+template < typename N, typename E >
+number< N, E >& number< N, E >::operator*= (const number< N, E >& n)
+{
+ //number < N, E > r_op = n;
+ //normalize_length(n);
+ //n.normalize_length(*this);
+ *this = naif(*this, n);
+ return *this;
+}
+
+template < typename N, typename E >
+number< N, E > operator* (const number< N, E >& n1, const number< N, E >& n2)
+{
+ return naif(n1, n2);
+}
+
+template < typename N, typename E >
+number< N, E >& number< N, E >::normalize_length(const number< N, E >& n)
+{
+ // si son de distinto tamaño tengo que agregar ceros a la izquierda al
+ // menor para división y conquista
+ while (chunk.size() < n.chunk.size())
+ {
+ chunk.push_back(0);
+ }
+
+ // si no tiene cantidad par de números le agrego un atomic_type 0 a la
+ // izquierda para no tener que contemplar splits de chunks impares
+ if ((chunk.size() % 2) != 0)
+ {
+ chunk.push_back(0);
+ }
+}
+
+template < typename N, typename E >
+std::pair< number< N, E >, number< N, E > > number< N, E >::split() const
+{
+ typedef number< N, E > num_type;
+ typename num_type::size_type full_size = chunk.size();
+ typename num_type::size_type halves_size = full_size / 2;
+ typename num_type::size_type i = 0;
+
+ // vacío las mitades
+ std::pair< num_type, num_type > par;
+
+ // la primera mitad va al pedazo inferior
+ par.first.chunk[0] = chunk[0];
+ for (i = 1; i < halves_size; i++)
+ {
+ par.first.chunk.push_back(chunk[i]);
+ }
+
+ // la segunda mitad (si full_size es impar es 1 más que la primera
+ // mitad) va al pedazo superior
+ par.second.chunk[0] = chunk[i];
+ for (i++ ; i < full_size; i++)
+ {
+ par.second.chunk.push_back(chunk[i]);
+ }
+ return par;
+}
+
+// es el algoritmo de división y conquista, que se llama recursivamente
+template < typename N, typename E >
+number < N, E > karatsuba(const number< N, E > &u, const number< N, E > &v)
+{
+ typedef number< N, E > num_type;
+
+ // tomo el chunk size de u (el de v DEBE ser el mismo)
+ typename num_type::size_type chunk_size = u.chunk.size();
+
+ if (chunk_size == 1)
+ {
+ // condición de corte. Ver que por más que tenga 1 único
+ // elemento puede "rebalsar" la capacidad del atomic_type,
+ // como ser multiplicando 0xff * 0xff usando bytes!!!
+ return u.chunk[0] * v.chunk[0];
+ }
+
+ std::pair< num_type, num_type > u12 = u.split();
+ std::pair< num_type, num_type > v12 = v.split();
+
+ // Los nombres M, D y H los puso Rosita en clase, cambiar si se les
+ // ocurren algunos mejores!
+ // m = u1*v1
+ // d = u2*v2
+ // h = (u1+v1)*(u2+v2) = u1*u2+u1*v2+u2*v1+u2*v2
+ num_type m = karastuba(u12.first, v12.first);
+ num_type d = karastuba(u12.second, v12.second);
+ num_type h = karastuba(u12.first + v12.first,
+ u12.second + v12.second);
+
+ // H-D-M = u1*u2+u1*v2+u2*v1+u2*v2 - u2*v2 - u1*v1 = u1*v2+u2*v1
+ // u1*v1 << base^N + u1*v2+u2*v1 << base^N/2 + u2*v2
+ return (m << chunk_size) + ((h - d - m) << chunk_size / 2) + h;
+
+}
+
+
+/* Algoritmo "naif" (por no decir "cabeza" o "bruto") de multiplicacion. */
+template < typename N, typename E >
+number < N, E > naif(const number< N, E > &u, const number< N, E > &v)
+{
+ typedef number< N, E > num_type;
+
+ // tomo el chunk size de u (el de v DEBE ser el mismo)
+ typename num_type::size_type chunk_size = u.chunk.size();
+
+ sign_type sign;
+
+ if ( (u.sign == positive && v.sign == positive) ||
+ (u.sign == negative && v.sign == negative) ) {
+ sign = positive;
+ } else {
+ sign = negative;
+ }
+
+ //printf("naif %d %d\n", u.chunk.size(), v.chunk.size() );
+
+ if (chunk_size == 1)
+ {
+ /* Si llegamos a multiplicar dos de tamaño 1, lo que hacemos
+ * es usar la multiplicacion nativa del tipo N, guardando el
+ * resultado en el tipo E (que sabemos es del doble de tamaño
+ * de N, ni mas ni menos).
+ * Luego, armamos un objeto number usando al resultado como
+ * buffer. Si, es feo.
+ */
+ E tmp;
+ tmp = static_cast< E >(u.chunk[0]) * static_cast< E >(v.chunk[0]);
+ num_type tnum = num_type(reinterpret_cast< N* >(&tmp), 2, sign);
+ //std::cout << "T:" << tnum << " " << tmp << "\n";
+ //printf("1: %lu %lu %llu\n", u.chunk[0], v.chunk[0], tmp);
+ return tnum;
+ }
+
+ std::pair< num_type, num_type > u12 = u.split();
+ std::pair< num_type, num_type > v12 = v.split();
+
+ //std::cout << "u:" << u12.first << " - " << u12.second << "\n";
+ //std::cout << "v:" << v12.first << " - " << v12.second << "\n";
+
+ /* m11 = u1*v1
+ * m12 = u1*v2
+ * m21 = u2*v1
+ * m22 = u2*v2
+ */
+ num_type m11 = naif(u12.first, v12.first);
+ num_type m12 = naif(u12.first, v12.second);
+ num_type m21 = naif(u12.second, v12.first);
+ num_type m22 = naif(u12.second, v12.second);
+
+ /*
+ printf("csize: %d\n", chunk_size);
+ std::cout << "11 " << m11 << "\n";
+ std::cout << "12 " << m12 << "\n";
+ std::cout << "21 " << m21 << "\n";
+ std::cout << "22 " << m22 << "\n";
+ */
+
+ /* u*v = (u1*v1) * 2^n + (u1*v2 + u2*v1) * 2^(n/2) + u2*v2
+ * PERO! Como los numeros estan "al reves" nos queda:
+ * = m22 * 2^n + (m12 + m21) * 2^(n/2) + m11
+ */
+ num_type res;
+ res = m22 << chunk_size;
+ res = res + ((m12 + m21) << (chunk_size / 2));
+ res = res + m11;
+ res.sign = sign;
+ /*
+ std::cout << "r: " << res << "\n";
+ std::cout << "\n";
+ */
+ return res;
+}
+
+
+