]> git.llucax.com Git - z.facultad/75.68/celdas.git/blob - trunk/src/breve/Celdas.tz
7c1afdc5d79b018d6edb469e9e8104d3b3dd3fb6
[z.facultad/75.68/celdas.git] / trunk / src / breve / Celdas.tz
1 @use PhysicalControl.\r
2 @use Shape.\r
3 @use Stationary.\r
4 @use Link.\r
5 @use MultiBody.\r
6 @use Drawing.\r
7 @use SistemaAutonomo.\r
8 \r
9 @define CELDAS_MAX_VELOCITY 30.\r
10 @define CELDAS_TURNO 100.\r
11 @define CELDAS_SENSOR_THRESHOLD 9.\r
12 \r
13 PhysicalControl : CeldasControl {\r
14         % This class is used for building simple vehicle \r
15         % simulations.  To create a vehicle simulation, \r
16         % subclass CeldasControl and use the init method to \r
17         % create OBJECT(CeldasObstacle) and \r
18         % OBJECT(CeldasVehicle) objects.\r
19 \r
20         + variables:\r
21                 floor (object).\r
22                 floorShape (object).\r
23                 cloudTexture (object).\r
24 \r
25 \r
26         + to init:\r
27                 self enable-lighting.\r
28                 #self enable-smooth-drawing.\r
29 \r
30                 floorShape = new Shape.\r
31                 floorShape init-with-cube size (200, .2, 200).\r
32 \r
33                 floor = new Stationary.\r
34                 floor register with-shape floorShape at-location (0, 0, 0).\r
35                 #floor catch-shadows.\r
36 \r
37                 self point-camera at (0, 0, 0) from (3, 3, 24).\r
38 \r
39                 #self enable-shadows.\r
40                 #self enable-reflections.\r
41 \r
42                 cloudTexture = (new Image load from "images/clouds.png"). \r
43                 self set-background-color to (.4, .6, .9).\r
44                 self set-background-texture-image to cloudTexture.\r
45 \r
46 }\r
47 \r
48 MultiBody : CeldasLightVehicle (aka CeldasLightVehicles) {\r
49         % This object is used in conjunction with OBJECT(CeldasControl) to\r
50         % create simple vehicles.\r
51 \r
52         + variables:\r
53                 bodyShape (object).\r
54                 wheelShape (object).\r
55                 sensorShape (object).\r
56                 bodyLink (object).\r
57 \r
58                 wheels (list).\r
59 \r
60         + to init:\r
61                 bodyShape = new Shape.\r
62                 bodyShape init-with-cube size (4.0, .75, 3.0).  \r
63 \r
64                 wheelShape = new Shape.\r
65                 wheelShape init-with-polygon-disk radius ( self get-wheel-radius ) sides 20 height ( self get-wheel-width ).\r
66                 # 40\r
67 \r
68                 sensorShape = new Shape.\r
69                 sensorShape init-with-polygon-cone radius .2 sides 5 height .5.\r
70                 # 10\r
71 \r
72                 bodyShape set-density to ( self get-density ).\r
73                 bodyLink = new Link.\r
74                 bodyLink set-shape to bodyShape.        \r
75                 bodyLink set-mu to -1.0.\r
76                 bodyLink set-eT to .8.\r
77 \r
78                 self set-root to bodyLink.\r
79 \r
80                 self move to (0, 0.9, 0).\r
81                 self set-texture-scale to 1.5.\r
82 \r
83         - to get-density:\r
84                 return 1.0.\r
85 \r
86         - to get-wheel-width:\r
87                 return 0.1.\r
88 \r
89         - to get-wheel-radius:\r
90                 return 0.6.\r
91 \r
92         + section "Adding Wheels and Sensors to a Vehicle"\r
93 \r
94         + to add-wheel at location (vector):\r
95                 % Adds a wheel at location on the vehicle.  This method returns\r
96                 % the wheel which is created, a OBJECT(CeldasWheel).\r
97 \r
98                 wheel, joint (object).\r
99 \r
100                 wheel = new CeldasWheel.\r
101                 wheel set-shape to wheelShape.\r
102 \r
103                 joint = new RevoluteJoint.\r
104 \r
105                 joint set-relative-rotation around-axis (1, 0, 0) by 1.5708.\r
106                 joint link parent bodyLink to-child wheel with-normal (0, 0, 1)\r
107                                         with-parent-point location with-child-point (0, 0, 0).\r
108 \r
109                 wheel set-eT to .8.\r
110                 wheel set-texture to 0.\r
111                 wheel set-joint to joint.\r
112                 joint set-strength-limit to (joint get-strength-hard-limit) / 2.\r
113                 wheel set-color to (.6, .6, .6).\r
114                 wheel set-mu to 100000.\r
115 \r
116                 self add-dependency on joint.\r
117                 self add-dependency on wheel.\r
118 \r
119                 push wheel onto wheels.\r
120 \r
121                 return wheel.\r
122 \r
123         + to add-sensor at location (vector) with-direction direction = (0,1,0)(vector) :\r
124                 % Adds a sensor at location on the vehicle.  This method returns\r
125                 % the sensor which is created, a OBJECT(CeldasSensor).\r
126 \r
127                 sensor, joint (object).\r
128 \r
129                 sensor = new CeldasSensor.\r
130                 sensor set-direction to direction.\r
131                 \r
132                 sensor set-shape to sensorShape.\r
133 \r
134                 joint = new RevoluteJoint.\r
135 \r
136                 joint set-relative-rotation around-axis (0, 0, 1) by -1.57.\r
137                 joint link parent bodyLink to-child sensor with-normal (1, 0, 0)\r
138                                         with-parent-point location with-child-point (0, 0, 0).\r
139 \r
140                 joint set-double-spring with-strength 300 with-max 0.01 with-min -0.01.\r
141 \r
142                 self add-dependency on joint.\r
143                 self add-dependency on sensor.\r
144 \r
145                 sensor set-color to (0, 0, 0).\r
146 \r
147                 #push sensor onto sensors.\r
148 \r
149                 return sensor.\r
150 \r
151         + to destroy:\r
152                 free sensorShape.\r
153                 free wheelShape.\r
154                 free bodyShape.\r
155 \r
156                 super destroy.\r
157 }\r
158 \r
159 CeldasLightVehicle : CeldasVehicle (aka CeldasVehicles) {\r
160         % A heavy duty version of OBJECT(CeldasLightVehicle), this\r
161         % vehicle is heavier and harder to control, but more stable\r
162         % at higher speeds.\r
163         +variables:\r
164                 lSensor, rSensor, fSensor, bSensor (object).\r
165                 lfWheel,rfWheel,lbWheel,rbWheel (object).\r
166                 tleft,tright (int).         \r
167                 avanzando,retrocediendo,girando_izq,girando_der(int).       \r
168                 iterate(int).\r
169                 teorias (list).\r
170                 sa (object).\r
171                 teoria (object).\r
172                 entorno (hash).\r
173                 datos-finales (hash).\r
174                 plan_finished (int).\r
175         \r
176         - to get-density:\r
177                 return 20.0.\r
178 \r
179         - to get-wheel-width:\r
180                 return 0.4.\r
181 \r
182         - to get-wheel-radius:\r
183                 return 0.8.\r
184 \r
185         + to set-global-velocity to velocity (float):\r
186                 rfWheel set-velocity to velocity.\r
187                 lfWheel set-velocity to velocity.\r
188                 rbWheel set-velocity to velocity.\r
189                 lbWheel set-velocity to velocity.\r
190 \r
191         + to get-global-velocity:\r
192                 return ((rfWheel get-velocity) + (lfWheel get-velocity)) / 2.\r
193 \r
194         + to turn-right:                \r
195                 tright++.\r
196 \r
197                 self rotate around-axis (0,1,0) by (-1.5709/CELDAS_TURNO)*tright. \r
198                         \r
199                 if (tright == CELDAS_TURNO): tright=0.\r
200 \r
201 \r
202         + to turn-left:\r
203                 tleft++.\r
204 \r
205                 self rotate around-axis (0,1,0) by (1.5709/CELDAS_TURNO)*tleft. \r
206                         \r
207                 if (tleft == CELDAS_TURNO): tleft=0.\r
208 \r
209 \r
210         + to get-sensor-value:\r
211                 return (fSensor get-sensor-value).\r
212 \r
213         +to update-entorno:\r
214                 entorno{"sensor_f"} = (fSensor get-sensor-value).\r
215                 entorno{"sensor_b"} = (bSensor get-sensor-value).\r
216                 entorno{"sensor_r"} = (rSensor get-sensor-value).\r
217                 entorno{"sensor_l"} = (lSensor get-sensor-value).\r
218                 entorno{"movido"} = 0. # TODO\r
219                 sa update-entorno with entorno.            \r
220 \r
221         +to init:\r
222                 # Configuracion de robot\r
223                 fSensor = (self add-sensor at (2.0, .4, 0)).            \r
224                 fSensor set-direction to (1,0,0).\r
225                 #fSensor set-direction to (0,0,1).\r
226                 fSensor set-id at 1.\r
227                 fSensor set-body at self.\r
228                 bSensor = (self add-sensor at (-2.0, .4, 0)).\r
229                 bSensor set-direction to (-1,0,0).\r
230                 #bSensor set-direction to (0,0,1).\r
231                 bSensor set-id at 2.\r
232                 bSensor set-body at self.\r
233                 lSensor = (self add-sensor at (0, .4, 1.5)).\r
234                 lSensor set-direction to (0,0,1).\r
235                 #lSensor set-direction to (1,0,0).\r
236                 lSensor set-id at 3.\r
237                 lSensor set-body at self.\r
238 \r
239                 rSensor = (self add-sensor at (0, .4, -1.5)).\r
240                 rSensor set-direction to (0,0,-1).\r
241                 #rSensor set-direction to (-1,0,0).\r
242                 rSensor set-id at 4.\r
243                 rSensor set-body at self.\r
244 \r
245                 lfWheel = (self add-wheel at (2, 0, -1.5)).\r
246                 lbWheel = (self add-wheel at (-2, 0, -1.5)).\r
247                 rfWheel = (self add-wheel at (2, 0, 1.5)).\r
248                 rbWheel = (self add-wheel at (-2, 0, 1.5)).\r
249 \r
250                 tleft=tright=0.\r
251                 avanzando=0.\r
252                 retrocediendo=0.\r
253                 girando_izq=0.            \r
254                 girando_der=0.            \r
255 \r
256                 # Configuracion de sistema autonomo\r
257                 sa = new SistemaAutonomo.\r
258                 iterate = 0.\r
259                 plan_finished = 1. # así planificamos apenas empezamos\r
260 \r
261                 teorias = 4 new Teorias.\r
262                 teorias{0} init named "Avanzar" with-action "adelante".\r
263                 teorias{0} set-dato-inicial name "sensor_f" value 0.\r
264                 teorias{0} set-dato-inicial name "sensor_b" value ANY.\r
265                 teorias{0} set-dato-inicial name "sensor_r" value ANY.\r
266                 teorias{0} set-dato-inicial name "sensor_l" value ANY.\r
267                 teorias{0} set-dato-inicial name "movido" value ANY.\r
268                 teorias{0} set-dato-final name "sensor_f" value ANY.\r
269                 teorias{0} set-dato-final name "sensor_b" value ANY.\r
270                 teorias{0} set-dato-final name "sensor_r" value ANY.\r
271                 teorias{0} set-dato-final name "sensor_l" value ANY.\r
272                 teorias{0} set-dato-final name "movido" value 1.\r
273 \r
274                 teorias{1} init named "Retroceder" with-action "atras".\r
275                 teorias{1} set-dato-inicial name "sensor_f" value 1.\r
276                 teorias{1} set-dato-inicial name "sensor_b" value ANY.\r
277                 teorias{1} set-dato-inicial name "sensor_r" value ANY.\r
278                 teorias{1} set-dato-inicial name "sensor_l" value ANY.\r
279                 teorias{1} set-dato-inicial name "movido" value ANY.\r
280                 teorias{1} set-dato-final name "sensor_f" value 0.\r
281                 teorias{1} set-dato-final name "sensor_b" value ANY.\r
282                 teorias{1} set-dato-final name "sensor_r" value ANY.\r
283                 teorias{1} set-dato-final name "sensor_l" value ANY.\r
284                 teorias{1} set-dato-final name "movido" value 1.\r
285 \r
286                 teorias{2} init named "Rotar a derecha" with-action "derecha".\r
287                 teorias{2} set-dato-inicial name "sensor_f" value 1.\r
288                 teorias{2} set-dato-inicial name "sensor_b" value ANY.\r
289                 teorias{2} set-dato-inicial name "sensor_r" value ANY.\r
290                 teorias{2} set-dato-inicial name "sensor_l" value ANY.\r
291                 teorias{2} set-dato-inicial name "movido" value ANY.\r
292                 teorias{2} set-dato-final name "sensor_f" value 0.\r
293                 teorias{2} set-dato-final name "sensor_b" value ANY.\r
294                 teorias{2} set-dato-final name "sensor_r" value ANY.\r
295                 teorias{2} set-dato-final name "sensor_l" value 1.\r
296                 teorias{2} set-dato-final name "movido" value 0.\r
297 \r
298                 teorias{3} init named "Rotar a izquierda" with-action "izquierda".\r
299                 teorias{3} set-dato-inicial name "sensor_f" value 1.\r
300                 teorias{3} set-dato-inicial name "sensor_b" value ANY.\r
301                 teorias{3} set-dato-inicial name "sensor_r" value ANY.\r
302                 teorias{3} set-dato-inicial name "sensor_l" value ANY.\r
303                 teorias{3} set-dato-inicial name "movido" value ANY.\r
304                 teorias{3} set-dato-final name "sensor_f" value 0.\r
305                 teorias{3} set-dato-final name "sensor_b" value ANY.\r
306                 teorias{3} set-dato-final name "sensor_r" value 1.\r
307                 teorias{3} set-dato-final name "sensor_l" value ANY.\r
308                 teorias{3} set-dato-final name "movido" value 0.\r
309 \r
310                 sa add teoria teorias{0}.\r
311                 sa add teoria teorias{1}.\r
312                 sa add teoria teorias{2}.\r
313                 sa add teoria teorias{3}.\r
314 \r
315                 datos-finales{"movido"} = 1.\r
316                 sa update-datos-finales with datos-finales.\r
317 \r
318         +to iterate:\r
319                 self update-entorno.\r
320 \r
321                 if (0): # TODO posicion_final == posicion_actual\r
322                 {\r
323                         print "Llegamos al FINAL!!!".\r
324                         self set-global-velocity to 0.\r
325                         return.\r
326                 }\r
327 \r
328                 if (plan_finished):\r
329                 {\r
330                         sa plan. # Si no tenemos plan, lo hacemos\r
331                         plan_finished = 0.\r
332                         # TODO posicion_inicial = posicion_actual\r
333                         if (! (sa has-next-theory)):\r
334                         {\r
335                                 plan_finished = 1.\r
336                                 print "El planificador no encuentra PLAN!!!".\r
337                                 return.\r
338                         }\r
339                 }\r
340 \r
341                 if (iterate == 0):\r
342                 {\r
343                         if (sa has-next-theory):\r
344                         {\r
345                                 teoria = sa get-next-theory.\r
346                                 if ((teoria get-accion) == "adelante"):\r
347                                 {\r
348                                         avanzando = 1.\r
349                                         retrocediendo = 0.\r
350                                         girando_izq = 0.\r
351                                         girando_der = 0.\r
352                                 }\r
353                                 if ((teoria get-accion) == "atras"):\r
354                                 {\r
355                                         avanzando = 0.\r
356                                         retrocediendo = 1.\r
357                                         girando_izq = 0.\r
358                                         girando_der = 0.\r
359                                 }\r
360                                 if ((teoria get-accion) == "izquierda"):\r
361                                 {\r
362                                         avanzando = 0.\r
363                                         retrocediendo = 0.\r
364                                         girando_izq = 1.\r
365                                         girando_der = 0.\r
366                                 }\r
367                                 if ((teoria get-accion) == "derecha"):\r
368                                 {\r
369                                         avanzando = 0.\r
370                                         retrocediendo = 0.\r
371                                         girando_izq = 0.\r
372                                         girando_der = 1.\r
373                                 }\r
374                         }\r
375                 }\r
376 \r
377                 if (iterate == CELDAS_TURNO):\r
378                 {\r
379                         # TODO if (posicion_actual == posicion_inicial): movido = false. else movido = true.\r
380                         if (sa validate theory teoria):\r
381                         {\r
382                         }\r
383                         else\r
384                         {\r
385                                 plan_finished = 1.\r
386                         }\r
387                 }\r
388 \r
389                 iterate++.\r
390                 if (iterate == CELDAS_TURNO + 1):\r
391                         iterate = 0.\r
392 \r
393                 # Movimiento del robot\r
394                 if (avanzando):\r
395                         self set-global-velocity to (15).\r
396                 if (retrocediendo):\r
397                         self set-global-velocity to (-15).\r
398                 if (girando_izq):\r
399                         self turn-left.\r
400                 if (girando_der):\r
401                         self turn-right.\r
402 \r
403 }\r
404 \r
405 Stationary : CeldasObstacle (aka CeldasObstacles) {\r
406         % A CeldasObstacle is used in conjunction with OBJECT(CeldasControl)\r
407         % and OBJECT(CeldasVehicle).  It is what the OBJECT(CeldasSensor)\r
408         % objects on the CeldasVehicle detect.\r
409         % <p>\r
410         % There are no special behaviors associated with the walls--they're \r
411         % basically just plain OBJECT(Stationary) objects.\r
412    \r
413         +variables:\r
414             large (float).\r
415             direction (vector). \r
416 \r
417 \r
418         + to init with-size theSize = (10, 3, .1) (vector) with-color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 0, 0, 1 ), ( 0, 1, 0 ), ( 1, 0, 0 ) ] (matrix):                    \r
419                 self init-with-shape shape (new Shape init-with-cube size theSize) color theColor at-location theLocation with-rotation theRotation.\r
420                 large=20.\r
421 \r
422         + to init-with-shape shape theShape (object) color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 1, 0, 0 ), ( 0, 1, 0 ), ( 0, 0, 1 ) ] (matrix):\r
423                 self register with-shape theShape at-location theLocation with-rotation theRotation.\r
424                 self set-color to theColor.\r
425                 \r
426         + to get-large:\r
427             return large.\r
428 \r
429         + to set-direction at theDirection (vector):\r
430             direction=theDirection.\r
431 \r
432         + to get-direction:\r
433             return direction.\r
434 }\r
435 \r
436 Link : CeldasWheel (aka CeldasWheels) {\r
437         % A CeldasWheel is used in conjunction with OBJECT(CeldasVehicle)\r
438         % to build Celdas vehicles.  This class is typically not instantiated\r
439         % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
440         % add a wheel to the vehicle.\r
441 \r
442         + variables:\r
443                 joint (object).\r
444                 velocity (float).\r
445 \r
446         + to init:\r
447                 velocity = 0.\r
448 \r
449         - to set-joint to j (object):\r
450                 % Used internally.\r
451 \r
452                 joint = j.\r
453 \r
454         + section "Configuring the Wheel's Velocity"\r
455 \r
456         + to set-velocity to n (float):\r
457                 % Sets the velocity of this wheel.\r
458 \r
459                 if n > CELDAS_MAX_VELOCITY: n = CELDAS_MAX_VELOCITY.\r
460                 velocity = n.\r
461 \r
462                 joint set-joint-velocity to velocity.\r
463 \r
464         + to get-velocity:\r
465                 % Gets the velocity of this wheel.\r
466                 \r
467                 return velocity.\r
468 \r
469 }\r
470 \r
471 Link : CeldasSensor (aka CeldasSensors) {\r
472         % A CeldasSensor is used in conjunction with OBJECT(CeldasVehicle)\r
473         % to build Celdas vehicles.  This class is typically not instantiated\r
474         % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
475         % add a sensor to the vehicle.\r
476 \r
477         + variables:\r
478                 direction (vector).\r
479                 positiveDirection(vector).\r
480                 sensorAngle (float).\r
481                 value (float).\r
482                 draw (object).\r
483                 body(object).\r
484                 id(int).\r
485 \r
486         + to init :\r
487                 direction = (1,0,1).\r
488                 positiveDirection= (1,0,1).\r
489                 sensorAngle = 1.6.\r
490                 value = 0.0.\r
491                 draw = new Drawing.\r
492                                 \r
493 \r
494   + section "Configuring the Sensor Values"\r
495         + to set-id at n (int):\r
496             id=n.\r
497 \r
498         + to set-body at robotBody(object):\r
499                 body=robotBody.\r
500                 \r
501         + to set-sensor-angle to n (float):\r
502                 % Sets the angle in which this sensor can detect obstacles.  The default\r
503                 % value of 1.6 means that the sensor can see most of everything in\r
504                 % front of it.  Setting the value to be any higher leads to general\r
505                 % wackiness, so I don't suggest it.\r
506 \r
507                 sensorAngle = n.\r
508 \r
509         + to set-direction to n (vector):\r
510                 direction = n.\r
511                 positiveDirection::x=|n::x|.\r
512                 positiveDirection::y=|n::y|.\r
513                 positiveDirection::z=|n::z|.\r
514 \r
515   + section "Getting the Sensor Values"\r
516 \r
517         + to get-sensor-value:\r
518                 % Gets the sensor value. This should be used from post-iterate,\r
519                 % if not, the sensor reading correspond to the previous\r
520                 % iteration.\r
521                 val (float).\r
522 \r
523                 val = self get-data.\r
524                 if (val > CELDAS_SENSOR_THRESHOLD): return 0.\r
525                 else           return 1.\r
526         \r
527         #+ to iterate:\r
528         \r
529         + to get-data:\r
530                 i (object).\r
531                 min,dist (float).\r
532                 v,obs(vector).\r
533                 j (int).\r
534                 des2,des3(int).\r
535                 wallBegin,wallEnd,wallCenter (float).\r
536                 obsLoc (vector).                \r
537                 posObstacle,destiny,yo(vector).\r
538                                              \r
539                 draw clear.\r
540                 value = 0.0.\r
541                 j=0.\r
542                 min=0.\r
543                 foreach i in (all CeldasObstacles): \r
544                         {\r
545                          posObstacle=i get-location.\r
546                          v = (body get-location) - (self get-location ).\r
547                          obsLoc::y=posObstacle::y.\r
548                          \r
549                          if (dot((i get-direction),(1,0,0))):\r
550                           {\r
551                            obsLoc::x=((self get-location)::x + ((posObstacle::z - (self get-location)::z)*v::x/v::z)).\r
552                            obsLoc::z=posObstacle::z.\r
553                           }                             \r
554                           else\r
555                           {\r
556                            obsLoc::z=((self get-location)::z + ((posObstacle::x - (self get-location)::x)*v::z/v::x)).\r
557                            obsLoc::x=posObstacle::x.\r
558                           } \r
559                                                                 \r
560                         #!\r
561                         if(dot((i get-direction),direction)==0):\r
562                                 des1=1.\r
563                         else\r
564                                 des1=0.\r
565                         !#\r
566 \r
567                         des2=0.\r
568                         if(dot(direction,(1,1,1))<0):\r
569                         {                        \r
570                             if((dot((self get-location),positiveDirection))>(dot(obsLoc,positiveDirection))):\r
571                                         des2=1.      \r
572                         }\r
573                         else\r
574                         {\r
575                             if((dot((self get-location),positiveDirection))<(dot(obsLoc,positiveDirection))):\r
576                                         des2=1.         \r
577                         }                       \r
578 \r
579 \r
580                         #Compruebo que el robot este frente a la pared\r
581                         wallCenter=dot((i get-location),(i get-direction)).\r
582                         wallBegin=wallCenter- (i get-large)/2.\r
583                         wallEnd=wallCenter + (i get-large)/2.           \r
584 \r
585                         \r
586                         yo=self get-location.\r
587                         destiny=i get-direction.\r
588 \r
589                                                                                                                 \r
590 \r
591                         if (dot((self get-location),(i get-direction)) > wallBegin) && (dot((self get-location),(i get-direction)) < wallEnd):\r
592                                 des3=1.\r
593                         else\r
594                         {\r
595                                  des3=0.\r
596                                  \r
597                         }                               \r
598                        \r
599                         if ((des2) && (des3)):\r
600                          {                                    \r
601                                 draw clear.\r
602 \r
603                                 dist=|obsLoc - (self get-location)|.\r
604                                 if( (j==0) || (min>dist) ):\r
605                                  {\r
606                                         min=dist.\r
607                                         obs=obsLoc.\r
608                                         j++.\r
609                                         #print "sensor: $id obstaculo: $posObstacle direP: $destiny direS: $direction yo: $yo ".        \r
610                                  }\r
611 \r
612                          }                                              \r
613 \r
614                         \r
615                 } #end for\r
616 \r
617                 if(j!=0):\r
618                         {\r
619                           #Dibujo el laser\r
620                           draw set-color to (1, 0, 0).\r
621                           draw draw-line from (self get-location) to (obs).\r
622                           return min.\r
623                         }\r
624                 \r
625 \r
626                 value = -1.\r
627                 return value.\r
628 \r
629 \r
630 }\r
631                 \r