]> git.llucax.com Git - software/druntime.git/blobdiff - import/bitmanip.di
Fixed eol-style for all source files. This closes #1
[software/druntime.git] / import / bitmanip.di
index ab2c3ec565a9f82491ae0fab3d6ded3305006268..2e1496dfc6ae71b09291e9015ec09da111c186ab 100644 (file)
-/**\r
- * This module contains a collection of bit-level operations.\r
- *\r
- * Copyright: Copyright (c) 2005-2008, The D Runtime Project\r
- * License:   BSD Style, see LICENSE\r
- * Authors:   Walter Bright, Don Clugston, Sean Kelly\r
- */\r
-module bitmanip;\r
-\r
-\r
-version( DDoc )\r
-{\r
-    /**\r
-     * Scans the bits in v starting with bit 0, looking\r
-     * for the first set bit.\r
-     * Returns:\r
-     *  The bit number of the first bit set.\r
-     *  The return value is undefined if v is zero.\r
-     */\r
-    int bsf( uint v );\r
-\r
-\r
-    /**\r
-     * Scans the bits in v from the most significant bit\r
-     * to the least significant bit, looking\r
-     * for the first set bit.\r
-     * Returns:\r
-     *  The bit number of the first bit set.\r
-     *  The return value is undefined if v is zero.\r
-     * Example:\r
-     * ---\r
-     * import bitmanip;\r
-     *\r
-     * int main()\r
-     * {\r
-     *     uint v;\r
-     *     int x;\r
-     *\r
-     *     v = 0x21;\r
-     *     x = bsf(v);\r
-     *     printf("bsf(x%x) = %d\n", v, x);\r
-     *     x = bsr(v);\r
-     *     printf("bsr(x%x) = %d\n", v, x);\r
-     *     return 0;\r
-     * }\r
-     * ---\r
-     * Output:\r
-     *  bsf(x21) = 0<br>\r
-     *  bsr(x21) = 5\r
-     */\r
-    int bsr( uint v );\r
-\r
-\r
-    /**\r
-     * Tests the bit.\r
-     */\r
-    int bt( uint* p, uint bitnum );\r
-\r
-\r
-    /**\r
-     * Tests and complements the bit.\r
-     */\r
-    int btc( uint* p, uint bitnum );\r
-\r
-\r
-    /**\r
-     * Tests and resets (sets to 0) the bit.\r
-     */\r
-    int btr( uint* p, uint bitnum );\r
-\r
-\r
-    /**\r
-     * Tests and sets the bit.\r
-     * Params:\r
-     * p = a non-NULL pointer to an array of uints.\r
-     * index = a bit number, starting with bit 0 of p[0],\r
-     * and progressing. It addresses bits like the expression:\r
-    ---\r
-    p[index / (uint.sizeof*8)] & (1 << (index & ((uint.sizeof*8) - 1)))\r
-    ---\r
-     * Returns:\r
-     *  A non-zero value if the bit was set, and a zero\r
-     *  if it was clear.\r
-     *\r
-     * Example:\r
-     * ---\r
-    import bitmanip;\r
-\r
-    int main()\r
-    {\r
-        uint array[2];\r
-\r
-        array[0] = 2;\r
-        array[1] = 0x100;\r
-\r
-        printf("btc(array, 35) = %d\n", <b>btc</b>(array, 35));\r
-        printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);\r
-\r
-        printf("btc(array, 35) = %d\n", <b>btc</b>(array, 35));\r
-        printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);\r
-\r
-        printf("bts(array, 35) = %d\n", <b>bts</b>(array, 35));\r
-        printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);\r
-\r
-        printf("btr(array, 35) = %d\n", <b>btr</b>(array, 35));\r
-        printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);\r
-\r
-        printf("bt(array, 1) = %d\n", <b>bt</b>(array, 1));\r
-        printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);\r
-\r
-        return 0;\r
-    }\r
-     * ---\r
-     * Output:\r
-    <pre>\r
-    btc(array, 35) = 0\r
-    array = [0]:x2, [1]:x108\r
-    btc(array, 35) = -1\r
-    array = [0]:x2, [1]:x100\r
-    bts(array, 35) = 0\r
-    array = [0]:x2, [1]:x108\r
-    btr(array, 35) = -1\r
-    array = [0]:x2, [1]:x100\r
-    bt(array, 1) = -1\r
-    array = [0]:x2, [1]:x100\r
-    </pre>\r
-     */\r
-    int bts( uint* p, uint bitnum );\r
-\r
-\r
-    /**\r
-     * Swaps bytes in a 4 byte uint end-to-end, i.e. byte 0 becomes\r
-     * byte 3, byte 1 becomes byte 2, byte 2 becomes byte 1, byte 3\r
-     * becomes byte 0.\r
-     */\r
-    uint bswap( uint v );\r
-\r
-\r
-    /**\r
-     * Reads I/O port at port_address.\r
-     */\r
-    ubyte inp( uint port_address );\r
-\r
-\r
-    /**\r
-     * ditto\r
-     */\r
-    ushort inpw( uint port_address );\r
-\r
-\r
-    /**\r
-     * ditto\r
-     */\r
-    uint inpl( uint port_address );\r
-\r
-\r
-    /**\r
-     * Writes and returns value to I/O port at port_address.\r
-     */\r
-    ubyte outp( uint port_address, ubyte value );\r
-\r
-\r
-    /**\r
-     * ditto\r
-     */\r
-    ushort outpw( uint port_address, ushort value );\r
-\r
-\r
-    /**\r
-     * ditto\r
-     */\r
-    uint outpl( uint port_address, uint value );\r
-}\r
-else\r
-{\r
-    public import std.intrinsic;\r
-}\r
-\r
-\r
-/**\r
- *  Calculates the number of set bits in a 32-bit integer.\r
- */\r
-int popcnt( uint x )\r
-{\r
-    // Avoid branches, and the potential for cache misses which\r
-    // could be incurred with a table lookup.\r
-\r
-    // We need to mask alternate bits to prevent the\r
-    // sum from overflowing.\r
-    // add neighbouring bits. Each bit is 0 or 1.\r
-    x = x - ((x>>1) & 0x5555_5555);\r
-    // now each two bits of x is a number 00,01 or 10.\r
-    // now add neighbouring pairs\r
-    x = ((x&0xCCCC_CCCC)>>2) + (x&0x3333_3333);\r
-    // now each nibble holds 0000-0100. Adding them won't\r
-    // overflow any more, so we don't need to mask any more\r
-\r
-    // Now add the nibbles, then the bytes, then the words\r
-    // We still need to mask to prevent double-counting.\r
-    // Note that if we used a rotate instead of a shift, we\r
-    // wouldn't need the masks, and could just divide the sum\r
-    // by 8 to account for the double-counting.\r
-    // On some CPUs, it may be faster to perform a multiply.\r
-\r
-    x += (x>>4);\r
-    x &= 0x0F0F_0F0F;\r
-    x += (x>>8);\r
-    x &= 0x00FF_00FF;\r
-    x += (x>>16);\r
-    x &= 0xFFFF;\r
-    return x;\r
-}\r
-\r
-\r
-/**\r
- * Reverses the order of bits in a 32-bit integer.\r
- */\r
-uint bitswap( uint x )\r
-{\r
-\r
-    version( D_InlineAsm_X86 )\r
-    {\r
-        asm\r
-        {\r
-            // Author: Tiago Gasiba.\r
-            mov EDX, EAX;\r
-            shr EAX, 1;\r
-            and EDX, 0x5555_5555;\r
-            and EAX, 0x5555_5555;\r
-            shl EDX, 1;\r
-            or  EAX, EDX;\r
-            mov EDX, EAX;\r
-            shr EAX, 2;\r
-            and EDX, 0x3333_3333;\r
-            and EAX, 0x3333_3333;\r
-            shl EDX, 2;\r
-            or  EAX, EDX;\r
-            mov EDX, EAX;\r
-            shr EAX, 4;\r
-            and EDX, 0x0f0f_0f0f;\r
-            and EAX, 0x0f0f_0f0f;\r
-            shl EDX, 4;\r
-            or  EAX, EDX;\r
-            bswap EAX;\r
-        }\r
-    }\r
-    else\r
-    {\r
-        // swap odd and even bits\r
-        x = ((x >> 1) & 0x5555_5555) | ((x & 0x5555_5555) << 1);\r
-        // swap consecutive pairs\r
-        x = ((x >> 2) & 0x3333_3333) | ((x & 0x3333_3333) << 2);\r
-        // swap nibbles\r
-        x = ((x >> 4) & 0x0F0F_0F0F) | ((x & 0x0F0F_0F0F) << 4);\r
-        // swap bytes\r
-        x = ((x >> 8) & 0x00FF_00FF) | ((x & 0x00FF_00FF) << 8);\r
-        // swap 2-byte long pairs\r
-        x = ( x >> 16              ) | ( x               << 16);\r
-        return x;\r
-\r
-    }\r
-}\r
+/**
+ * This module contains a collection of bit-level operations.
+ *
+ * Copyright: Copyright (c) 2005-2008, The D Runtime Project
+ * License:   BSD Style, see LICENSE
+ * Authors:   Walter Bright, Don Clugston, Sean Kelly
+ */
+module bitmanip;
+
+
+version( DDoc )
+{
+    /**
+     * Scans the bits in v starting with bit 0, looking
+     * for the first set bit.
+     * Returns:
+     *  The bit number of the first bit set.
+     *  The return value is undefined if v is zero.
+     */
+    int bsf( uint v );
+
+
+    /**
+     * Scans the bits in v from the most significant bit
+     * to the least significant bit, looking
+     * for the first set bit.
+     * Returns:
+     *  The bit number of the first bit set.
+     *  The return value is undefined if v is zero.
+     * Example:
+     * ---
+     * import bitmanip;
+     *
+     * int main()
+     * {
+     *     uint v;
+     *     int x;
+     *
+     *     v = 0x21;
+     *     x = bsf(v);
+     *     printf("bsf(x%x) = %d\n", v, x);
+     *     x = bsr(v);
+     *     printf("bsr(x%x) = %d\n", v, x);
+     *     return 0;
+     * }
+     * ---
+     * Output:
+     *  bsf(x21) = 0<br>
+     *  bsr(x21) = 5
+     */
+    int bsr( uint v );
+
+
+    /**
+     * Tests the bit.
+     */
+    int bt( uint* p, uint bitnum );
+
+
+    /**
+     * Tests and complements the bit.
+     */
+    int btc( uint* p, uint bitnum );
+
+
+    /**
+     * Tests and resets (sets to 0) the bit.
+     */
+    int btr( uint* p, uint bitnum );
+
+
+    /**
+     * Tests and sets the bit.
+     * Params:
+     * p = a non-NULL pointer to an array of uints.
+     * index = a bit number, starting with bit 0 of p[0],
+     * and progressing. It addresses bits like the expression:
+    ---
+    p[index / (uint.sizeof*8)] & (1 << (index & ((uint.sizeof*8) - 1)))
+    ---
+     * Returns:
+     *  A non-zero value if the bit was set, and a zero
+     *  if it was clear.
+     *
+     * Example:
+     * ---
+    import bitmanip;
+
+    int main()
+    {
+        uint array[2];
+
+        array[0] = 2;
+        array[1] = 0x100;
+
+        printf("btc(array, 35) = %d\n", <b>btc</b>(array, 35));
+        printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
+
+        printf("btc(array, 35) = %d\n", <b>btc</b>(array, 35));
+        printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
+
+        printf("bts(array, 35) = %d\n", <b>bts</b>(array, 35));
+        printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
+
+        printf("btr(array, 35) = %d\n", <b>btr</b>(array, 35));
+        printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
+
+        printf("bt(array, 1) = %d\n", <b>bt</b>(array, 1));
+        printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
+
+        return 0;
+    }
+     * ---
+     * Output:
+    <pre>
+    btc(array, 35) = 0
+    array = [0]:x2, [1]:x108
+    btc(array, 35) = -1
+    array = [0]:x2, [1]:x100
+    bts(array, 35) = 0
+    array = [0]:x2, [1]:x108
+    btr(array, 35) = -1
+    array = [0]:x2, [1]:x100
+    bt(array, 1) = -1
+    array = [0]:x2, [1]:x100
+    </pre>
+     */
+    int bts( uint* p, uint bitnum );
+
+
+    /**
+     * Swaps bytes in a 4 byte uint end-to-end, i.e. byte 0 becomes
+     * byte 3, byte 1 becomes byte 2, byte 2 becomes byte 1, byte 3
+     * becomes byte 0.
+     */
+    uint bswap( uint v );
+
+
+    /**
+     * Reads I/O port at port_address.
+     */
+    ubyte inp( uint port_address );
+
+
+    /**
+     * ditto
+     */
+    ushort inpw( uint port_address );
+
+
+    /**
+     * ditto
+     */
+    uint inpl( uint port_address );
+
+
+    /**
+     * Writes and returns value to I/O port at port_address.
+     */
+    ubyte outp( uint port_address, ubyte value );
+
+
+    /**
+     * ditto
+     */
+    ushort outpw( uint port_address, ushort value );
+
+
+    /**
+     * ditto
+     */
+    uint outpl( uint port_address, uint value );
+}
+else
+{
+    public import std.intrinsic;
+}
+
+
+/**
+ *  Calculates the number of set bits in a 32-bit integer.
+ */
+int popcnt( uint x )
+{
+    // Avoid branches, and the potential for cache misses which
+    // could be incurred with a table lookup.
+
+    // We need to mask alternate bits to prevent the
+    // sum from overflowing.
+    // add neighbouring bits. Each bit is 0 or 1.
+    x = x - ((x>>1) & 0x5555_5555);
+    // now each two bits of x is a number 00,01 or 10.
+    // now add neighbouring pairs
+    x = ((x&0xCCCC_CCCC)>>2) + (x&0x3333_3333);
+    // now each nibble holds 0000-0100. Adding them won't
+    // overflow any more, so we don't need to mask any more
+
+    // Now add the nibbles, then the bytes, then the words
+    // We still need to mask to prevent double-counting.
+    // Note that if we used a rotate instead of a shift, we
+    // wouldn't need the masks, and could just divide the sum
+    // by 8 to account for the double-counting.
+    // On some CPUs, it may be faster to perform a multiply.
+
+    x += (x>>4);
+    x &= 0x0F0F_0F0F;
+    x += (x>>8);
+    x &= 0x00FF_00FF;
+    x += (x>>16);
+    x &= 0xFFFF;
+    return x;
+}
+
+
+/**
+ * Reverses the order of bits in a 32-bit integer.
+ */
+uint bitswap( uint x )
+{
+
+    version( D_InlineAsm_X86 )
+    {
+        asm
+        {
+            // Author: Tiago Gasiba.
+            mov EDX, EAX;
+            shr EAX, 1;
+            and EDX, 0x5555_5555;
+            and EAX, 0x5555_5555;
+            shl EDX, 1;
+            or  EAX, EDX;
+            mov EDX, EAX;
+            shr EAX, 2;
+            and EDX, 0x3333_3333;
+            and EAX, 0x3333_3333;
+            shl EDX, 2;
+            or  EAX, EDX;
+            mov EDX, EAX;
+            shr EAX, 4;
+            and EDX, 0x0f0f_0f0f;
+            and EAX, 0x0f0f_0f0f;
+            shl EDX, 4;
+            or  EAX, EDX;
+            bswap EAX;
+        }
+    }
+    else
+    {
+        // swap odd and even bits
+        x = ((x >> 1) & 0x5555_5555) | ((x & 0x5555_5555) << 1);
+        // swap consecutive pairs
+        x = ((x >> 2) & 0x3333_3333) | ((x & 0x3333_3333) << 2);
+        // swap nibbles
+        x = ((x >> 4) & 0x0F0F_0F0F) | ((x & 0x0F0F_0F0F) << 4);
+        // swap bytes
+        x = ((x >> 8) & 0x00FF_00FF) | ((x & 0x00FF_00FF) << 8);
+        // swap 2-byte long pairs
+        x = ( x >> 16              ) | ( x               << 16);
+        return x;
+
+    }
+}