#define max _cpp_max
#endif
+#ifdef DEBUG
+#include <iostream>
+#endif
+
#include <deque>
#include <utility>
#include <algorithm>
-#include <iterator>
+#include <iomanip>
+#include <cassert>
+
+#ifdef _WIN32
+// VC++ no tiene la stdint.h, se agrega a mano
+#include "stdint.h"
+#else
#include <stdint.h>
+#endif
+
+enum sign_type { positive, negative };
+
/* sizeof(E) tiene que ser 2*sizeof(N); y son los tipos nativos con los cuales
* se haran las operaciones mas basicas. */
+template < typename N, typename E >
+struct number;
+
+template < typename N, typename E >
+std::ostream& operator<< (std::ostream& os, const number< N, E >& n);
+
template < typename N = uint32_t, typename E = uint64_t >
struct number
{
// Tipos
typedef N native_type;
typedef E extended_type;
- enum sign_type { positive, negative };
typedef typename std::deque< native_type > chunk_type;
typedef typename chunk_type::size_type size_type;
typedef typename chunk_type::iterator iterator;
// Constructores (después de construído, el chunk siempre tiene al
// menos un elemento).
// Constructor default (1 'átomo con valor 0)
- number(): chunk(1, 0) {}
+ number(): chunk(1, 0), sign(positive) {}
// Constructor a partir de buffer (de 'átomos') y tamaño
// Copia cada elemento del buffer como un 'átomo' del chunk
// (el átomo menos significativo es el chunk[0] == buf[0])
- number(native_type* buf, size_type len, sign_type sign = positive):
- chunk(buf, buf + len), sign(sign)
+ number(native_type* buf, size_type len, sign_type s = positive):
+ chunk(buf, buf + len), sign(s)
{
fix_empty();
}
// Constructor a partir de un 'átomo' (lo asigna como único elemento
// del chunk). Copia una vez N en el vector.
- number(native_type n, sign_type sign = positive):
- chunk(1, n), sign(sign) {}
+ number(native_type n, sign_type s = positive):
+ chunk(1, n), sign(s) {}
- // TODO constructor a partir de string.
+ number(const std::string& str);
// Operadores
number& operator++ ()
number& operator+= (const number& n);
number& operator*= (const number& n);
number& operator<<= (const size_type n);
+ number& operator-= (const number& n);
+ bool operator< (const number& n);
+ bool operator==(const number& n) const;
// Devuelve referencia a 'átomo' i del chunk (no debería ser necesario
// si la multiplicación es un método de este objeto).
- native_type& operator[] (size_type i) {
+ native_type& operator[] (size_type i)
+ {
return chunk[i];
}
const_reverse_iterator rbegin() const { return chunk.rbegin(); }
const_reverse_iterator rend() const { return chunk.rend(); }
- private:
+ // Friends
+ template < typename NN, typename EE >
+ friend std::ostream& operator<< (std::ostream& os, const number< NN, EE>& n);
+
// Atributos
+ //private:
chunk_type chunk;
sign_type sign;
// Helpers
- // Normaliza las longitudes de 2 numbers, completando con 0s a la izquierda
- // al más pequeño. Sirve para División y Conquista
- number& normalize_length(const number& n);
// parte un número en dos mitades de misma longitud, devuelve un par de
// números con (low, high)
std::pair< number, number > split() const;
else
chunk.push_back(1);
}
+ // Propaga borrow a partir del 'átomo' i (resta 1 al 'átomo' i propagando
+ // borrow)
+ void borrow(size_type i)
+ {
+ // para poder pedir prestado debo tener uno a la izquierda
+ assert (chunk.size() >= i);
+
+ if (chunk[i] == 0)
+ {
+ borrow(i+1); // Overflow, pido prestado
+ chunk[i] = ~((N)0); //quedo con el valor máximo
+ }
+ else
+ {
+ --chunk[i]; //tengo para dar, pero pierdo uno yo
+ }
+ }
+ // Verifica si es un número par
+ bool es_impar() const
+ {
+ return chunk[0] & 1; // Bit menos significativo
+ }
+ // Divide por 2.
+ number dividido_dos() const
+ {
+ number n = *this;
+ bool lsb = 0; // bit menos significativo
+ bool msb = 0; // bit más significativo
+ for (typename chunk_type::reverse_iterator i = n.chunk.rbegin();
+ i != n.chunk.rend(); ++i)
+ {
+ lsb = *i & 1; // bit menos significativo
+ *i >>= 1; // shift
+ // seteo bit más significativo de ser necesario
+ if (msb)
+ *i |= 1 << (sizeof(native_type) * 8 - 1);
+ msb = lsb;
+ }
+ return n;
+ }
};
+template < typename N, typename E >
+number< N, E >::number(const std::string& origen)
+{
+ const N MAX_N = (~( (N)0 ) );
+ E increment = 0;
+ E acum = 0;
+
+ unsigned length = origen.length();
+ unsigned number_offset = 0;
+
+ while (number_offset<length)
+ {
+ // si encuentro un signo + ó - corto
+ if (!isdigit(origen[length-number_offset-1]))
+ break;
+
+ increment = (10*number_offset)*(origen[length-number_offset-1]-'0');
+ if ((acum + increment) > MAX_N)
+ {
+ chunk.push_back(acum);
+ }
+
+ }
+
+
+}
+
template < typename N, typename E >
number< N, E >& number< N, E >::operator+= (const number< N, E >& n)
{
+ // Si tienen distinto signo, restamos...
+ if (sign != n.sign)
+ {
+ if (sign == positive) // n es negativo
+ {
+ number< N, E > tmp = n;
+ tmp.sign = positive;
+ *this -= tmp;
+ }
+ else // n es positivo, yo negativo
+ {
+ sign = positive;
+ *this = n - *this;
+ }
+ return *this;
+ }
+
native_type c = 0;
size_type ini = 0;
size_type fin = std::min(chunk.size(), n.chunk.size());
return tmp;
}
+template < typename N, typename E >
+number< N, E >& number< N, E >::operator-= (const number< N, E >& n)
+{
+ // minuendo - substraendo
+ number< N, E > minuend;
+ number< N, E > subtrahend;
+
+ // voy a hacer siempre el mayor menos el menor
+ if (*this < n)
+ {
+ minuend = n;
+ subtrahend = *this;
+ //minuendo < sustraendo => resultado negativo
+ minuend.sign = negative;
+ }
+ else
+ {
+ minuend = *this;
+ subtrahend = n;
+ //minuendo > sustraendo => resultado positivo
+ minuend.sign = positive;
+ }
+
+ size_type ini = 0;
+ size_type fin = std::min(minuend.chunk.size(), subtrahend.chunk.size());
+ size_type i; //problema de VC++, da error de redefinición
+
+ //estoy seguro de que minuend > subtrahend, con lo cual itero hasta el size del
+ //menor de los dos. Si el otro es más grande, puede ser que esté lleno de 0's pero
+ //no puede ser realmente mayor como cifra
+ for (i = ini; i < fin; ++i)
+ {
+ // si no alcanza para restar pido prestado
+ if ((minuend.chunk[i] < subtrahend.chunk[i]))
+ {
+ // no puedo pedir si soy el más significativo ...
+ assert (i != fin);
+
+ // le pido uno al que me sigue
+ minuend.borrow(i+1);
+ }
+
+ // es como hacer 24-5: el 4 pide prestado al 2 (borrow(i+1)) y después
+ // se hace 4 + (9-5) + 1
+
+ minuend.chunk[i] += (~((N)0) - subtrahend.chunk[i]) + 1;
+ }
+
+ //retorno el minuendo ya restado
+ *this = minuend;
+ return *this;
+}
+
+template < typename N, typename E >
+number< N, E > operator- (const number< N, E >& n1, const number< N, E >& n2)
+{
+ number< N, E > tmp = n1;
+ tmp -= n2;
+ return tmp;
+}
+
+
+template < typename N, typename E >
+bool number< N, E >::operator< (const number< N, E >& n)
+{
+ number< N, E > n1 = *this;
+ number< N, E > n2 = n;
+
+ // igualo los largos
+ normalize_length(n1, n2);
+
+ // obtengo el largo
+ size_type length = n1.chunk.size();
+ size_type i = length - 1;
+
+ // me voy fijando desde "la cifra" más significativa si alguno es menor que el otro
+ // sigo iterando si son iguales hasta recorrer todo el número hasta la parte menos significativa
+ while (i > 0)
+ {
+ if (n1[i]<n2[i])
+ return true;
+ if (n1[i]>n2[i])
+ return false;
+
+ i--;
+ }
+
+ // si llegué hasta acá es porque son iguales, por lo tanto no es menor estricto
+ return false;
+
+}
+
// efectúa un shifteo a izquierda del chunk, agregando 0s en los casilleros menos significativos
template < typename N, typename E >
number< N, E >& number< N, E >::operator<<= (size_type n)
return tmp;
}
-template < typename N, typename E >
-std::ostream& operator<< (std::ostream& os, const number< N, E >& n)
+template < typename NN, typename EE >
+std::ostream& operator<< (std::ostream& os, const number< NN, EE >& n)
{
// FIXME sacar una salida bonita en ASCII =)
- std::copy(n.begin(), n.end(), std::ostream_iterator< N >(os, " "));
+ if (n.sign == positive)
+ os << "+ ";
+ else
+ os << "- ";
+ for (typename number< NN, EE >::const_reverse_iterator i = n.chunk.rbegin();
+ i != n.chunk.rend(); ++i)
+ os << std::setfill('0') << std::setw(sizeof(NN) * 2) << std::hex
+ << *i << " ";
return os;
}
template < typename N, typename E >
-number< N, E >& number< N, E >::operator*= (const number< N, E >& n)
+bool number< N, E >::operator==(const number< N, E >& n) const
{
- number < N, E > r_op = n;
- normalize_length(n);
- n.normalize_length(*this);
- *this = divide_n_conquer(*this, n);
- return *this;
+ if (sign != n.sign)
+ {
+ return false;
+ }
+
+ size_type ini = 0;
+ size_type fin = std::min(chunk.size(), n.chunk.size());
+ size_type i; //problema de VC++, da error de redefinición
+
+ // "intersección" entre ambos chunks
+ // +-----+-----+------+------+
+ // | | | | | <--- mio
+ // +-----+-----+------+------+
+ // +-----+-----+------+
+ // | | | | <--- chunk de n
+ // +-----+-----+------+
+ //
+ // |------------------|
+ // Esto se procesa en este for
+ for (i = ini; i < fin; ++i)
+ {
+ if (chunk[i] != n.chunk[i])
+ {
+ return false;
+ }
+ }
+
+ // si mi chunk es más grande que el del otro, sólo me queda
+ // ver si el resto es cero.
+ chunk_type const *chunk_grande = 0;
+ if (chunk.size() > n.chunk.size())
+ {
+ chunk_grande = &chunk;
+ fin = chunk.size() - n.chunk.size();
+ }
+ else if (chunk.size() < n.chunk.size())
+ {
+ chunk_grande = &n.chunk;
+ fin = n.chunk.size() - chunk.size();
+ }
+ if (chunk_grande) // Si tienen tamaños distintos, vemos que el resto sea cero.
+ {
+ for (; i < fin; ++i) // Sigo desde el i que había quedado
+ {
+ if ((*chunk_grande)[i] != 0)
+ {
+ return false;
+ }
+ }
+ }
+ return true; // Son iguales
}
template < typename N, typename E >
-number< N, E > operator* (const number< N, E >& n1, const number< N, E >& n2)
+number< N, E >& number< N, E >::operator*= (const number< N, E >& n)
{
- number< N, E > tmp = n1;
- tmp *= n2;
- return tmp;
+ //number < N, E > r_op = n;
+ //normalize_length(n);
+ //n.normalize_length(*this);
+ *this = naif(*this, n);
+ return *this;
}
template < typename N, typename E >
-number< N, E >& number< N, E >::normalize_length(const number< N, E >& n)
+number< N, E > operator* (const number< N, E >& n1, const number< N, E >& n2)
{
- // si son de distinto tamaño tengo que agregar ceros a la izquierda al
- // menor para división y conquista
- while (chunk.size() < n.chunk.size())
- {
- chunk.push_back(0);
- }
-
- // si no tiene cantidad par de números le agrego un atomic_type 0 a la
- // izquierda para no tener que contemplar splits de chunks impares
- if ((chunk.size() % 2) != 0)
- {
- chunk.push_back(0);
- }
+ return naif(n1, n2);
}
template < typename N, typename E >
std::pair< num_type, num_type > par;
// la primera mitad va al pedazo inferior
- for (i = 0; i < halves_size; i++)
+ par.first.chunk[0] = chunk[0];
+ for (i = 1; i < halves_size; i++)
{
par.first.chunk.push_back(chunk[i]);
}
// la segunda mitad (si full_size es impar es 1 más que la primera
// mitad) va al pedazo superior
- for ( ; i < full_size; i++)
+ par.second.chunk[0] = chunk[i];
+ for (i++ ; i < full_size; i++)
{
par.second.chunk.push_back(chunk[i]);
}
return par;
}
-// es el algoritmo de división y conquista, que se llama recursivamente
+
+template < typename N, typename E >
+void normalize_length(number< N, E >& u, number< N, E >& v)
+{
+ typedef number< N, E > num_type;
+ typename num_type::size_type max, p, t, pot2;
+
+ max = std::max(u.chunk.size(), v.chunk.size());
+
+ /* Buscamos hacer crecer a ambos a la potencia de 2 mas proxima; para
+ * lo cual la obtenemos y guardamos en p. */
+ t = max;
+ p = 0;
+ while (t != 0) {
+ t = t >> 1;
+ p++;
+ }
+
+ /* Ahora guardamos en pot2 el tamaño que deben tener. */
+ pot2 = 1 << p;
+
+ /* Y finalmente hacemos crecer los dos numeros agregando 0s hasta
+ * completar sus tamaños. */
+ while (u.chunk.size() < pot2)
+ u.chunk.push_back(0);
+
+ while (v.chunk.size() < pot2)
+ v.chunk.push_back(0);
+
+ return;
+}
+
+
+/* Algoritmo "naif" (por no decir "cabeza" o "bruto") de multiplicacion. */
template < typename N, typename E >
-number < N, E > karatsuba(number< N, E > u, number< N, E > v)
+number < N, E > naif(const number< N, E > &u, const number< N, E > &v)
{
typedef number< N, E > num_type;
// tomo el chunk size de u (el de v DEBE ser el mismo)
typename num_type::size_type chunk_size = u.chunk.size();
+ sign_type sign;
+
+ if (u.sign == v.sign) {
+ sign = positive;
+ } else {
+ sign = negative;
+ }
+
+ //printf("naif %d %d\n", u.chunk.size(), v.chunk.size() );
+
if (chunk_size == 1)
{
- // condición de corte. Ver que por más que tenga 1 único
- // elemento puede "rebalsar" la capacidad del atomic_type,
- // como ser multiplicando 0xff * 0xff usando bytes!!!
- return u.chunk[0] * v.chunk[0];
+ /* Si llegamos a multiplicar dos de tamaño 1, lo que hacemos
+ * es usar la multiplicacion nativa del tipo N, guardando el
+ * resultado en el tipo E (que sabemos es del doble de tamaño
+ * de N, ni mas ni menos).
+ * Luego, armamos un objeto number usando al resultado como
+ * buffer. Si, es feo.
+ */
+ E tmp;
+ tmp = static_cast< E >(u.chunk[0]) * static_cast< E >(v.chunk[0]);
+ num_type tnum = num_type(reinterpret_cast< N* >(&tmp), 2, sign);
+ //std::cout << "T:" << tnum << " " << tmp << "\n";
+ //printf("1: %lu %lu %llu\n", u.chunk[0], v.chunk[0], tmp);
+ return tnum;
+ }
+
+ std::pair< num_type, num_type > u12 = u.split();
+ std::pair< num_type, num_type > v12 = v.split();
+
+ //std::cout << "u:" << u12.first << " - " << u12.second << "\n";
+ //std::cout << "v:" << v12.first << " - " << v12.second << "\n";
+
+ /* m11 = u1*v1
+ * m12 = u1*v2
+ * m21 = u2*v1
+ * m22 = u2*v2
+ */
+ num_type m11 = naif(u12.first, v12.first);
+ num_type m12 = naif(u12.first, v12.second);
+ num_type m21 = naif(u12.second, v12.first);
+ num_type m22 = naif(u12.second, v12.second);
+
+ /*
+ printf("csize: %d\n", chunk_size);
+ std::cout << "11 " << m11 << "\n";
+ std::cout << "12 " << m12 << "\n";
+ std::cout << "21 " << m21 << "\n";
+ std::cout << "22 " << m22 << "\n";
+ */
+
+ /* u*v = (u1*v1) * 2^n + (u1*v2 + u2*v1) * 2^(n/2) + u2*v2
+ * PERO! Como los numeros estan "al reves" nos queda:
+ * = m22 * 2^n + (m12 + m21) * 2^(n/2) + m11
+ * FIXME: seria mejor hacer el acomode en la llamada a naif arriba?
+ */
+ num_type res;
+ res = m22 << chunk_size;
+ res = res + ((m12 + m21) << (chunk_size / 2));
+ res = res + m11;
+ res.sign = sign;
+ /*
+ std::cout << "r: " << res << "\n";
+ std::cout << "\n";
+ */
+ return res;
+}
+
+
+/* Algoritmo de multiplicacion de Karatsuba-Ofman
+ * Ver los comentarios del algoritmo naif, es practicamente identico salvo en
+ * los calculos numericos que se especifican debajo.
+ */
+template < typename N, typename E >
+number < N, E > karatsuba(const number< N, E > &u, const number< N, E > &v)
+{
+ typedef number< N, E > num_type;
+
+ typename num_type::size_type chunk_size = u.chunk.size();
+
+ sign_type sign;
+
+ if (u.sign == v.sign) {
+ sign = positive;
+ } else {
+ sign = negative;
+ }
+
+ if (chunk_size == 1) {
+ E tmp;
+ tmp = static_cast< E >(u.chunk[0]) * static_cast< E >(v.chunk[0]);
+ num_type tnum = num_type(reinterpret_cast< N* >(&tmp), 2, sign);
+ return tnum;
}
std::pair< num_type, num_type > u12 = u.split();
// m = u1*v1
// d = u2*v2
// h = (u1+v1)*(u2+v2) = u1*u2+u1*v2+u2*v1+u2*v2
- num_type m = karastuba(u12.first, v12.first);
- num_type d = karastuba(u12.second, v12.second);
- num_type h = karastuba(u12.first + v12.first,
- u12.second + v12.second);
+ num_type m = karastuba(u12.second, v12.second);
+ num_type d = karastuba(u12.first, v12.first);
+ num_type h = karastuba(u12.second + v12.second,
+ u12.first + v12.first);
// H-D-M = u1*u2+u1*v2+u2*v1+u2*v2 - u2*v2 - u1*v1 = u1*v2+u2*v1
// u1*v1 << base^N + u1*v2+u2*v1 << base^N/2 + u2*v2
- return (m << chunk_size) + ((h - d - m) << chunk_size / 2) + h;
+ num_type res;
+ res = (m << chunk_size) + ((h - d - m) << (chunk_size / 2) ) + h;
+ res.sign = sign;
+ return res;
+}
+
+
+/* Potenciacion usando multiplicaciones sucesivas.
+ * Toma dos parametros u y v, devuelve u^v; asume v positivo.
+ */
+template < typename N, typename E >
+number < N, E > pot_ko(const number< N, E > &u, const number< N, E > &v)
+{
+ assert(v.sign == positive);
+ number< N, E > res, i;
+ res = u;
+ res.sign = u.sign;
+
+ for (i = 1; i < v; i += 1) {
+ res *= u;
+ }
+
+ return res;
+}
+
+/* Potenciacion usando división y conquista.
+ * Toma dos parametros u y v, devuelve u^v; asume v positivo.
+ *
+ * El pseudocódigo del algoritmo es:
+ * pot(x, y):
+ * if y == 1:
+ * return x
+ * res = pot(x, y/2)
+ * res = res * res
+ * if y es impar:
+ * res = res * x
+ * return res
+ *
+ * Es O(n) ya que la ecuación es T(n) = T(n/2) + O(1)
+ *
+ * El grafo que lo 'representa' (siendo los nodos el exponente y) algo como:
+ *
+ * 1 3
+ * _/ | \_
+ * _/ | \_
+ * / | \
+ * 6 1 6
+ * / \ / \
+ * / \ / \
+ * 3 3 3 3
+ * /|\ /|\ /|\ /|\
+ * 2 1 2 2 1 2 2 1 2 2 1 2
+ * / \ / \ / \ / \ / \ / \ / \ / \
+ * 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+ *
+ */
+template < typename N, typename E >
+number< N, E > pot_dyc(const number< N, E > &x, const number< N, E > &y)
+{
+ assert(y.sign == positive);
+ //std::cout << "pot(" << x << ", " << y << ")\n";
+ if (y == number< N, E >(1))
+ {
+ std::cout << "y es 1 => FIN pot(" << x << ", " << y << ")\n";
+ return x;
+ }
+ number< N, E > res = pot_dyc(x, y.dividido_dos());
+ //std::cout << "y.dividido_dos() = " << y.dividido_dos() << "\n";
+ //std::cout << "res = " << res << "\n";
+ res *= res;
+ //std::cout << "res = " << res << "\n";
+ if (y.es_impar())
+ {
+ //std::cout << y << " es IMPAR => ";
+ res *= x; // Multiplico por el x que falta
+ //std::cout << "res = " << res << "\n";
+ }
+ //std::cout << "FIN pot(" << x << ", " << y << ")\n\n";
+ return res;
}