc-pool`, lás páginas de un *pool* se +Como se vio en la figura :vref:`fig:dgc-pool`, las páginas de un *pool* se dividen en *committed* y *uncommitted*. Siempre que el recolector recorre un *pool* en busca de una página o bloque, lo hace hasta la memoria *committed*, porque la *uncommitted* es como si jamás se hubiera pedido al sistema @@ -1347,7 +1369,7 @@ soporta múltiples *mutator*\ s. La forma de implementarlo es la más simple. Todas las operaciones sobre el recolector que se llaman externamente están sincronizadas utilizando un *lock* global (excepto cuando hay un solo hilo *mutator*, en cuyo caso se omite la sincronización). Esto afecta también a la -asignación de memoria. +asignación de memoria y cualquier otro servicio provisto por el recolector. @@ -1395,9 +1417,9 @@ podrían aplicarse a D_ y otras que no (como *pointer reversal*) [JOLI96]_. El recolector actual, sin embargo, cambia complejidad en espacio por complejidad en tiempo, utilizando un algoritmo iterativo que es constante (:math:`O(1)`) en espacio, pero que requiere varias pasada sobre el *heap* en vez de una (la -cantidad de pasadas es en el peor caso, al igual que la cantidad de -recursiones del algoritmo recursivo, :math:`O(|Live \thickspace set|)`, pero -cada pasada se realiza por sobre todo el *heap*). +cantidad de pasadas en el peor caso es :math:`O(|Live \thickspace set|)`, al +igual que la profundidad del algoritmo recursivo, pero cada pasada se realiza +sobre todo el *heap*). Conjuntos de bits para indicadores @@ -1450,29 +1472,31 @@ Las opciones más importantes son: ``SENTINEL`` Su función detectar errores producidos por escribir más allá (o antes) del - área de memoria solicitada y está implementado reservando un poco más de - memoria de la que pide el usuario, devolviendo un puntero a un bloque - ubicado dentro del bloque real reservado (en vez de al inicio) y finalmente - escribiendo un patrón de bits en los extremos del borde real (ver figura - :vref:`fig:sentinel`), de forma de poder verificar en distintas situación - (por ejemplo al barrer el bloque) que esas áreas de más con los patrones de - bits estén intactas. Esto permite detectar de forma temprana errores tanto - en el recolector como en el programa del usuario. + área de memoria solicitada. Está implementado reservando un poco más de + memoria de la que pide el usuario y devolviendo un puntero a un bloque + ubicado dentro del bloque real reservado (en vez de al inicio). Escribiendo + un patrón de bits en los extremos del bloque real (ver figura + :vref:`fig:sentinel`) se puede verificar, en distintas situaciones (como + por ejemplo al barrer el bloque), que esas guardas con los patrones de bits + estén intactas (en caso contrario se ha escrito por fuera de los límites + del bloque solicitado). Esto permite detectar de forma temprana errores + tanto en el recolector como en el programa del usuario. - .. fig:: fig:sentinel + .. flt:: fig:sentinel - Esquema de un bloque cuando está activada la opción ``SENTINEL``. + Esquema de un bloque cuando está activada la opción ``SENTINEL`` .. aafig:: + :textual: | | | | | +-- Palabra ---+-- Palabra ---+-- Tamaño bloque de usuario --+- Byte -+ | | | | | +--------------+--------------+------------------------------+--------+ - | Tamaño del | Pre | | Post | - | bloque de | | Bloque de usuario | | - | usuario | 0xF4F4F4F4 | | 0xF5 | + | "Tamaño del" | Pre | | Post | + | "bloque de" | | Bloque de usuario | | + | "usuario" | 0xF4F4F4F4 | | 0xF5 | +--------------+--------------+------------------------------+--------+ A | @@ -1495,6 +1519,8 @@ participación y observación del grupo de noticias, de donde se obtuvieron los principales problemas percibidos por la comunidad que utiliza el lenguaje. +.. _dgc_bad_code: + Complejidad del código y documentación ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ El análisis del código fue muy complicado debido a la falta de documentación @@ -1509,6 +1535,8 @@ recolector actual y en consecuencia sea muy complicado escribir documentación o mejorarlo. Esto a su vez provoca que, al no disponer de una implementación de referencia sencilla, sea muy difícil implementar un recolector nuevo. +.. highlight:: d + Este es, probablemente, la raíz de todos los demás problemas del recolector actual. Para ilustrar la dimensión del problema se presenta la implementación real de la función ``bigAlloc()``:: @@ -1603,8 +1631,8 @@ Se recuerda que la semántica de dicha función es la misma que la de la funció Además, como se comentó en la sección anterior, los algoritmos en la implementación real son considerablemente menos modulares que los presentados -en la sección :ref:`dgc_algo`. Por ejemplo, la función ``fullcollect()`` son -300 líneas de código. +en la sección :ref:`dgc_algo`. Por ejemplo, la función ``fullcollect()`` tiene +300 líneas de código fuente. Memoria *encomendada* @@ -1614,8 +1642,8 @@ Como se comentó en la sección anterior, diferenciar entre memoria particular para sistemas operativos que no hacen esta distinción, al menos explícitamente, donde no hay ningún beneficio en realizar esta distinción). -Incluso para Microsoft Windows, la ventaja de realizar esta distinción es -discutible. +Incluso para Microsoft Windows, la ventaja de realizar esta distinción debería +ser comprobada. Precisión @@ -1630,8 +1658,8 @@ esporádicamente [NGD54084]_ [NGL13744]_. De todas maneras queda mucho lugar para mejoras, y es un tema recurrente en el grupo de noticias de D_ y se han discutido formas de poder hacer que, al menos el *heap* sea preciso [NGD44607]_ [NGD29291]_. Además se mostró un interés -general por tener un recolector más preciso [NGDN87831]_, pero no han habido -avances al respecto. +general por tener un recolector más preciso [NGD87831]_, pero no han habido +avances al respecto hasta hace muy poco tiempo. Otra forma de minimizar los efectos de la falta de precisión que se ha sugerido reiteradamente en el grupo es teniendo la @@ -1642,19 +1670,22 @@ y en particular para mejorar la implementación de de arreglos asociativos. Referencias débiles ^^^^^^^^^^^^^^^^^^^ -El recolector actual no dispone de soporte de *referencias débiles* -[#dgcweakref]_, sin embargo hay una demanda apreciable [NGD86840]_ [NGD13301]_ -[NGL8264]_ [NGD69761]_ [NGD74624]_ [NGD88065]_. +Si bien el recolector de Tango_ tiene un soporte limitado de *referencias +débiles* [#dgcweakref]_, el de Phobos_ no dispone de ningún soporte (por lo +tanto no está contemplado oficialmente el lenguaje). Sin embargo hay una +demanda apreciable [NGD86840]_ [NGD13301]_ [NGL8264]_ [NGD69761]_ [NGD74624]_ +[NGD88065]_. .. [#dgcweakref] Una referencia débil (o *weak reference* en inglés) es aquella que que no protege al objeto referenciado de ser reciclado por el recolector. Para cubrir esta demanda, se han implementado soluciones como biblioteca para -suplir la inexistencia de una implementación oficial [NGA9103]_. +suplir la inexistencia de una implementación oficial [NGA9103]_ (la +implementación de Tango_ es otro ejemplo). -Sin embargo éstas son en general poco robustas, extremadamente dependientes -de la implementación del recolector y, en general, presentan problemas muy +Sin embargo éstas son en general poco robustas, extremadamente dependientes de +la implementación del recolector y, en general, presentan problemas muy sutiles [NGD88065]_. Por esta razón se ha discutido la posibilidad de incluir la implementación de *referencias débiles* como parte del lenguaje [NGD88559]_. @@ -1668,32 +1699,31 @@ sincronización excesivo. Se ha sugerido en el pasado el uso de *pools* y listas de libres específicos de hilos, de manera de disminuir la contención, al menos para la asignación de -memoria [NGD75952]_ [NGDN87831]_. +memoria [NGD75952]_ [NGD87831]_. Además se ha mostrado un interés por tener un nivel de concurrencia aún mayor -en el recolector, para aumentar la concurrencia en ambientes *multi-core* en +en el recolector, para aumentar la eficiencia en ambientes *multi-core* en general pero en particular para evitar grandes pausas en programas con requerimientos de tiempo real, históricamente una de las principales críticas -al lenguaje [NGDN87831]_ [NGL3937]_ [NGD22968]_ [NGA15246]_ [NGD5622]_ +al lenguaje [NGD87831]_ [NGL3937]_ [NGD22968]_ [NGA15246]_ [NGD5622]_ [NGD2547]_ [NGD18354]_. Finalización ^^^^^^^^^^^^ El recolector actual no garantiza la finalización de objetos. En particular -los objetos no son finalizados (es decir, no se llama a sus destructores) -si aún alcanzables desde el *root set* cuando el programa termina. Cabe -destacar que esto puede darse porque hay una referencia real desde el *root -set* (en cuyo caso queda bajo el control del usuario) pero también, dado que -el *root set* se visita de forma conservativa, se puede deber a un falso -positivo, en cuyo caso la omisión de la finalización queda por completo fuera -del control del usuario (y lo que es aún peor, el usuario no puede ser -siquiera notificado de esta anomalía). - -Si bien la especificación de D_ no requiere esta capacidad (de hecho, -rigurosamente hablando la especificación de D_ no garantiza la finalización de -objetos bajo ninguna circunstancia), no hay mayores problemas para implementar -un recolector que de este tipo de garantías [NGD88298]_. +los objetos no son finalizados (es decir, no se llama a sus destructores) si +aún alcanzables desde el *root set* cuando el programa termina. Cabe destacar +que esto puede darse porque hay una referencia real desde el *root set* (en +cuyo caso queda bajo el control del usuario) pero también, dado que el *root +set* se visita de forma conservativa, se puede deber a un *falso positivo*, en +cuyo caso la omisión de la finalización queda por completo fuera del control +del usuario (y lo que es aún peor, el usuario no puede ser siquiera notificado +de esta anomalía). + +Si bien la especificación de D_ no requiere esta capacidad, no hay mayores +problemas para implementar un recolector que dé este tipo de garantías +[NGD88298]_. Además los objetos pueden ser finalizados tanto determinísticamente (utilizando ``delete`` o ``scope``; ver secciones :ref:`d_low_level` @@ -1733,8 +1763,23 @@ lenguaje. Dado que es imposible que un recolector sea óptimo para todo tipo de programas, es muy deseable permitir una configuración de parámetros del -recolector que permitan al usuario ajustarlo a las necesidades particulares de -sus programas. +recolector que permitan al usuario ajustarlos a las necesidades particulares +de sus aplicaciones. + + +.. _dgc_bad_ocup: + +Factor de ocupación del *heap* +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Otro problema potencialmente importante del recolector actual es que no se +tiene ningún cuidado con respecto a que, luego de una recolección, se haya +recuperado una buena parte del *heap*. Por lo tanto, en casos extremos, el +recolector tiene que hacer una recolección por cada petición de memoria, lo +que es extremadamente ineficiente. + +Para evitar esto, habría que usar algún esquema para evaluar cuando una +recolección no fue lo suficientemente *exitosa* y en ese caso pedir más +memoria al sistema operativo. Detalles @@ -1743,13 +1788,13 @@ Finalmente hay varios detalles en la implementación actual que podrían mejorarse: Listas de libres - hay 12 listas de libres, como para guardar bloques de tamaño de ``B_16`` + Hay 12 listas de libres, como para guardar bloques de tamaño de ``B_16`` a ``B_2048``, ``B_PAGE``, ``B_PAGEPLUS``, ``B_UNCOMMITTED`` y ``B_FREE``; sin embargo solo tienen sentido los bloques de tamaño ``B_16`` a ``B_2048``, por lo que 4 de esas listas no se utilizan. Conjuntos de bits para indicadores - los indicadores para la fase de marcado y otras propiedades de un bloque + Los indicadores para la fase de marcado y otras propiedades de un bloque son almacenados en conjuntos de bits que almacenan los indicadores de todos los bloques de un *pool*. Si bien se ha mencionado esto como una ventaja, hay lugar todavía como para algunas mejoras. Como un *pool* tiene páginas @@ -1771,19 +1816,306 @@ Repetición de código actualmente). Esto es propenso a errores y difícil de mantener. Uso de señales - el recolector actual utiliza las señales del sistema operativo ``SIGUSR1`` + El recolector actual utiliza las señales del sistema operativo ``SIGUSR1`` y ``SIGUSR2`` para pausar y reanudar los hilos respectivamente. Esto puede traer inconvenientes a usuarios que desean utilizar estas señales en sus programas (o peor aún, si interactúan con bibliotecas de C que hacen uso de estas señales) [NGD5821]_. Marcado iterativo - si bien esto se mencionó como algo bueno del recolector actual, es un + Si bien esto se mencionó como algo bueno del recolector actual, es un compromiso entre tiempo y espacio, y puede ser interesante analizar otros métodos para evitar la recursión que no requieran tantas pasadas sobre el *heap*. + +.. _dgc_via: + +Análisis de viabilidad +---------------------------------------------------------------------------- + +Ya conociendo el lenguaje de programación D_ (con sus necesidades +particulares), el estado del arte en recolección de basura y el recolector +actual de D_ es posible evaluar la viabilidad de los distintos algoritmos +vistos en el capítulo :ref:`gc`. Se recuerda que dentro del análisis de +viabilidad de considera de gran importancia la viabilidad social y política de +la mejora, es decir, se presta particular atención en encontrar una mejora que +tenga una buena probabilidad de ser aceptada por la comunidad de D_. + + +.. _dgc_via_classic: + +Algoritmos clásicos +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +En esta sección se presenta un análisis de los :ref:`algoritmos clásicos +`, de forma de poder analizar a grandes rasgos las principales +familias para ir determinando la dirección principal de la solución. + + +.. _dgc_via_rc: + +Conteo de referencias +^^^^^^^^^^^^^^^^^^^^^ +Ya se ha propuesto en el pasado la utilización de conteo de referencias en D_ +pero no se ha demostrado un interés real, más allá de soluciones en +bibliotecas [NGD38689]_. Las razones para no utilizar conteo de referencia son +más o menos las mismas que las desventajas mencionadas en la sección +:ref:`gc_rc` (en el capítulo :ref:`gc`), siendo la principal la incapacidad de +recolectar ciclos. Sin embargo hay otras razones importantes. + +Una de ellas es la inter-operatividad con C. El utilizar un contador de +referencias requiere la manipulación del contador por parte del código C con +el que se interactúe. Si bien este problema ya está presente si código +C guarda en su *headp* un puntero a un objeto almacenado en el *heap* del +recolector de D_, esto es poco común. Sin embargo, mientras que una función de +C se está ejecutando, es extremadamente común que pueda almacenar en el +*stack* una referencia a un objeto de D_ y en ese caso el recolector actual +puede manejarlo (mientras la función de C esté corriendo en un hilo creado por +D_). Sin embargo al usar un conteo de referencias esto es más problemático, ya +que no se mantiene la invariante del algoritmo si no son actualizados siempre +los contadores. + +Otro problema es que al liberarse una celda, existe la posibilidad de tener +que liberar todo el sub-grafo conectado a ésta. Cuando este sub-grafo es +grande, se puede observar una gran pausa. + +Si bien estas razones son suficientes como para considerar que el conteo de +referencias no es un algoritmo que sea viable en D_, hay muchas técnicas +y optimizaciones para minimizarlas (como liberación perezosa, conteo de +referencias pospuesto, etc. [JOLI96]_). Sin embargo hay otra razón importante +que descarta esta familia de algoritmos ya que todas las variaciones de conteo +de referencias implican, en mayor o menor medida, el entrelazado del trabajo +del recolector con el del *mutator*. Si bien esta es una característica en +general muy deseable (porque hace que el recolector sea :ref:`incremental +`), en D_ no lo es porque tiene como requerimiento no hacer pagar el +precio de cosas que no se usan. En D_ debe ser posible no utilizar el +recolector de basura y, al no hacerlo, no tener ningún tipo de trabajo extra +asociado a éste. De usarse conteo de referencias esto no sería posible. + +Si bien este requerimiento puede ser discutible técnicamente, hay una gran +resistencia social y política ante cualquier tipo de recolector que imponga +una penalización de rendimiento a alguien que no quiera usarlo [NGD38689]_. +Además requiere un cambio complejo y profundo en el compilador, siendo éste +uno de los eslabones con mayor resistencia a introducir cambios. + +Por lo tanto se concluye que el conteo de referencias no es un algoritmo +viable para este trabajo. + + +.. _dgc_via_mark_sweep: + +Marcado y barrido +^^^^^^^^^^^^^^^^^ +El marcado y barrido es un algoritmo evidentemente viable debido a que es la +base del algoritmo del recolector de basura actual. + +En general en la comunidad de D_ no hay mayores críticas al marcado y barrido +en sí, si no más bien a problemas asociados a la implementación actual, +principalmente a las grandes pausas o la falta de :ref:`precisión +` [NGD54084]_ [NGL13744]_ [NGD44607]_ [NGD29291]_ [NGD87831]_ +[NGD87831]_ [NGL3937]_ [NGD22968]_ [NGA15246]_ [NGD5622]_ [NGD2547]_ +[NGD18354]_. + +Esta familia de algoritmos se adapta bien a los requerimientos principales de +D_ en cuanto a recolección de basura (ver :ref:`dgc_needs`), por ejemplo +permite recolectar de forma conservativa, no impone un *overhead* a menos que +se utilice el recolector, permite liberar memoria manualmente, se adapta de +forma simple para soportar punteros *interiores* y permite finalizar objetos +(con las limitaciones mencionadas en :ref:`dgc_prob_final`). + +Sin embargo muchas de las limitaciones del recolector actual (ver +:ref:`dgc_bad`), no son inherentes al marcado y barrido, por lo que aún +conservando la base del algoritmo, es posible realizar una cantidad de mejoras +considerable. + +Una de las principales mejoras que pueden realizarse es hacer al recolector +:ref:`concurrente ` y más :ref:`preciso `. Estas +dos mejoras solamente alcanzarían para mejorar de forma notable el tiempo de +pausa en las recolecciones y la cantidad de memoria retenida debido a *falsos +positivos*. + +Más adelante veremos detalles sobre algunos de estos aspectos y sobre algunos +algoritmos particulares que permiten hacer concurrente al recolector actual. + + +Copia de semi-espacio +^^^^^^^^^^^^^^^^^^^^^ +La copia de semi-espacio, al igual que cualquier otro tipo de recolector con +movimiento, requiere (en la mayoría de los casos) disponer de una +:ref:`precisión ` casi completa. Las celdas para las cuales hay +alguna referencia que no es precisa no pueden ser movidas, ya que al no estar +seguros que la referencia sea tal, ésta no puede ser actualizada con la +dirección de la nueva ubicación de la celda movida porque de no ser una +referencia se estarían alterando datos del usuario, corrompiéndolos. + +Es por esto que si el recolector no es mayormente preciso, las celdas que +pueden ser movidas son muy pocas y, por lo tanto, se pierden las principales +ventajas de esta familia de recolectores (como la capacidad de asignar nueva +memoria mediante *pointer bump allocation*). + +Este aumento de precisión, sin embargo, es bastante realizable. Es posible, en +teoría, hacer que al menos el *heap* sea preciso, aunque es discutible si en +la práctica es aceptable el *overhead* en espacio necesario para almacenar la +información del tipo de una celda. Esto se analiza en más detalle al evaluar +la recolección precisa en la siguiente sección. + +Si bien las principales herramientas para que sea viable un recolector por +copia de semi-espacio están disponibles en D_ (como la posibilidad de hacer +*pinning* the celdas o el potencial incremento de precisión), este lenguaje +nunca va a poder proveer precisión total, haciendo que no sea posible +implementar un recolector por copia de semi-espacio puro. Siempre habrá que +disponer un esquema híbrido para poder manejar las celdas que no puedan +moverse, incrementado mucho la complejidad del recolector. + +Si bien un esquema híbrido es algo técnicamente posible, nuevamente la +resistencia social a un cambio de esta envergadura es de importancia +suficiente como para inclinarse por una solución menos drástica. + + +.. _dgc_via_art: + +Principales categorías del estado del arte +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +En esta sección se realiza un análisis de la viabilidad de las principales +categorías de recolectores según se presentaron en la sección :ref:`gc_art`. + +Recolección directa / indirecta +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Como se ha visto al analizar el conteo de referencias, lo más apropiado para +D_ pareciera ser continuar con el esquema de recolección indirecta, de forma +tal de que el precio de la recolección solo deba ser pagado cuando el +*mutator* realmente necesita del recolector. Es por esto que no parece ser una +opción viable introducir recolección directa en este trabajo. + + +Recolección incremental +^^^^^^^^^^^^^^^^^^^^^^^ +La recolección incremental puede ser beneficiosa para D_, dado que puede +servir para disminuir el tiempo de pausa del recolector. Sin embargo, en +general es necesario instrumentar el *mutator* para reportar cambios en el +grafo del conectividad al recolector. Además puede contar con los mismos +problemas que la recolección directa, puede hacer que el usuario tenga que +pagar el precio de la recolección, incluso cuando no la necesita, si por cada +asignación el recolector realiza parte de una recolección que no fue +solicitada. + +Recolección concurrente / paralela / *stop-the-world* +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +El recolector actual es *stop-the-world*, sin embargo esta es una de las +principales críticas que tiene. El recolector se podría ver beneficiado de +recolección paralela, tanto para realizar la recolección más velozmente en +ambientes *multi-core*, como para disminuir el tiempo de pausa, un factor muy +importante para programas que necesiten tener baja latencia, como programas +*real-time*. + +En general los recolectores concurrentes necesitan también instrumentar el +*mutator* para reportar cambios en el grafo de conectividad al recolector, +como sucede con la recolección directa o incremental, sin embargo hay +algoritmos que no tienen este requerimiento, utilizando servicios del sistema +operativo para tener una *fotografía* de la memoria para que la fase de +marcado pueda realizarse sin perturbar al *mutator* ni requerir de su +cooperación [RODR97]_. Este tipo de algoritmos serían un buen candidato para +D_, dado que requiere pocos cambios y es transparente al *mutator*. + + +Recolección conservativa / precisa +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Si bien D_ puede proveer al recolector de basura información de tipos para los +objetos almacenados en el *heap*, todo recolector para D_ deberá soportar +cierto grado de recolección conservativa (ver :ref:`gc_conserv`), debido a las +siguientes razones: + +* Si bien D_ podría incorporar información de tipos para el *stack* + (utilizando, por ejemplo, la técnica de *shadow stack* [HEND02]_), para + poder interactuar con C/C++, el recolector debe poder interpretar los *stack + frames* [#dgcstackframe]_ de estos lenguajes, que no disponen de información + de tipos. + +* Los registros del procesador tienen un problema similar, con la diferencia + de que el costo de implementar algo similar a *shadow stack* para los + registros sería impracticable, más allá de que exista la misma limitación + que con el *stack* para poder interactuar con C/C++. + +* D_ soporta uniones (ver :ref:`d_low_level`). Para una unión es imposible + determinar si un campo es un puntero o no. Por ejemplo:: + + union U { + size_t x; + void* p; + } + + Aquí el recolector no puede saber nunca si el valor almacenado será un + ``size_t`` o un ``void*``, por lo tanto deberá tratar **siempre** esa + palabra de forma conservativa (es decir, interpretarla como un *posible* + puntero). Este requerimiento puede ser relajado si el usuario proveyera + alguna forma de determinar que tipo está almacenando la unión en un + determinado momento. Sin embargo el costo de pedir al usuario este tipo de + restricción puede ser muy alto. + +Durante el desarrollo de este trabajo se encontra un trabajo relacionado +avanzando en este sentido, que agrega precisión al marcado del *heap*. David +Simcha comienza explorando la posibilidad de agregar precisión parcial al +recolector, generando información sobre la ubicación de los punteros para cada +tipo [DBZ3463]_. Su trabajo se limita a una implementación a nivel biblioteca +de usuario y sobre `D 2.0`_. Desafortunadamente su trabajo pasa desapercibido +por un buen tiempo. + +Sin embargo un tiempo después Vincent Lang (mejor conocido como *wm4* en la +comunidad de D_), retoma este trabajo, pero modificando el compilador DMD_ +y trabajando con `D 1.0`_ y Tango_. Es por esto que el aumento de precisión +parece ser un área fértil para este trabajo, en particular si se colabora con +el trabajo realizado por David y Vincent. + +.. [#dgcstackframe] Un *stack frame* (*marco de la pila* en castellano), + también conocido como *activation record* (o *registro de activación* en + castellano) es una estructura de datos dependiente de la arquitectura que + contiene información del estado de una función, incluyendo, por ejemplo, + sus variables locales, parámetros y dirección de retorno. + + +Recolección con movimiento de celdas +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Esta posibilidad ya se ha discutido al analizar la posibilidad de utilizar +recolección con copia de semi-espacios. El trabajo mencionado en la sub-sección +anterior agrega información suficiente como poder diferenciar que celdas se +pueden mover y cuales no, sin embargo queda como incógnita qué proporción de +celdas deben permanecer inmovilizadas como para evaluar si un cambio tan +grande puede rendir frutos o no. + +A priori, pareciera que la relación cantidad y complejidad de cambios sobre +beneficios potenciales no fuera muy favorable a esta mejora. + + +Lista de libres / *pointer bump allocation* +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Como consecuencia de los puntos anteriores, no es técnicamente posible +realizar *pointer bump allocation* pura en D_. Al haber objetos *pinned*, +siempre es necesario o bien contar con una lista de libres, o detectar +*huecos* en un esquema de *pointer bump allocation*. Es por esto que parece +ser más viable conservar el esquema de listas de libres. + +Esta mejora también entra en la categoría de opciones viables pero cuya +complejidad no parece valer la pena dada la limitada utilidad que se espera +dadas las particulares características de D_ en cuanto a precisión de +información de tipos de *stack*, uniones, etc. + + +Recolección por particiones / generacional +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Una vez más la recolección por particiones, en particular la generacional, +requiere de la instrumentación del *mutator* para comunicar cambios en el +grafo de conectividad al recolector, por lo que es poco viable. Aunque existen +algoritmos que no necesitan este tipo de comunicación dado que está +garantizado que no existan conexiones entre celdas de las distintas +particiones, requiere grandes cambios en el compilador y realizar análisis +estático bastante complejo [HIRZ03]_. Además al ser D_ un lenguaje de bajo +nivel, es muy difícil garantizar que estas conexiones inter-particiones no +puedan existir realmente; y de hacerlo, podría ser demasiado restrictivo. + + .. include:: links.rst .. vim: set ts=3 sts=3 sw=3 et tw=78 spelllang=es :