]> git.llucax.com Git - z.facultad/75.29/dale.git/blobdiff - src/number.h
Bugfix en normalize_length() (usaba una potencia más de la necesaria).
[z.facultad/75.29/dale.git] / src / number.h
index 2c2d281b1e7a1c8947ce3654c3e69b5d6415494a..71705cc9512a61b0430d7fb69b43a48094d438ff 100644 (file)
@@ -4,10 +4,15 @@
 #define max _cpp_max
 #endif
 
 #define max _cpp_max
 #endif
 
+#ifdef DEBUG
+#include <iostream>
+#endif
+
 #include <deque>
 #include <utility>
 #include <algorithm>
 #include <iomanip>
 #include <deque>
 #include <utility>
 #include <algorithm>
 #include <iomanip>
+#include <cassert>
 
 #ifdef _WIN32
 // VC++ no tiene la stdint.h, se agrega a mano
 
 #ifdef _WIN32
 // VC++ no tiene la stdint.h, se agrega a mano
@@ -45,21 +50,21 @@ struct number
        // Constructores (después de construído, el chunk siempre tiene al
        // menos un elemento).
        // Constructor default (1 'átomo con valor 0)
        // Constructores (después de construído, el chunk siempre tiene al
        // menos un elemento).
        // Constructor default (1 'átomo con valor 0)
-       number(): chunk(1, 0) {}
+       number(): chunk(1, 0), sign(positive) {}
 
        // Constructor a partir de buffer (de 'átomos') y tamaño
        // Copia cada elemento del buffer como un 'átomo' del chunk
        // (el átomo menos significativo es el chunk[0] == buf[0])
 
        // Constructor a partir de buffer (de 'átomos') y tamaño
        // Copia cada elemento del buffer como un 'átomo' del chunk
        // (el átomo menos significativo es el chunk[0] == buf[0])
-       number(native_type* buf, size_type len, sign_type sign = positive):
-               chunk(buf, buf + len), sign(sign)
+       number(native_type* buf, size_type len, sign_type s = positive):
+               chunk(buf, buf + len), sign(s)
        {
                fix_empty();
        }
 
        // Constructor a partir de un 'átomo' (lo asigna como único elemento
        // del chunk). Copia una vez N en el vector.
        {
                fix_empty();
        }
 
        // Constructor a partir de un 'átomo' (lo asigna como único elemento
        // del chunk). Copia una vez N en el vector.
-       number(native_type n, sign_type sign = positive):
-               chunk(1, n), sign(sign) {}
+       number(native_type n, sign_type s = positive):
+               chunk(1, n), sign(s) {}
 
        number(const std::string& str);
 
 
        number(const std::string& str);
 
@@ -75,6 +80,7 @@ struct number
        number& operator<<= (const size_type n);
        number& operator-= (const number& n);
        bool    operator< (const number& n);
        number& operator<<= (const size_type n);
        number& operator-= (const number& n);
        bool    operator< (const number& n);
+       bool    operator==(const number& n) const;
 
        // Devuelve referencia a 'átomo' i del chunk (no debería ser necesario
        // si la multiplicación es un método de este objeto).
 
        // Devuelve referencia a 'átomo' i del chunk (no debería ser necesario
        // si la multiplicación es un método de este objeto).
@@ -122,6 +128,47 @@ struct number
                else
                        chunk.push_back(1);
        }
                else
                        chunk.push_back(1);
        }
+       // Propaga borrow a partir del 'átomo' i (resta 1 al 'átomo' i propagando
+       // borrow)
+       void borrow(size_type i)
+       {
+               if (chunk.size() >= i)
+               {
+                       if (chunk[i] == 0)
+                       {
+                               borrow(i+1); // Overflow, pido prestado
+                               chunk[i] = ~((N)0); //quedo con el valor máximo
+                       }
+                       else
+                       {
+                               --chunk[i]; //tengo para dar, pero pierdo uno yo
+                       }
+               }
+               //else ERROR, están haciendo a-b con a>b
+       }
+       // Verifica si es un número par
+       bool es_impar() const
+       {
+               return chunk[0] & 1; // Bit menos significativo
+       }
+       // Divide por 2.
+       number dividido_dos() const
+       {
+               number n = *this;
+               bool lsb = 0; // bit menos significativo
+               bool msb = 0; // bit más significativo
+               for (typename chunk_type::reverse_iterator i = n.chunk.rbegin();
+                               i != n.chunk.rend(); ++i)
+               {
+                       lsb = *i & 1; // bit menos significativo
+                       *i >>= 1;     // shift
+                       // seteo bit más significativo de ser necesario
+                       if (msb)
+                               *i |= 1 << (sizeof(native_type) * 8 - 1);
+                       msb = lsb;
+               }
+               return n;
+       }
 
 };
 
 
 };
 
@@ -155,6 +202,23 @@ number< N, E >::number(const std::string& origen)
 template < typename N, typename E >
 number< N, E >& number< N, E >::operator+= (const number< N, E >& n)
 {
 template < typename N, typename E >
 number< N, E >& number< N, E >::operator+= (const number< N, E >& n)
 {
+       // Si tienen distinto signo, restamos...
+       if (sign != n.sign)
+       {
+               if (sign == positive) // n es negativo
+               {
+                       number< N, E > tmp = n;
+                       tmp.sign = positive;
+                       *this -= tmp;
+               }
+               else // n es positivo, yo negativo
+               {
+                       sign = positive;
+                       *this = n - *this;
+               }
+               return *this;
+       }
+
        native_type c = 0;
        size_type ini = 0;
        size_type fin = std::min(chunk.size(), n.chunk.size());
        native_type c = 0;
        size_type ini = 0;
        size_type fin = std::min(chunk.size(), n.chunk.size());
@@ -230,7 +294,47 @@ number< N, E > operator+ (const number< N, E >& n1, const number< N, E >& n2)
 template < typename N, typename E >
 number< N, E >& number< N, E >::operator-= (const number< N, E >& n)
 {
 template < typename N, typename E >
 number< N, E >& number< N, E >::operator-= (const number< N, E >& n)
 {
-       //TODO IMPLEMENTAR
+       // minuendo - substraendo
+       number< N, E > minuend;
+       number< N, E > subtrahend;
+
+       // voy a hacer siempre el mayor menos el menor
+       if (*this < n)
+       {
+               minuend = n;
+               subtrahend = *this;
+               //minuendo < sustraendo => resultado negativo
+               minuend.sign = negative;
+       }
+       else
+       {
+               minuend = *this;
+               subtrahend = n;
+               //minuendo > sustraendo => resultado positivo
+               minuend.sign = positive;
+       }
+
+       size_type ini = 0;
+       size_type fin = std::min(minuend.chunk.size(), subtrahend.chunk.size());
+       size_type i; //problema de VC++, da error de redefinición
+
+       //estoy seguro de que minuend > subtrahend, con lo cual itero hasta el size del
+       //menor de los dos. Si el otro es más grande, puede ser que esté lleno de 0's pero
+       //no puede ser realmente mayor como cifra
+       for (i = ini; i < fin; ++i)
+       {
+               // si no alcanza para restar pido prestado
+               if ((minuend.chunk[i] < subtrahend.chunk[i]))
+               {
+                       minuend.borrow(i);
+               }
+               
+               // resto el chunk i-ésimo
+               minuend.chunk[i] -= subtrahend.chunk[i];
+       }
+
+       //retorno el minuendo ya restado
+       *this = minuend;
        return *this;
 }
 
        return *this;
 }
 
@@ -297,13 +401,73 @@ template < typename N, typename E >
 std::ostream& operator<< (std::ostream& os, const number< N, E >& n)
 {
        // FIXME sacar una salida bonita en ASCII =)
 std::ostream& operator<< (std::ostream& os, const number< N, E >& n)
 {
        // FIXME sacar una salida bonita en ASCII =)
-       for (typename number< N, E >::const_iterator i = n.chunk.begin();
-                       i != n.chunk.end(); ++i)
+       if (n.sign == positive)
+               os << "+ ";
+       else
+               os << "- ";
+       for (typename number< N, E >::const_reverse_iterator i = n.chunk.rbegin();
+                       i != n.chunk.rend(); ++i)
                os << std::setfill('0') << std::setw(sizeof(N) * 2) << std::hex
                        << *i << " ";
        return os;
 }
 
                os << std::setfill('0') << std::setw(sizeof(N) * 2) << std::hex
                        << *i << " ";
        return os;
 }
 
+template < typename N, typename E >
+bool number< N, E >::operator==(const number< N, E >& n) const
+{
+       if (sign != n.sign)
+       {
+               return false;
+       }
+
+       size_type ini = 0;
+       size_type fin = std::min(chunk.size(), n.chunk.size());
+       size_type i; //problema de VC++, da error de redefinición
+
+       // "intersección" entre ambos chunks
+       // +-----+-----+------+------+
+       // |     |     |      |      | <--- mio
+       // +-----+-----+------+------+
+       // +-----+-----+------+
+       // |     |     |      |        <--- chunk de n
+       // +-----+-----+------+
+       //
+       // |------------------|
+       // Esto se procesa en este for
+       for (i = ini; i < fin; ++i)
+       {
+               if (chunk[i] != n.chunk[i])
+               {
+                       return false;
+               }
+       }
+
+       // si mi chunk es más grande que el del otro, sólo me queda
+       // ver si el resto es cero.
+       chunk_type const *chunk_grande = 0;
+       if (chunk.size() > n.chunk.size())
+       {
+               chunk_grande = &chunk;
+               fin = chunk.size() - n.chunk.size();
+       }
+       else if (chunk.size() < n.chunk.size())
+       {
+               chunk_grande = &n.chunk;
+               fin = n.chunk.size() - chunk.size();
+       }
+       if (chunk_grande) // Si tienen tamaños distintos, vemos que el resto sea cero.
+       {
+               for (; i < fin; ++i) // Sigo desde el i que había quedado
+               {
+                       if ((*chunk_grande)[i] != 0)
+                       {
+                               return false;
+                       }
+               }
+       }
+       return true; // Son iguales
+}
+
 template < typename N, typename E >
 number< N, E >& number< N, E >::operator*= (const number< N, E >& n)
 {
 template < typename N, typename E >
 number< N, E >& number< N, E >::operator*= (const number< N, E >& n)
 {
@@ -392,8 +556,7 @@ number < N, E > naif(const number< N, E > &u, const number< N, E > &v)
 
        sign_type sign;
 
 
        sign_type sign;
 
-       if ( (u.sign == positive && v.sign == positive) ||
-                       (u.sign == negative && v.sign == negative) ) {
+       if (u.sign == v.sign) {
                sign = positive;
        } else {
                sign = negative;
                sign = positive;
        } else {
                sign = negative;
@@ -460,4 +623,126 @@ number < N, E > naif(const number< N, E > &u, const number< N, E > &v)
 }
 
 
 }
 
 
+/* Algoritmo de multiplicacion de Karatsuba-Ofman
+ * Ver los comentarios del algoritmo naif, es practicamente identico salvo en
+ * los calculos numericos que se especifican debajo.
+ */
+template < typename N, typename E >
+number < N, E > karatsuba(const number< N, E > &u, const number< N, E > &v)
+{
+       typedef number< N, E > num_type;
+
+       typename num_type::size_type chunk_size = u.chunk.size();
+
+       sign_type sign;
+
+       if (u.sign == v.sign) {
+               sign = positive;
+       } else {
+               sign = negative;
+       }
+
+       if (chunk_size == 1) {
+               E tmp;
+               tmp = static_cast< E >(u.chunk[0]) * static_cast< E >(v.chunk[0]);
+               num_type tnum = num_type(reinterpret_cast< N* >(&tmp), 2, sign);
+               return tnum;
+       }
+
+       std::pair< num_type, num_type > u12 = u.split();
+       std::pair< num_type, num_type > v12 = v.split();
+
+       // Los nombres M, D y H los puso Rosita en clase, cambiar si se les
+       // ocurren algunos mejores!
+       // m = u1*v1
+       // d = u2*v2
+       // h = (u1+v1)*(u2+v2) = u1*u2+u1*v2+u2*v1+u2*v2
+       num_type m = karastuba(u12.second, v12.second);
+       num_type d = karastuba(u12.first, v12.first);
+       num_type h = karastuba(u12.second + v12.second,
+                       u12.first + v12.first);
+
+       // H-D-M = u1*u2+u1*v2+u2*v1+u2*v2 - u2*v2 - u1*v1 = u1*v2+u2*v1
+       // u1*v1 << base^N + u1*v2+u2*v1 << base^N/2 + u2*v2
+       num_type res;
+       res = (m << chunk_size) + ((h - d - m) << (chunk_size / 2) ) + h;
+       res.sign = sign;
+       return res;
+}
+
+
+/* Potenciacion usando multiplicaciones sucesivas.
+ * Toma dos parametros u y v, devuelve u^v; asume v positivo.
+ */
+template < typename N, typename E >
+number < N, E > pot_ko(const number< N, E > &u, const number< N, E > &v)
+{
+       assert(v.sign == positive);
+       number< N, E > res, i;
+
+       res = u;
+       res.sign = u.sign;
+
+       for (i = 1; i < v; i += 1) {
+               res *= u;
+       }
+
+       return res;
+}
+
+/* Potenciacion usando división y conquista.
+ * Toma dos parametros u y v, devuelve u^v; asume v positivo.
+ *
+ * El pseudocódigo del algoritmo es:
+ * pot(x, y):
+ *     if y == 1:
+ *             return x
+ *     res = pot(x, y/2)
+ *     res = res * res
+ *     if y es impar:
+ *             res = res * x
+ *     return res
+ *
+ * Es O(n) ya que la ecuación es T(n) = T(n/2) + O(1)
+ *
+ * El grafo que lo 'representa' (siendo los nodos el exponente y) algo como:
+ *
+ *                      1 3
+ *                   _/  |  \_
+ *                 _/    |    \_
+ *                /      |      \
+ *               6       1       6
+ *             /   \           /   \
+ *            /     \         /     \
+ *           3       3       3       3
+ *          /|\     /|\     /|\     /|\
+ *         2 1 2   2 1 2   2 1 2   2 1 2
+ *        / \ / \ / \ / \ / \ / \ / \ / \
+ *        1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+ *
+ */
+template < typename N, typename E >
+number< N, E > pot_dyc(const number< N, E > &x, const number< N, E > &y)
+{
+       assert(y.sign == positive);
+       //std::cout << "pot(" << x << ", " << y << ")\n";
+       if (y == number< N, E >(1))
+       {
+               std::cout << "y es 1 => FIN pot(" << x << ", " << y << ")\n";
+               return x;
+       }
+       number< N, E > res = pot_dyc(x, y.dividido_dos());
+       //std::cout << "y.dividido_dos() = " << y.dividido_dos() << "\n";
+       //std::cout << "res = " << res << "\n";
+       res *= res;
+       //std::cout << "res = " << res << "\n";
+       if (y.es_impar())
+       {
+               //std::cout << y << " es IMPAR => ";
+               res *= x; // Multiplico por el x que falta
+               //std::cout << "res = " << res << "\n";
+       }
+       //std::cout << "FIN pot(" << x << ", " << y << ")\n\n";
+       return res;
+}