]> git.llucax.com Git - software/libev.git/blobdiff - ev.html
*** empty log message ***
[software/libev.git] / ev.html
diff --git a/ev.html b/ev.html
index 95a6bf7b1c2090b4125d45157d671ef886aaf43c..b13b6ae5983e4dc9729deea5167410e674129c5d 100644 (file)
--- a/ev.html
+++ b/ev.html
@@ -6,7 +6,7 @@
        <meta name="description" content="Pod documentation for libev" />
        <meta name="inputfile" content="&lt;standard input&gt;" />
        <meta name="outputfile" content="&lt;standard output&gt;" />
-       <meta name="created" content="Mon Nov 12 09:11:00 2007" />
+       <meta name="created" content="Mon Nov 26 11:20:35 2007" />
        <meta name="generator" content="Pod::Xhtml 1.57" />
 <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
 <body>
 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
 <li><a href="#FEATURES">FEATURES</a></li>
 <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
-<li><a href="#TIME_AND_OTHER_GLOBAL_FUNCTIONS">TIME AND OTHER GLOBAL FUNCTIONS</a></li>
+<li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
+<li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
 <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
-<ul><li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
+<ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
+<li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
 </ul>
 </li>
 <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
-<ul><li><a href="#struct_ev_io_is_my_file_descriptor_r">struct ev_io - is my file descriptor readable or writable</a></li>
-<li><a href="#struct_ev_timer_relative_and_optiona">struct ev_timer - relative and optionally recurring timeouts</a></li>
-<li><a href="#ev_periodic_to_cron_or_not_to_cron_i">ev_periodic - to cron or not to cron it</a></li>
-<li><a href="#ev_signal_signal_me_when_a_signal_ge">ev_signal - signal me when a signal gets signalled</a></li>
-<li><a href="#ev_child_wait_for_pid_status_changes">ev_child - wait for pid status changes</a></li>
-<li><a href="#ev_idle_when_you_ve_got_nothing_bett">ev_idle - when you've got nothing better to do</a></li>
-<li><a href="#prepare_and_check_your_hooks_into_th">prepare and check - your hooks into the event loop</a></li>
+<ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
+<li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
+<li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
+<li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
+<li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
+<li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
+<li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
+<li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
 </ul>
 </li>
 <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
+<li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
+<li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
+<li><a href="#EMBEDDING">EMBEDDING</a>
+<ul><li><a href="#FILESETS">FILESETS</a>
+<ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
+<li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
+<li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
+</ul>
+</li>
+<li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
+<li><a href="#EXAMPLES">EXAMPLES</a></li>
+</ul>
+</li>
+<li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
 <li><a href="#AUTHOR">AUTHOR</a>
 </li>
 </ul><hr />
@@ -73,31 +90,46 @@ watcher.</p>
 kqueue mechanisms for file descriptor events, relative timers, absolute
 timers with customised rescheduling, signal events, process status change
 events (related to SIGCHLD), and event watchers dealing with the event
-loop mechanism itself (idle, prepare and check watchers).</p>
+loop mechanism itself (idle, prepare and check watchers). It also is quite
+fast (see this <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing
+it to libevent for example).</p>
 
 </div>
 <h1 id="CONVENTIONS">CONVENTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
 <div id="CONVENTIONS_CONTENT">
 <p>Libev is very configurable. In this manual the default configuration
 will be described, which supports multiple event loops. For more info
-about various configuraiton options please have a look at the file
+about various configuration options please have a look at the file
 <cite>README.embed</cite> in the libev distribution. If libev was configured without
 support for multiple event loops, then all functions taking an initial
 argument of name <code>loop</code> (which is always of type <code>struct ev_loop *</code>)
 will not have this argument.</p>
 
 </div>
-<h1 id="TIME_AND_OTHER_GLOBAL_FUNCTIONS">TIME AND OTHER GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
-<div id="TIME_AND_OTHER_GLOBAL_FUNCTIONS_CONT">
+<h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
+<div id="TIME_REPRESENTATION_CONTENT">
 <p>Libev represents time as a single floating point number, representing the
 (fractional) number of seconds since the (POSIX) epoch (somewhere near
 the beginning of 1970, details are complicated, don't ask). This type is
 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
-to the double type in C.</p>
+to the <code>double</code> type in C, and when you need to do any calculations on
+it, you should treat it as such.</p>
+
+
+
+
+
+</div>
+<h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
+<div id="GLOBAL_FUNCTIONS_CONTENT">
+<p>These functions can be called anytime, even before initialising the
+library in any way.</p>
 <dl>
        <dt>ev_tstamp ev_time ()</dt>
        <dd>
-               <p>Returns the current time as libev would use it.</p>
+               <p>Returns the current time as libev would use it. Please note that the
+<code>ev_now</code> function is usually faster and also often returns the timestamp
+you actually want to know.</p>
        </dd>
        <dt>int ev_version_major ()</dt>
        <dt>int ev_version_minor ()</dt>
@@ -107,21 +139,79 @@ you linked against by calling the functions <code>ev_version_major</code> and
 <code>ev_version_minor</code>. If you want, you can compare against the global
 symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
 version of the library your program was compiled against.</p>
-               <p>Usually, its a good idea to terminate if the major versions mismatch,
+               <p>Usually, it's a good idea to terminate if the major versions mismatch,
 as this indicates an incompatible change.  Minor versions are usually
 compatible to older versions, so a larger minor version alone is usually
 not a problem.</p>
+               <p>Example: make sure we haven't accidentally been linked against the wrong
+version:</p>
+<pre>  assert ((&quot;libev version mismatch&quot;,
+           ev_version_major () == EV_VERSION_MAJOR
+           &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
+
+</pre>
+       </dd>
+       <dt>unsigned int ev_supported_backends ()</dt>
+       <dd>
+               <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
+value) compiled into this binary of libev (independent of their
+availability on the system you are running on). See <code>ev_default_loop</code> for
+a description of the set values.</p>
+               <p>Example: make sure we have the epoll method, because yeah this is cool and
+a must have and can we have a torrent of it please!!!11</p>
+<pre>  assert ((&quot;sorry, no epoll, no sex&quot;,
+           ev_supported_backends () &amp; EVBACKEND_EPOLL));
+
+</pre>
+       </dd>
+       <dt>unsigned int ev_recommended_backends ()</dt>
+       <dd>
+               <p>Return the set of all backends compiled into this binary of libev and also
+recommended for this platform. This set is often smaller than the one
+returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
+most BSDs and will not be autodetected unless you explicitly request it
+(assuming you know what you are doing). This is the set of backends that
+libev will probe for if you specify no backends explicitly.</p>
+       </dd>
+       <dt>unsigned int ev_embeddable_backends ()</dt>
+       <dd>
+               <p>Returns the set of backends that are embeddable in other event loops. This
+is the theoretical, all-platform, value. To find which backends
+might be supported on the current system, you would need to look at
+<code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
+recommended ones.</p>
+               <p>See the description of <code>ev_embed</code> watchers for more info.</p>
        </dd>
        <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
        <dd>
                <p>Sets the allocation function to use (the prototype is similar to the
-realloc function). It is used to allocate and free memory (no surprises
-here). If it returns zero when memory needs to be allocated, the library
-might abort or take some potentially destructive action. The default is
-your system realloc function.</p>
+realloc C function, the semantics are identical). It is used to allocate
+and free memory (no surprises here). If it returns zero when memory
+needs to be allocated, the library might abort or take some potentially
+destructive action. The default is your system realloc function.</p>
                <p>You could override this function in high-availability programs to, say,
 free some memory if it cannot allocate memory, to use a special allocator,
 or even to sleep a while and retry until some memory is available.</p>
+               <p>Example: replace the libev allocator with one that waits a bit and then
+retries: better than mine).</p>
+<pre>   static void *
+   persistent_realloc (void *ptr, long size)
+   {
+     for (;;)
+       {
+         void *newptr = realloc (ptr, size);
+
+         if (newptr)
+           return newptr;
+
+         sleep (60);
+       }
+   }
+
+   ...
+   ev_set_allocator (persistent_realloc);
+
+</pre>
        </dd>
        <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
        <dd>
@@ -129,9 +219,21 @@ or even to sleep a while and retry until some memory is available.</p>
 as failed select, poll, epoll_wait). The message is a printable string
 indicating the system call or subsystem causing the problem. If this
 callback is set, then libev will expect it to remedy the sitution, no
-matter what, when it returns. That is, libev will geenrally retry the
+matter what, when it returns. That is, libev will generally retry the
 requested operation, or, if the condition doesn't go away, do bad stuff
 (such as abort).</p>
+               <p>Example: do the same thing as libev does internally:</p>
+<pre>   static void
+   fatal_error (const char *msg)
+   {
+     perror (msg);
+     abort ();
+   }
+
+   ...
+   ev_set_syserr_cb (fatal_error);
+
+</pre>
        </dd>
 </dl>
 
@@ -142,50 +244,123 @@ requested operation, or, if the condition doesn't go away, do bad stuff
 types of such loops, the <i>default</i> loop, which supports signals and child
 events, and dynamically created loops which do not.</p>
 <p>If you use threads, a common model is to run the default event loop
-in your main thread (or in a separate thrad) and for each thread you
-create, you also create another event loop. Libev itself does no lockign
-whatsoever, so if you mix calls to different event loops, make sure you
-lock (this is usually a bad idea, though, even if done right).</p>
+in your main thread (or in a separate thread) and for each thread you
+create, you also create another event loop. Libev itself does no locking
+whatsoever, so if you mix calls to the same event loop in different
+threads, make sure you lock (this is usually a bad idea, though, even if
+done correctly, because it's hideous and inefficient).</p>
 <dl>
        <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
        <dd>
                <p>This will initialise the default event loop if it hasn't been initialised
 yet and return it. If the default loop could not be initialised, returns
 false. If it already was initialised it simply returns it (and ignores the
-flags).</p>
+flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
                <p>If you don't know what event loop to use, use the one returned from this
 function.</p>
                <p>The flags argument can be used to specify special behaviour or specific
-backends to use, and is usually specified as 0 (or EVFLAG_AUTO)</p>
-               <p>It supports the following flags:</p>
+backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
+               <p>The following flags are supported:</p>
                <p>
                        <dl>
-                               <dt>EVFLAG_AUTO</dt>
+                               <dt><code>EVFLAG_AUTO</code></dt>
                                <dd>
-                                       <p>The default flags value. Use this if you have no clue (its the right
+                                       <p>The default flags value. Use this if you have no clue (it's the right
 thing, believe me).</p>
                                </dd>
-                               <dt>EVFLAG_NOENV</dt>
+                               <dt><code>EVFLAG_NOENV</code></dt>
+                               <dd>
+                                       <p>If this flag bit is ored into the flag value (or the program runs setuid
+or setgid) then libev will <i>not</i> look at the environment variable
+<code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
+override the flags completely if it is found in the environment. This is
+useful to try out specific backends to test their performance, or to work
+around bugs.</p>
+                               </dd>
+                               <dt><code>EVBACKEND_SELECT</code>  (value 1, portable select backend)</dt>
+                               <dd>
+                                       <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
+libev tries to roll its own fd_set with no limits on the number of fds,
+but if that fails, expect a fairly low limit on the number of fds when
+using this backend. It doesn't scale too well (O(highest_fd)), but its usually
+the fastest backend for a low number of fds.</p>
+                               </dd>
+                               <dt><code>EVBACKEND_POLL</code>    (value 2, poll backend, available everywhere except on windows)</dt>
+                               <dd>
+                                       <p>And this is your standard poll(2) backend. It's more complicated than
+select, but handles sparse fds better and has no artificial limit on the
+number of fds you can use (except it will slow down considerably with a
+lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
+                               </dd>
+                               <dt><code>EVBACKEND_EPOLL</code>   (value 4, Linux)</dt>
+                               <dd>
+                                       <p>For few fds, this backend is a bit little slower than poll and select,
+but it scales phenomenally better. While poll and select usually scale like
+O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
+either O(1) or O(active_fds).</p>
+                                       <p>While stopping and starting an I/O watcher in the same iteration will
+result in some caching, there is still a syscall per such incident
+(because the fd could point to a different file description now), so its
+best to avoid that. Also, dup()ed file descriptors might not work very
+well if you register events for both fds.</p>
+                                       <p>Please note that epoll sometimes generates spurious notifications, so you
+need to use non-blocking I/O or other means to avoid blocking when no data
+(or space) is available.</p>
+                               </dd>
+                               <dt><code>EVBACKEND_KQUEUE</code>  (value 8, most BSD clones)</dt>
+                               <dd>
+                                       <p>Kqueue deserves special mention, as at the time of this writing, it
+was broken on all BSDs except NetBSD (usually it doesn't work with
+anything but sockets and pipes, except on Darwin, where of course its
+completely useless). For this reason its not being &quot;autodetected&quot;
+unless you explicitly specify it explicitly in the flags (i.e. using
+<code>EVBACKEND_KQUEUE</code>).</p>
+                                       <p>It scales in the same way as the epoll backend, but the interface to the
+kernel is more efficient (which says nothing about its actual speed, of
+course). While starting and stopping an I/O watcher does not cause an
+extra syscall as with epoll, it still adds up to four event changes per
+incident, so its best to avoid that.</p>
+                               </dd>
+                               <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
                                <dd>
-                                       <p>If this flag bit is ored into the flag value then libev will <i>not</i> look
-at the environment variable <code>LIBEV_FLAGS</code>. Otherwise (the default), this
-environment variable will override the flags completely. This is useful
-to try out specific backends to tets their performance, or to work around
-bugs.</p>
+                                       <p>This is not implemented yet (and might never be).</p>
                                </dd>
-                               <dt>EVMETHOD_SELECT  portable select backend</dt>
-                               <dt>EVMETHOD_POLL    poll backend (everywhere except windows)</dt>
-                               <dt>EVMETHOD_EPOLL   linux only</dt>
-                               <dt>EVMETHOD_KQUEUE  some bsds only</dt>
-                               <dt>EVMETHOD_DEVPOLL solaris 8 only</dt>
-                               <dt>EVMETHOD_PORT    solaris 10 only</dt>
+                               <dt><code>EVBACKEND_PORT</code>    (value 32, Solaris 10)</dt>
                                <dd>
-                                       <p>If one or more of these are ored into the flags value, then only these
-backends will be tried (in the reverse order as given here). If one are
-specified, any backend will do.</p>
+                                       <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
+it's really slow, but it still scales very well (O(active_fds)).</p>
+                                       <p>Please note that solaris ports can result in a lot of spurious
+notifications, so you need to use non-blocking I/O or other means to avoid
+blocking when no data (or space) is available.</p>
+                               </dd>
+                               <dt><code>EVBACKEND_ALL</code></dt>
+                               <dd>
+                                       <p>Try all backends (even potentially broken ones that wouldn't be tried
+with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
+<code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
                                </dd>
                        </dl>
                </p>
+               <p>If one or more of these are ored into the flags value, then only these
+backends will be tried (in the reverse order as given here). If none are
+specified, most compiled-in backend will be tried, usually in reverse
+order of their flag values :)</p>
+               <p>The most typical usage is like this:</p>
+<pre>  if (!ev_default_loop (0))
+    fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
+
+</pre>
+               <p>Restrict libev to the select and poll backends, and do not allow
+environment settings to be taken into account:</p>
+<pre>  ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
+
+</pre>
+               <p>Use whatever libev has to offer, but make sure that kqueue is used if
+available (warning, breaks stuff, best use only with your own private
+event loop and only if you know the OS supports your types of fds):</p>
+<pre>  ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
+
+</pre>
        </dd>
        <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
        <dd>
@@ -193,12 +368,22 @@ specified, any backend will do.</p>
 always distinct from the default loop. Unlike the default loop, it cannot
 handle signal and child watchers, and attempts to do so will be greeted by
 undefined behaviour (or a failed assertion if assertions are enabled).</p>
+               <p>Example: try to create a event loop that uses epoll and nothing else.</p>
+<pre>  struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
+  if (!epoller)
+    fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
+
+</pre>
        </dd>
        <dt>ev_default_destroy ()</dt>
        <dd>
                <p>Destroys the default loop again (frees all memory and kernel state
-etc.). This stops all registered event watchers (by not touching them in
-any way whatsoever, although you cnanot rely on this :).</p>
+etc.). None of the active event watchers will be stopped in the normal
+sense, so e.g. <code>ev_is_active</code> might still return true. It is your
+responsibility to either stop all watchers cleanly yoursef <i>before</i>
+calling this function, or cope with the fact afterwards (which is usually
+the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
+for example).</p>
        </dd>
        <dt>ev_loop_destroy (loop)</dt>
        <dd>
@@ -211,15 +396,18 @@ earlier call to <code>ev_loop_new</code>.</p>
 one. Despite the name, you can call it anytime, but it makes most sense
 after forking, in either the parent or child process (or both, but that
 again makes little sense).</p>
-               <p>You <i>must</i> call this function after forking if and only if you want to
-use the event library in both processes. If you just fork+exec, you don't
-have to call it.</p>
-               <p>The function itself is quite fast and its usually not a problem to call
+               <p>You <i>must</i> call this function in the child process after forking if and
+only if you want to use the event library in both processes. If you just
+fork+exec, you don't have to call it.</p>
+               <p>The function itself is quite fast and it's usually not a problem to call
 it just in case after a fork. To make this easy, the function will fit in
 quite nicely into a call to <code>pthread_atfork</code>:</p>
 <pre>    pthread_atfork (0, 0, ev_default_fork);
 
 </pre>
+               <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
+without calling this function, so if you force one of those backends you
+do not need to care.</p>
        </dd>
        <dt>ev_loop_fork (loop)</dt>
        <dd>
@@ -227,64 +415,117 @@ quite nicely into a call to <code>pthread_atfork</code>:</p>
 <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
 after fork, and how you do this is entirely your own problem.</p>
        </dd>
-       <dt>unsigned int ev_method (loop)</dt>
+       <dt>unsigned int ev_backend (loop)</dt>
        <dd>
-               <p>Returns one of the <code>EVMETHOD_*</code> flags indicating the event backend in
+               <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
 use.</p>
        </dd>
-       <dt>ev_tstamp ev_now (loop)</dt>
+       <dt>ev_tstamp ev_now (loop)</dt>
        <dd>
                <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
-got events and started processing them. This timestamp does not change
-as long as callbacks are being processed, and this is also the base time
-used for relative timers. You can treat it as the timestamp of the event
-occuring (or more correctly, the mainloop finding out about it).</p>
+received events and started processing them. This timestamp does not
+change as long as callbacks are being processed, and this is also the base
+time used for relative timers. You can treat it as the timestamp of the
+event occuring (or more correctly, libev finding out about it).</p>
        </dd>
        <dt>ev_loop (loop, int flags)</dt>
        <dd>
                <p>Finally, this is it, the event handler. This function usually is called
 after you initialised all your watchers and you want to start handling
 events.</p>
-               <p>If the flags argument is specified as 0, it will not return until either
-no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
+               <p>If the flags argument is specified as <code>0</code>, it will not return until
+either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
+               <p>Please note that an explicit <code>ev_unloop</code> is usually better than
+relying on all watchers to be stopped when deciding when a program has
+finished (especially in interactive programs), but having a program that
+automatically loops as long as it has to and no longer by virtue of
+relying on its watchers stopping correctly is a thing of beauty.</p>
                <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
 those events and any outstanding ones, but will not block your process in
-case there are no events.</p>
+case there are no events and will return after one iteration of the loop.</p>
                <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
 neccessary) and will handle those and any outstanding ones. It will block
-your process until at least one new event arrives.</p>
-               <p>This flags value could be used to implement alternative looping
-constructs, but the <code>prepare</code> and <code>check</code> watchers provide a better and
-more generic mechanism.</p>
+your process until at least one new event arrives, and will return after
+one iteration of the loop. This is useful if you are waiting for some
+external event in conjunction with something not expressible using other
+libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
+usually a better approach for this kind of thing.</p>
+               <p>Here are the gory details of what <code>ev_loop</code> does:</p>
+<pre>   * If there are no active watchers (reference count is zero), return.
+   - Queue prepare watchers and then call all outstanding watchers.
+   - If we have been forked, recreate the kernel state.
+   - Update the kernel state with all outstanding changes.
+   - Update the &quot;event loop time&quot;.
+   - Calculate for how long to block.
+   - Block the process, waiting for any events.
+   - Queue all outstanding I/O (fd) events.
+   - Update the &quot;event loop time&quot; and do time jump handling.
+   - Queue all outstanding timers.
+   - Queue all outstanding periodics.
+   - If no events are pending now, queue all idle watchers.
+   - Queue all check watchers.
+   - Call all queued watchers in reverse order (i.e. check watchers first).
+     Signals and child watchers are implemented as I/O watchers, and will
+     be handled here by queueing them when their watcher gets executed.
+   - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
+     were used, return, otherwise continue with step *.
+
+</pre>
+               <p>Example: queue some jobs and then loop until no events are outsanding
+anymore.</p>
+<pre>   ... queue jobs here, make sure they register event watchers as long
+   ... as they still have work to do (even an idle watcher will do..)
+   ev_loop (my_loop, 0);
+   ... jobs done. yeah!
+
+</pre>
        </dd>
        <dt>ev_unloop (loop, how)</dt>
        <dd>
-               <p>Can be used to make a call to <code>ev_loop</code> return early. The <code>how</code> argument
-must be either <code>EVUNLOOP_ONCE</code>, which will make the innermost <code>ev_loop</code>
-call return, or <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code>
-calls return.</p>
+               <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
+has processed all outstanding events). The <code>how</code> argument must be either
+<code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
+<code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
        </dd>
        <dt>ev_ref (loop)</dt>
        <dt>ev_unref (loop)</dt>
        <dd>
-               <p>Ref/unref can be used to add or remove a refcount on the event loop: Every
-watcher keeps one reference. If you have a long-runing watcher you never
-unregister that should not keep ev_loop from running, ev_unref() after
-starting, and ev_ref() before stopping it. Libev itself uses this for
-example for its internal signal pipe: It is not visible to you as a user
-and should not keep <code>ev_loop</code> from exiting if the work is done. It is
-also an excellent way to do this for generic recurring timers or from
-within third-party libraries. Just remember to unref after start and ref
-before stop.</p>
+               <p>Ref/unref can be used to add or remove a reference count on the event
+loop: Every watcher keeps one reference, and as long as the reference
+count is nonzero, <code>ev_loop</code> will not return on its own. If you have
+a watcher you never unregister that should not keep <code>ev_loop</code> from
+returning, ev_unref() after starting, and ev_ref() before stopping it. For
+example, libev itself uses this for its internal signal pipe: It is not
+visible to the libev user and should not keep <code>ev_loop</code> from exiting if
+no event watchers registered by it are active. It is also an excellent
+way to do this for generic recurring timers or from within third-party
+libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
+               <p>Example: create a signal watcher, but keep it from keeping <code>ev_loop</code>
+running when nothing else is active.</p>
+<pre>  struct dv_signal exitsig;
+  ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
+  ev_signal_start (myloop, &amp;exitsig);
+  evf_unref (myloop);
+
+</pre>
+               <p>Example: for some weird reason, unregister the above signal handler again.</p>
+<pre>  ev_ref (myloop);
+  ev_signal_stop (myloop, &amp;exitsig);
+
+</pre>
        </dd>
 </dl>
 
+
+
+
+
 </div>
 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1><p><a href="#TOP" class="toplink">Top</a></p>
 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
 <p>A watcher is a structure that you create and register to record your
 interest in some event. For instance, if you want to wait for STDIN to
-become readable, you would create an ev_io watcher for that:</p>
+become readable, you would create an <code>ev_io</code> watcher for that:</p>
 <pre>  static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
   {
     ev_io_stop (w);
@@ -317,56 +558,52 @@ with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watch
 corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
 <p>As long as your watcher is active (has been started but not stopped) you
 must not touch the values stored in it. Most specifically you must never
-reinitialise it or call its set method.</p>
-<p>You cna check whether an event is active by calling the <code>ev_is_active
-(watcher *)</code> macro. To see whether an event is outstanding (but the
-callback for it has not been called yet) you cna use the <code>ev_is_pending
-(watcher *)</code> macro.</p>
+reinitialise it or call its <code>set</code> macro.</p>
 <p>Each and every callback receives the event loop pointer as first, the
 registered watcher structure as second, and a bitset of received events as
 third argument.</p>
-<p>The rceeived events usually include a single bit per event type received
+<p>The received events usually include a single bit per event type received
 (you can receive multiple events at the same time). The possible bit masks
 are:</p>
 <dl>
-       <dt>EV_READ</dt>
-       <dt>EV_WRITE</dt>
+       <dt><code>EV_READ</code></dt>
+       <dt><code>EV_WRITE</code></dt>
        <dd>
-               <p>The file descriptor in the ev_io watcher has become readable and/or
+               <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
 writable.</p>
        </dd>
-       <dt>EV_TIMEOUT</dt>
+       <dt><code>EV_TIMEOUT</code></dt>
        <dd>
-               <p>The ev_timer watcher has timed out.</p>
+               <p>The <code>ev_timer</code> watcher has timed out.</p>
        </dd>
-       <dt>EV_PERIODIC</dt>
+       <dt><code>EV_PERIODIC</code></dt>
        <dd>
-               <p>The ev_periodic watcher has timed out.</p>
+               <p>The <code>ev_periodic</code> watcher has timed out.</p>
        </dd>
-       <dt>EV_SIGNAL</dt>
+       <dt><code>EV_SIGNAL</code></dt>
        <dd>
-               <p>The signal specified in the ev_signal watcher has been received by a thread.</p>
+               <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
        </dd>
-       <dt>EV_CHILD</dt>
+       <dt><code>EV_CHILD</code></dt>
        <dd>
-               <p>The pid specified in the ev_child watcher has received a status change.</p>
+               <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
        </dd>
-       <dt>EV_IDLE</dt>
+       <dt><code>EV_IDLE</code></dt>
        <dd>
-               <p>The ev_idle watcher has determined that you have nothing better to do.</p>
+               <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
        </dd>
-       <dt>EV_PREPARE</dt>
-       <dt>EV_CHECK</dt>
+       <dt><code>EV_PREPARE</code></dt>
+       <dt><code>EV_CHECK</code></dt>
        <dd>
-               <p>All ev_prepare watchers are invoked just <i>before</i> <code>ev_loop</code> starts
-to gather new events, and all ev_check watchers are invoked just after
+               <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
+to gather new events, and all <code>ev_check</code> watchers are invoked just after
 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
 received events. Callbacks of both watcher types can start and stop as
 many watchers as they want, and all of them will be taken into account
-(for example, a ev_prepare watcher might start an idle watcher to keep
+(for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
 <code>ev_loop</code> from blocking).</p>
        </dd>
-       <dt>EV_ERROR</dt>
+       <dt><code>EV_ERROR</code></dt>
        <dd>
                <p>An unspecified error has occured, the watcher has been stopped. This might
 happen because the watcher could not be properly started because libev
@@ -381,11 +618,89 @@ programs, though, so beware.</p>
        </dd>
 </dl>
 
+</div>
+<h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
+<div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
+<p>In the following description, <code>TYPE</code> stands for the watcher type,
+e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
+<dl>
+       <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
+       <dd>
+               <p>This macro initialises the generic portion of a watcher. The contents
+of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
+the generic parts of the watcher are initialised, you <i>need</i> to call
+the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
+type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
+which rolls both calls into one.</p>
+               <p>You can reinitialise a watcher at any time as long as it has been stopped
+(or never started) and there are no pending events outstanding.</p>
+               <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
+int revents)</code>.</p>
+       </dd>
+       <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
+       <dd>
+               <p>This macro initialises the type-specific parts of a watcher. You need to
+call <code>ev_init</code> at least once before you call this macro, but you can
+call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
+macro on a watcher that is active (it can be pending, however, which is a
+difference to the <code>ev_init</code> macro).</p>
+               <p>Although some watcher types do not have type-specific arguments
+(e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
+       </dd>
+       <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
+       <dd>
+               <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
+calls into a single call. This is the most convinient method to initialise
+a watcher. The same limitations apply, of course.</p>
+       </dd>
+       <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
+       <dd>
+               <p>Starts (activates) the given watcher. Only active watchers will receive
+events. If the watcher is already active nothing will happen.</p>
+       </dd>
+       <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
+       <dd>
+               <p>Stops the given watcher again (if active) and clears the pending
+status. It is possible that stopped watchers are pending (for example,
+non-repeating timers are being stopped when they become pending), but
+<code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
+you want to free or reuse the memory used by the watcher it is therefore a
+good idea to always call its <code>ev_TYPE_stop</code> function.</p>
+       </dd>
+       <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
+       <dd>
+               <p>Returns a true value iff the watcher is active (i.e. it has been started
+and not yet been stopped). As long as a watcher is active you must not modify
+it.</p>
+       </dd>
+       <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
+       <dd>
+               <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
+events but its callback has not yet been invoked). As long as a watcher
+is pending (but not active) you must not call an init function on it (but
+<code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
+libev (e.g. you cnanot <code>free ()</code> it).</p>
+       </dd>
+       <dt>callback = ev_cb (ev_TYPE *watcher)</dt>
+       <dd>
+               <p>Returns the callback currently set on the watcher.</p>
+       </dd>
+       <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
+       <dd>
+               <p>Change the callback. You can change the callback at virtually any time
+(modulo threads).</p>
+       </dd>
+</dl>
+
+
+
+
+
 </div>
 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
 <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
 <p>Each watcher has, by default, a member <code>void *data</code> that you can change
-and read at any time, libev will completely ignore it. This cna be used
+and read at any time, libev will completely ignore it. This can be used
 to associate arbitrary data with your watcher. If you need more data and
 don't want to allocate memory and store a pointer to it in that data
 member, you can also &quot;subclass&quot; the watcher type and provide your own
@@ -421,34 +736,97 @@ have been omitted....</p>
 <p>This section describes each watcher in detail, but will not repeat
 information given in the last section.</p>
 
+
+
+
+
 </div>
-<h2 id="struct_ev_io_is_my_file_descriptor_r">struct ev_io - is my file descriptor readable or writable</h2>
-<div id="struct_ev_io_is_my_file_descriptor_r-2">
+<h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
+<div id="code_ev_io_code_is_this_file_descrip-2">
 <p>I/O watchers check whether a file descriptor is readable or writable
-in each iteration of the event loop (This behaviour is called
-level-triggering because you keep receiving events as long as the
-condition persists. Remember you cna stop the watcher if you don't want to
-act on the event and neither want to receive future events).</p>
+in each iteration of the event loop, or, more precisely, when reading
+would not block the process and writing would at least be able to write
+some data. This behaviour is called level-triggering because you keep
+receiving events as long as the condition persists. Remember you can stop
+the watcher if you don't want to act on the event and neither want to
+receive future events.</p>
+<p>In general you can register as many read and/or write event watchers per
+fd as you want (as long as you don't confuse yourself). Setting all file
+descriptors to non-blocking mode is also usually a good idea (but not
+required if you know what you are doing).</p>
+<p>You have to be careful with dup'ed file descriptors, though. Some backends
+(the linux epoll backend is a notable example) cannot handle dup'ed file
+descriptors correctly if you register interest in two or more fds pointing
+to the same underlying file/socket/etc. description (that is, they share
+the same underlying &quot;file open&quot;).</p>
+<p>If you must do this, then force the use of a known-to-be-good backend
+(at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
+<code>EVBACKEND_POLL</code>).</p>
+<p>Another thing you have to watch out for is that it is quite easy to
+receive &quot;spurious&quot; readyness notifications, that is your callback might
+be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
+because there is no data. Not only are some backends known to create a
+lot of those (for example solaris ports), it is very easy to get into
+this situation even with a relatively standard program structure. Thus
+it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
+<code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
+<p>If you cannot run the fd in non-blocking mode (for example you should not
+play around with an Xlib connection), then you have to seperately re-test
+wether a file descriptor is really ready with a known-to-be good interface
+such as poll (fortunately in our Xlib example, Xlib already does this on
+its own, so its quite safe to use).</p>
 <dl>
        <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
        <dt>ev_io_set (ev_io *, int fd, int events)</dt>
        <dd>
-               <p>Configures an ev_io watcher. The fd is the file descriptor to rceeive
-events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_READ |
-EV_WRITE</code> to receive the given events.</p>
+               <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
+rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
+<code>EV_READ | EV_WRITE</code> to receive the given events.</p>
        </dd>
 </dl>
+<p>Example: call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
+readable, but only once. Since it is likely line-buffered, you could
+attempt to read a whole line in the callback:</p>
+<pre>  static void
+  stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
+  {
+     ev_io_stop (loop, w);
+    .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
+  }
+
+  ...
+  struct ev_loop *loop = ev_default_init (0);
+  struct ev_io stdin_readable;
+  ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
+  ev_io_start (loop, &amp;stdin_readable);
+  ev_loop (loop, 0);
+
+
+
+
+</pre>
 
 </div>
-<h2 id="struct_ev_timer_relative_and_optiona">struct ev_timer - relative and optionally recurring timeouts</h2>
-<div id="struct_ev_timer_relative_and_optiona-2">
+<h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
+<div id="code_ev_timer_code_relative_and_opti-2">
 <p>Timer watchers are simple relative timers that generate an event after a
 given time, and optionally repeating in regular intervals after that.</p>
 <p>The timers are based on real time, that is, if you register an event that
-times out after an hour and youreset your system clock to last years
+times out after an hour and you reset your system clock to last years
 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
-detecting time jumps is hard, and soem inaccuracies are unavoidable (the
+detecting time jumps is hard, and some inaccuracies are unavoidable (the
 monotonic clock option helps a lot here).</p>
+<p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
+time. This is usually the right thing as this timestamp refers to the time
+of the event triggering whatever timeout you are modifying/starting. If
+you suspect event processing to be delayed and you <i>need</i> to base the timeout
+on the current time, use something like this to adjust for this:</p>
+<pre>   ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
+
+</pre>
+<p>The callback is guarenteed to be invoked only when its timeout has passed,
+but if multiple timers become ready during the same loop iteration then
+order of execution is undefined.</p>
 <dl>
        <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
        <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
@@ -460,7 +838,7 @@ later, again, and again, until stopped manually.</p>
                <p>The timer itself will do a best-effort at avoiding drift, that is, if you
 configure a timer to trigger every 10 seconds, then it will trigger at
 exactly 10 second intervals. If, however, your program cannot keep up with
-the timer (ecause it takes longer than those 10 seconds to do stuff) the
+the timer (because it takes longer than those 10 seconds to do stuff) the
 timer will not fire more than once per event loop iteration.</p>
        </dd>
        <dt>ev_timer_again (loop)</dt>
@@ -474,38 +852,70 @@ value), or reset the running timer to the repeat value.</p>
 example: Imagine you have a tcp connection and you want a so-called idle
 timeout, that is, you want to be called when there have been, say, 60
 seconds of inactivity on the socket. The easiest way to do this is to
-configure an ev_timer with after=repeat=60 and calling ev_timer_again each
+configure an <code>ev_timer</code> with after=repeat=60 and calling ev_timer_again each
 time you successfully read or write some data. If you go into an idle
 state where you do not expect data to travel on the socket, you can stop
 the timer, and again will automatically restart it if need be.</p>
        </dd>
 </dl>
+<p>Example: create a timer that fires after 60 seconds.</p>
+<pre>  static void
+  one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
+  {
+    .. one minute over, w is actually stopped right here
+  }
+
+  struct ev_timer mytimer;
+  ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
+  ev_timer_start (loop, &amp;mytimer);
+
+</pre>
+<p>Example: create a timeout timer that times out after 10 seconds of
+inactivity.</p>
+<pre>  static void
+  timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
+  {
+    .. ten seconds without any activity
+  }
+
+  struct ev_timer mytimer;
+  ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
+  ev_timer_again (&amp;mytimer); /* start timer */
+  ev_loop (loop, 0);
+
+  // and in some piece of code that gets executed on any &quot;activity&quot;:
+  // reset the timeout to start ticking again at 10 seconds
+  ev_timer_again (&amp;mytimer);
+
+
+
+
+</pre>
 
 </div>
-<h2 id="ev_periodic_to_cron_or_not_to_cron_i">ev_periodic - to cron or not to cron it</h2>
-<div id="ev_periodic_to_cron_or_not_to_cron_i-2">
+<h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
+<div id="code_ev_periodic_code_to_cron_or_not-2">
 <p>Periodic watchers are also timers of a kind, but they are very versatile
 (and unfortunately a bit complex).</p>
-<p>Unlike ev_timer's, they are not based on real time (or relative time)
+<p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
 but on wallclock time (absolute time). You can tell a periodic watcher
 to trigger &quot;at&quot; some specific point in time. For example, if you tell a
-periodic watcher to trigger in 10 seconds (by specifiying e.g. c&lt;ev_now ()
-+ 10.&gt;) and then reset your system clock to the last year, then it will
-take a year to trigger the event (unlike an ev_timer, which would trigger
+periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
++ 10.</code>) and then reset your system clock to the last year, then it will
+take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
 roughly 10 seconds later and of course not if you reset your system time
 again).</p>
 <p>They can also be used to implement vastly more complex timers, such as
 triggering an event on eahc midnight, local time.</p>
+<p>As with timers, the callback is guarenteed to be invoked only when the
+time (<code>at</code>) has been passed, but if multiple periodic timers become ready
+during the same loop iteration then order of execution is undefined.</p>
 <dl>
        <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
        <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
        <dd>
                <p>Lots of arguments, lets sort it out... There are basically three modes of
 operation, and we will explain them from simplest to complex:</p>
-
-
-
-
                <p>
                        <dl>
                                <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
@@ -527,10 +937,10 @@ time:</p>
 </pre>
                                        <p>This doesn't mean there will always be 3600 seconds in between triggers,
 but only that the the callback will be called when the system time shows a
-full hour (UTC), or more correct, when the system time is evenly divisible
+full hour (UTC), or more correctly, when the system time is evenly divisible
 by 3600.</p>
                                        <p>Another way to think about it (for the mathematically inclined) is that
-ev_periodic will try to run the callback in this mode at the next possible
+<code>ev_periodic</code> will try to run the callback in this mode at the next possible
 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
                                </dd>
                                <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
@@ -539,11 +949,12 @@ time where <code>time = at (mod interval)</code>, regardless of any time jumps.<
 ignored. Instead, each time the periodic watcher gets scheduled, the
 reschedule callback will be called with the watcher as first, and the
 current time as second argument.</p>
-                                       <p>NOTE: <i>This callback MUST NOT stop or destroy the periodic or any other
-periodic watcher, ever, or make any event loop modificstions</i>. If you need
-to stop it, return 1e30 (or so, fudge fudge) and stop it afterwards.</p>
-                                       <p>Its prototype is c&lt;ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
-ev_tstamp now)&gt;, e.g.:</p>
+                                       <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
+ever, or make any event loop modifications</i>. If you need to stop it,
+return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
+starting a prepare watcher).</p>
+                                       <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
+ev_tstamp now)</code>, e.g.:</p>
 <pre>   static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
    {
      return now + 60.;
@@ -554,10 +965,13 @@ ev_tstamp now)&gt;, e.g.:</p>
 (that is, the lowest time value larger than to the second argument). It
 will usually be called just before the callback will be triggered, but
 might be called at other times, too.</p>
+                                       <p>NOTE: <i>This callback must always return a time that is later than the
+passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
                                        <p>This can be used to create very complex timers, such as a timer that
 triggers on each midnight, local time. To do this, you would calculate the
-next midnight after <code>now</code> and return the timestamp value for this. How you do this
-is, again, up to you (but it is not trivial).</p>
+next midnight after <code>now</code> and return the timestamp value for this. How
+you do this is, again, up to you (but it is not trivial, which is the main
+reason I omitted it as an example).</p>
                                </dd>
                        </dl>
                </p>
@@ -570,15 +984,51 @@ a different time than the last time it was called (e.g. in a crond like
 program when the crontabs have changed).</p>
        </dd>
 </dl>
+<p>Example: call a callback every hour, or, more precisely, whenever the
+system clock is divisible by 3600. The callback invocation times have
+potentially a lot of jittering, but good long-term stability.</p>
+<pre>  static void
+  clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
+  {
+    ... its now a full hour (UTC, or TAI or whatever your clock follows)
+  }
+
+  struct ev_periodic hourly_tick;
+  ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
+  ev_periodic_start (loop, &amp;hourly_tick);
+
+</pre>
+<p>Example: the same as above, but use a reschedule callback to do it:</p>
+<pre>  #include &lt;math.h&gt;
+
+  static ev_tstamp
+  my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
+  {
+    return fmod (now, 3600.) + 3600.;
+  }
+
+  ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
+
+</pre>
+<p>Example: call a callback every hour, starting now:</p>
+<pre>  struct ev_periodic hourly_tick;
+  ev_periodic_init (&amp;hourly_tick, clock_cb,
+                    fmod (ev_now (loop), 3600.), 3600., 0);
+  ev_periodic_start (loop, &amp;hourly_tick);
+
+
+
+
+</pre>
 
 </div>
-<h2 id="ev_signal_signal_me_when_a_signal_ge">ev_signal - signal me when a signal gets signalled</h2>
-<div id="ev_signal_signal_me_when_a_signal_ge-2">
+<h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
+<div id="code_ev_signal_code_signal_me_when_a-2">
 <p>Signal watchers will trigger an event when the process receives a specific
 signal one or more times. Even though signals are very asynchronous, libev
-will try its best to deliver signals synchronously, i.e. as part of the
+will try it's best to deliver signals synchronously, i.e. as part of the
 normal event processing, like any other event.</p>
-<p>You cna configure as many watchers as you like per signal. Only when the
+<p>You can configure as many watchers as you like per signal. Only when the
 first watcher gets started will libev actually register a signal watcher
 with the kernel (thus it coexists with your own signal handlers as long
 as you don't register any with libev). Similarly, when the last signal
@@ -593,9 +1043,13 @@ of the <code>SIGxxx</code> constants).</p>
        </dd>
 </dl>
 
+
+
+
+
 </div>
-<h2 id="ev_child_wait_for_pid_status_changes">ev_child - wait for pid status changes</h2>
-<div id="ev_child_wait_for_pid_status_changes-2">
+<h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
+<div id="code_ev_child_code_watch_out_for_pro-2">
 <p>Child watchers trigger when your process receives a SIGCHLD in response to
 some child status changes (most typically when a child of yours dies).</p>
 <dl>
@@ -605,19 +1059,37 @@ some child status changes (most typically when a child of yours dies).</p>
                <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
 <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
 at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
-the status word (use the macros from <code>sys/wait.h</code>). The <code>rpid</code> member
-contains the pid of the process causing the status change.</p>
+the status word (use the macros from <code>sys/wait.h</code> and see your systems
+<code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
+process causing the status change.</p>
        </dd>
 </dl>
+<p>Example: try to exit cleanly on SIGINT and SIGTERM.</p>
+<pre>  static void
+  sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
+  {
+    ev_unloop (loop, EVUNLOOP_ALL);
+  }
+
+  struct ev_signal signal_watcher;
+  ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
+  ev_signal_start (loop, &amp;sigint_cb);
+
+
+
+
+</pre>
 
 </div>
-<h2 id="ev_idle_when_you_ve_got_nothing_bett">ev_idle - when you've got nothing better to do</h2>
-<div id="ev_idle_when_you_ve_got_nothing_bett-2">
-<p>Idle watchers trigger events when there are no other I/O or timer (or
-periodic) events pending. That is, as long as your process is busy
-handling sockets or timeouts it will not be called. But when your process
-is idle all idle watchers are being called again and again - until
-stopped, that is, or your process receives more events.</p>
+<h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
+<div id="code_ev_idle_code_when_you_ve_got_no-2">
+<p>Idle watchers trigger events when there are no other events are pending
+(prepare, check and other idle watchers do not count). That is, as long
+as your process is busy handling sockets or timeouts (or even signals,
+imagine) it will not be triggered. But when your process is idle all idle
+watchers are being called again and again, once per event loop iteration -
+until stopped, that is, or your process receives more events and becomes
+busy.</p>
 <p>The most noteworthy effect is that as long as any idle watchers are
 active, the process will not block when waiting for new events.</p>
 <p>Apart from keeping your process non-blocking (which is a useful
@@ -632,89 +1104,691 @@ kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointle
 believe me.</p>
        </dd>
 </dl>
+<p>Example: dynamically allocate an <code>ev_idle</code>, start it, and in the
+callback, free it. Alos, use no error checking, as usual.</p>
+<pre>  static void
+  idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
+  {
+    free (w);
+    // now do something you wanted to do when the program has
+    // no longer asnything immediate to do.
+  }
+
+  struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
+  ev_idle_init (idle_watcher, idle_cb);
+  ev_idle_start (loop, idle_cb);
+
+
+
+
+</pre>
 
 </div>
-<h2 id="prepare_and_check_your_hooks_into_th">prepare and check - your hooks into the event loop</h2>
-<div id="prepare_and_check_your_hooks_into_th-2">
-<p>Prepare and check watchers usually (but not always) are used in
-tandom. Prepare watchers get invoked before the process blocks and check
-watchers afterwards.</p>
-<p>Their main purpose is to integrate other event mechanisms into libev. This
-could be used, for example, to track variable changes, implement your own
-watchers, integrate net-snmp or a coroutine library and lots more.</p>
+<h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
+<div id="code_ev_prepare_code_and_code_ev_che-2">
+<p>Prepare and check watchers are usually (but not always) used in tandem:
+prepare watchers get invoked before the process blocks and check watchers
+afterwards.</p>
+<p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
+the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
+watchers. Other loops than the current one are fine, however. The
+rationale behind this is that you do not need to check for recursion in
+those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
+<code>ev_check</code> so if you have one watcher of each kind they will always be
+called in pairs bracketing the blocking call.</p>
+<p>Their main purpose is to integrate other event mechanisms into libev and
+their use is somewhat advanced. This could be used, for example, to track
+variable changes, implement your own watchers, integrate net-snmp or a
+coroutine library and lots more. They are also occasionally useful if
+you cache some data and want to flush it before blocking (for example,
+in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
+watcher).</p>
 <p>This is done by examining in each prepare call which file descriptors need
-to be watched by the other library, registering ev_io watchers for them
-and starting an ev_timer watcher for any timeouts (many libraries provide
-just this functionality). Then, in the check watcher you check for any
-events that occured (by making your callbacks set soem flags for example)
-and call back into the library.</p>
-<p>As another example, the perl Coro module uses these hooks to integrate
+to be watched by the other library, registering <code>ev_io</code> watchers for
+them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
+provide just this functionality). Then, in the check watcher you check for
+any events that occured (by checking the pending status of all watchers
+and stopping them) and call back into the library. The I/O and timer
+callbacks will never actually be called (but must be valid nevertheless,
+because you never know, you know?).</p>
+<p>As another example, the Perl Coro module uses these hooks to integrate
 coroutines into libev programs, by yielding to other active coroutines
 during each prepare and only letting the process block if no coroutines
-are ready to run.</p>
+are ready to run (it's actually more complicated: it only runs coroutines
+with priority higher than or equal to the event loop and one coroutine
+of lower priority, but only once, using idle watchers to keep the event
+loop from blocking if lower-priority coroutines are active, thus mapping
+low-priority coroutines to idle/background tasks).</p>
 <dl>
        <dt>ev_prepare_init (ev_prepare *, callback)</dt>
        <dt>ev_check_init (ev_check *, callback)</dt>
        <dd>
                <p>Initialises and configures the prepare or check watcher - they have no
 parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
-macros, but using them is utterly, utterly pointless.</p>
+macros, but using them is utterly, utterly and completely pointless.</p>
+       </dd>
+</dl>
+<p>Example: To include a library such as adns, you would add IO watchers
+and a timeout watcher in a prepare handler, as required by libadns, and
+in a check watcher, destroy them and call into libadns. What follows is
+pseudo-code only of course:</p>
+<pre>  static ev_io iow [nfd];
+  static ev_timer tw;
+
+  static void
+  io_cb (ev_loop *loop, ev_io *w, int revents)
+  {
+    // set the relevant poll flags
+    // could also call adns_processreadable etc. here
+    struct pollfd *fd = (struct pollfd *)w-&gt;data;
+    if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
+    if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
+  }
+
+  // create io watchers for each fd and a timer before blocking
+  static void
+  adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
+  {
+    int timeout = 3600000;truct pollfd fds [nfd];
+    // actual code will need to loop here and realloc etc.
+    adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
+
+    /* the callback is illegal, but won't be called as we stop during check */
+    ev_timer_init (&amp;tw, 0, timeout * 1e-3);
+    ev_timer_start (loop, &amp;tw);
+
+    // create on ev_io per pollfd
+    for (int i = 0; i &lt; nfd; ++i)
+      {
+        ev_io_init (iow + i, io_cb, fds [i].fd,
+          ((fds [i].events &amp; POLLIN ? EV_READ : 0)
+           | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
+
+        fds [i].revents = 0;
+        iow [i].data = fds + i;
+        ev_io_start (loop, iow + i);
+      }
+  }
+
+  // stop all watchers after blocking
+  static void
+  adns_check_cb (ev_loop *loop, ev_check *w, int revents)
+  {
+    ev_timer_stop (loop, &amp;tw);
+
+    for (int i = 0; i &lt; nfd; ++i)
+      ev_io_stop (loop, iow + i);
+
+    adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
+  }
+
+
+
+
+</pre>
+
+</div>
+<h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
+<div id="code_ev_embed_code_when_one_backend_-2">
+<p>This is a rather advanced watcher type that lets you embed one event loop
+into another (currently only <code>ev_io</code> events are supported in the embedded
+loop, other types of watchers might be handled in a delayed or incorrect
+fashion and must not be used).</p>
+<p>There are primarily two reasons you would want that: work around bugs and
+prioritise I/O.</p>
+<p>As an example for a bug workaround, the kqueue backend might only support
+sockets on some platform, so it is unusable as generic backend, but you
+still want to make use of it because you have many sockets and it scales
+so nicely. In this case, you would create a kqueue-based loop and embed it
+into your default loop (which might use e.g. poll). Overall operation will
+be a bit slower because first libev has to poll and then call kevent, but
+at least you can use both at what they are best.</p>
+<p>As for prioritising I/O: rarely you have the case where some fds have
+to be watched and handled very quickly (with low latency), and even
+priorities and idle watchers might have too much overhead. In this case
+you would put all the high priority stuff in one loop and all the rest in
+a second one, and embed the second one in the first.</p>
+<p>As long as the watcher is active, the callback will be invoked every time
+there might be events pending in the embedded loop. The callback must then
+call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
+their callbacks (you could also start an idle watcher to give the embedded
+loop strictly lower priority for example). You can also set the callback
+to <code>0</code>, in which case the embed watcher will automatically execute the
+embedded loop sweep.</p>
+<p>As long as the watcher is started it will automatically handle events. The
+callback will be invoked whenever some events have been handled. You can
+set the callback to <code>0</code> to avoid having to specify one if you are not
+interested in that.</p>
+<p>Also, there have not currently been made special provisions for forking:
+when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
+but you will also have to stop and restart any <code>ev_embed</code> watchers
+yourself.</p>
+<p>Unfortunately, not all backends are embeddable, only the ones returned by
+<code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
+portable one.</p>
+<p>So when you want to use this feature you will always have to be prepared
+that you cannot get an embeddable loop. The recommended way to get around
+this is to have a separate variables for your embeddable loop, try to
+create it, and if that fails, use the normal loop for everything:</p>
+<pre>  struct ev_loop *loop_hi = ev_default_init (0);
+  struct ev_loop *loop_lo = 0;
+  struct ev_embed embed;
+
+  // see if there is a chance of getting one that works
+  // (remember that a flags value of 0 means autodetection)
+  loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
+    ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
+    : 0;
+
+  // if we got one, then embed it, otherwise default to loop_hi
+  if (loop_lo)
+    {
+      ev_embed_init (&amp;embed, 0, loop_lo);
+      ev_embed_start (loop_hi, &amp;embed);
+    }
+  else
+    loop_lo = loop_hi;
+
+</pre>
+<dl>
+       <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
+       <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
+       <dd>
+               <p>Configures the watcher to embed the given loop, which must be
+embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
+invoked automatically, otherwise it is the responsibility of the callback
+to invoke it (it will continue to be called until the sweep has been done,
+if you do not want thta, you need to temporarily stop the embed watcher).</p>
+       </dd>
+       <dt>ev_embed_sweep (loop, ev_embed *)</dt>
+       <dd>
+               <p>Make a single, non-blocking sweep over the embedded loop. This works
+similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
+apropriate way for embedded loops.</p>
        </dd>
 </dl>
 
+
+
+
+
 </div>
 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
 <div id="OTHER_FUNCTIONS_CONTENT">
-<p>There are some other fucntions of possible interest. Described. Here. Now.</p>
+<p>There are some other functions of possible interest. Described. Here. Now.</p>
 <dl>
        <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
        <dd>
                <p>This function combines a simple timer and an I/O watcher, calls your
 callback on whichever event happens first and automatically stop both
 watchers. This is useful if you want to wait for a single event on an fd
-or timeout without havign to allocate/configure/start/stop/free one or
+or timeout without having to allocate/configure/start/stop/free one or
 more watchers yourself.</p>
-               <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events is
-ignored. Otherwise, an ev_io watcher for the given <code>fd</code> and <code>events</code> set
-will be craeted and started.</p>
+               <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
+is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
+<code>events</code> set will be craeted and started.</p>
                <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
-started. Otherwise an ev_timer watcher with after = <code>timeout</code> (and repeat
-= 0) will be started.</p>
-               <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and
-gets passed an events set (normally a combination of EV_ERROR, EV_READ,
-EV_WRITE or EV_TIMEOUT) and the <code>arg</code> value passed to <code>ev_once</code>:</p>
+started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
+repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
+dubious value.</p>
+               <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
+passed an <code>revents</code> set like normal event callbacks (a combination of
+<code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
+value passed to <code>ev_once</code>:</p>
 <pre>  static void stdin_ready (int revents, void *arg)
   {
     if (revents &amp; EV_TIMEOUT)
-      /* doh, nothing entered */
+      /* doh, nothing entered */;
     else if (revents &amp; EV_READ)
-      /* stdin might have data for us, joy! */
+      /* stdin might have data for us, joy! */;
   }
 
-  ev_once (STDIN_FILENO, EV_READm 10., stdin_ready, 0);
+  ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
 
 </pre>
        </dd>
-       <dt>ev_feed_event (loop, watcher, int events)</dt>
+       <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
        <dd>
                <p>Feeds the given event set into the event loop, as if the specified event
-has happened for the specified watcher (which must be a pointer to an
-initialised but not necessarily active event watcher).</p>
+had happened for the specified watcher (which must be a pointer to an
+initialised but not necessarily started event watcher).</p>
        </dd>
-       <dt>ev_feed_fd_event (loop, int fd, int revents)</dt>
+       <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
        <dd>
-               <p>Feed an event on the given fd, as if a file descriptor backend detected it.</p>
+               <p>Feed an event on the given fd, as if a file descriptor backend detected
+the given events it.</p>
        </dd>
-       <dt>ev_feed_signal_event (loop, int signum)</dt>
+       <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
        <dd>
-               <p>Feed an event as if the given signal occured (loop must be the default loop!).</p>
+               <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
+loop!).</p>
        </dd>
 </dl>
 
+
+
+
+
+</div>
+<h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
+<div id="LIBEVENT_EMULATION_CONTENT">
+<p>Libev offers a compatibility emulation layer for libevent. It cannot
+emulate the internals of libevent, so here are some usage hints:</p>
+<dl>
+       <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
+       <dt>* The following members are fully supported: ev_base, ev_callback,
+ev_arg, ev_fd, ev_res, ev_events.</dt>
+       <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
+maintained by libev, it does not work exactly the same way as in libevent (consider
+it a private API).</dt>
+       <dt>* Priorities are not currently supported. Initialising priorities
+will fail and all watchers will have the same priority, even though there
+is an ev_pri field.</dt>
+       <dt>* Other members are not supported.</dt>
+       <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
+to use the libev header file and library.</dt>
+</dl>
+
+</div>
+<h1 id="C_SUPPORT">C++ SUPPORT</h1><p><a href="#TOP" class="toplink">Top</a></p>
+<div id="C_SUPPORT_CONTENT">
+<p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
+you to use some convinience methods to start/stop watchers and also change
+the callback model to a model using method callbacks on objects.</p>
+<p>To use it,</p>
+<pre>  #include &lt;ev++.h&gt;
+
+</pre>
+<p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
+and puts all of its definitions (many of them macros) into the global
+namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
+<p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
+<code>EV_MULTIPLICITY</code>.</p>
+<p>Here is a list of things available in the <code>ev</code> namespace:</p>
+<dl>
+       <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
+       <dd>
+               <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
+macros from <cite>ev.h</cite>.</p>
+       </dd>
+       <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
+       <dd>
+               <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
+       </dd>
+       <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
+       <dd>
+               <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
+the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
+which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
+defines by many implementations.</p>
+               <p>All of those classes have these methods:</p>
+               <p>
+                       <dl>
+                               <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
+                               <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
+                               <dt>ev::TYPE::~TYPE</dt>
+                               <dd>
+                                       <p>The constructor takes a pointer to an object and a method pointer to
+the event handler callback to call in this class. The constructor calls
+<code>ev_init</code> for you, which means you have to call the <code>set</code> method
+before starting it. If you do not specify a loop then the constructor
+automatically associates the default loop with this watcher.</p>
+                                       <p>The destructor automatically stops the watcher if it is active.</p>
+                               </dd>
+                               <dt>w-&gt;set (struct ev_loop *)</dt>
+                               <dd>
+                                       <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
+do this when the watcher is inactive (and not pending either).</p>
+                               </dd>
+                               <dt>w-&gt;set ([args])</dt>
+                               <dd>
+                                       <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
+called at least once.  Unlike the C counterpart, an active watcher gets
+automatically stopped and restarted.</p>
+                               </dd>
+                               <dt>w-&gt;start ()</dt>
+                               <dd>
+                                       <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
+constructor already takes the loop.</p>
+                               </dd>
+                               <dt>w-&gt;stop ()</dt>
+                               <dd>
+                                       <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
+                               </dd>
+                               <dt>w-&gt;again ()       <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
+                               <dd>
+                                       <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
+<code>ev_TYPE_again</code> function.</p>
+                               </dd>
+                               <dt>w-&gt;sweep ()       <code>ev::embed</code> only</dt>
+                               <dd>
+                                       <p>Invokes <code>ev_embed_sweep</code>.</p>
+                               </dd>
+                       </dl>
+               </p>
+       </dd>
+</dl>
+<p>Example: Define a class with an IO and idle watcher, start one of them in
+the constructor.</p>
+<pre>  class myclass
+  {
+    ev_io   io;   void io_cb   (ev::io   &amp;w, int revents);
+    ev_idle idle  void idle_cb (ev::idle &amp;w, int revents);
+
+    myclass ();
+  }
+
+  myclass::myclass (int fd)
+  : io   (this, &amp;myclass::io_cb),
+    idle (this, &amp;myclass::idle_cb)
+  {
+    io.start (fd, ev::READ);
+  }
+
+</pre>
+
+</div>
+<h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p>
+<div id="EMBEDDING_CONTENT">
+<p>Libev can (and often is) directly embedded into host
+applications. Examples of applications that embed it include the Deliantra
+Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
+and rxvt-unicode.</p>
+<p>The goal is to enable you to just copy the neecssary files into your
+source directory without having to change even a single line in them, so
+you can easily upgrade by simply copying (or having a checked-out copy of
+libev somewhere in your source tree).</p>
+
+</div>
+<h2 id="FILESETS">FILESETS</h2>
+<div id="FILESETS_CONTENT">
+<p>Depending on what features you need you need to include one or more sets of files
+in your app.</p>
+
+</div>
+<h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
+<div id="CORE_EVENT_LOOP_CONTENT">
+<p>To include only the libev core (all the <code>ev_*</code> functions), with manual
+configuration (no autoconf):</p>
+<pre>  #define EV_STANDALONE 1
+  #include &quot;ev.c&quot;
+
+</pre>
+<p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
+single C source file only to provide the function implementations. To use
+it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
+done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
+where you can put other configuration options):</p>
+<pre>  #define EV_STANDALONE 1
+  #include &quot;ev.h&quot;
+
+</pre>
+<p>Both header files and implementation files can be compiled with a C++
+compiler (at least, thats a stated goal, and breakage will be treated
+as a bug).</p>
+<p>You need the following files in your source tree, or in a directory
+in your include path (e.g. in libev/ when using -Ilibev):</p>
+<pre>  ev.h
+  ev.c
+  ev_vars.h
+  ev_wrap.h
+
+  ev_win32.c      required on win32 platforms only
+
+  ev_select.c     only when select backend is enabled (which is by default)
+  ev_poll.c       only when poll backend is enabled (disabled by default)
+  ev_epoll.c      only when the epoll backend is enabled (disabled by default)
+  ev_kqueue.c     only when the kqueue backend is enabled (disabled by default)
+  ev_port.c       only when the solaris port backend is enabled (disabled by default)
+
+</pre>
+<p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
+to compile this single file.</p>
+
+</div>
+<h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
+<div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
+<p>To include the libevent compatibility API, also include:</p>
+<pre>  #include &quot;event.c&quot;
+
+</pre>
+<p>in the file including <cite>ev.c</cite>, and:</p>
+<pre>  #include &quot;event.h&quot;
+
+</pre>
+<p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
+<p>You need the following additional files for this:</p>
+<pre>  event.h
+  event.c
+
+</pre>
+
+</div>
+<h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
+<div id="AUTOCONF_SUPPORT_CONTENT">
+<p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
+whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
+<cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
+include <cite>config.h</cite> and configure itself accordingly.</p>
+<p>For this of course you need the m4 file:</p>
+<pre>  libev.m4
+
+</pre>
+
+</div>
+<h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
+<div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
+<p>Libev can be configured via a variety of preprocessor symbols you have to define
+before including any of its files. The default is not to build for multiplicity
+and only include the select backend.</p>
+<dl>
+       <dt>EV_STANDALONE</dt>
+       <dd>
+               <p>Must always be <code>1</code> if you do not use autoconf configuration, which
+keeps libev from including <cite>config.h</cite>, and it also defines dummy
+implementations for some libevent functions (such as logging, which is not
+supported). It will also not define any of the structs usually found in
+<cite>event.h</cite> that are not directly supported by the libev core alone.</p>
+       </dd>
+       <dt>EV_USE_MONOTONIC</dt>
+       <dd>
+               <p>If defined to be <code>1</code>, libev will try to detect the availability of the
+monotonic clock option at both compiletime and runtime. Otherwise no use
+of the monotonic clock option will be attempted. If you enable this, you
+usually have to link against librt or something similar. Enabling it when
+the functionality isn't available is safe, though, althoguh you have
+to make sure you link against any libraries where the <code>clock_gettime</code>
+function is hiding in (often <cite>-lrt</cite>).</p>
+       </dd>
+       <dt>EV_USE_REALTIME</dt>
+       <dd>
+               <p>If defined to be <code>1</code>, libev will try to detect the availability of the
+realtime clock option at compiletime (and assume its availability at
+runtime if successful). Otherwise no use of the realtime clock option will
+be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
+(CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
+in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
+       </dd>
+       <dt>EV_USE_SELECT</dt>
+       <dd>
+               <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
+<code>select</code>(2) backend. No attempt at autodetection will be done: if no
+other method takes over, select will be it. Otherwise the select backend
+will not be compiled in.</p>
+       </dd>
+       <dt>EV_SELECT_USE_FD_SET</dt>
+       <dd>
+               <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
+structure. This is useful if libev doesn't compile due to a missing
+<code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
+exotic systems. This usually limits the range of file descriptors to some
+low limit such as 1024 or might have other limitations (winsocket only
+allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
+influence the size of the <code>fd_set</code> used.</p>
+       </dd>
+       <dt>EV_SELECT_IS_WINSOCKET</dt>
+       <dd>
+               <p>When defined to <code>1</code>, the select backend will assume that
+select/socket/connect etc. don't understand file descriptors but
+wants osf handles on win32 (this is the case when the select to
+be used is the winsock select). This means that it will call
+<code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
+it is assumed that all these functions actually work on fds, even
+on win32. Should not be defined on non-win32 platforms.</p>
+       </dd>
+       <dt>EV_USE_POLL</dt>
+       <dd>
+               <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
+backend. Otherwise it will be enabled on non-win32 platforms. It
+takes precedence over select.</p>
+       </dd>
+       <dt>EV_USE_EPOLL</dt>
+       <dd>
+               <p>If defined to be <code>1</code>, libev will compile in support for the Linux
+<code>epoll</code>(7) backend. Its availability will be detected at runtime,
+otherwise another method will be used as fallback. This is the
+preferred backend for GNU/Linux systems.</p>
+       </dd>
+       <dt>EV_USE_KQUEUE</dt>
+       <dd>
+               <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
+<code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
+otherwise another method will be used as fallback. This is the preferred
+backend for BSD and BSD-like systems, although on most BSDs kqueue only
+supports some types of fds correctly (the only platform we found that
+supports ptys for example was NetBSD), so kqueue might be compiled in, but
+not be used unless explicitly requested. The best way to use it is to find
+out whether kqueue supports your type of fd properly and use an embedded
+kqueue loop.</p>
+       </dd>
+       <dt>EV_USE_PORT</dt>
+       <dd>
+               <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
+10 port style backend. Its availability will be detected at runtime,
+otherwise another method will be used as fallback. This is the preferred
+backend for Solaris 10 systems.</p>
+       </dd>
+       <dt>EV_USE_DEVPOLL</dt>
+       <dd>
+               <p>reserved for future expansion, works like the USE symbols above.</p>
+       </dd>
+       <dt>EV_H</dt>
+       <dd>
+               <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
+undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
+can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
+       </dd>
+       <dt>EV_CONFIG_H</dt>
+       <dd>
+               <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
+<cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
+<code>EV_H</code>, above.</p>
+       </dd>
+       <dt>EV_EVENT_H</dt>
+       <dd>
+               <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
+of how the <cite>event.h</cite> header can be found.</p>
+       </dd>
+       <dt>EV_PROTOTYPES</dt>
+       <dd>
+               <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
+prototypes, but still define all the structs and other symbols. This is
+occasionally useful if you want to provide your own wrapper functions
+around libev functions.</p>
+       </dd>
+       <dt>EV_MULTIPLICITY</dt>
+       <dd>
+               <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
+will have the <code>struct ev_loop *</code> as first argument, and you can create
+additional independent event loops. Otherwise there will be no support
+for multiple event loops and there is no first event loop pointer
+argument. Instead, all functions act on the single default loop.</p>
+       </dd>
+       <dt>EV_PERIODICS</dt>
+       <dd>
+               <p>If undefined or defined to be <code>1</code>, then periodic timers are supported,
+otherwise not. This saves a few kb of code.</p>
+       </dd>
+       <dt>EV_COMMON</dt>
+       <dd>
+               <p>By default, all watchers have a <code>void *data</code> member. By redefining
+this macro to a something else you can include more and other types of
+members. You have to define it each time you include one of the files,
+though, and it must be identical each time.</p>
+               <p>For example, the perl EV module uses something like this:</p>
+<pre>  #define EV_COMMON                       \
+    SV *self; /* contains this struct */  \
+    SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
+
+</pre>
+       </dd>
+       <dt>EV_CB_DECLARE (type)</dt>
+       <dt>EV_CB_INVOKE (watcher, revents)</dt>
+       <dt>ev_set_cb (ev, cb)</dt>
+       <dd>
+               <p>Can be used to change the callback member declaration in each watcher,
+and the way callbacks are invoked and set. Must expand to a struct member
+definition and a statement, respectively. See the <cite>ev.v</cite> header file for
+their default definitions. One possible use for overriding these is to
+avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
+method calls instead of plain function calls in C++.</p>
+
+</div>
+<h2 id="EXAMPLES">EXAMPLES</h2>
+<div id="EXAMPLES_CONTENT">
+               <p>For a real-world example of a program the includes libev
+verbatim, you can have a look at the EV perl module
+(<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
+the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
+interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
+will be compiled. It is pretty complex because it provides its own header
+file.</p>
+               <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
+that everybody includes and which overrides some autoconf choices:</p>
+<pre>  #define EV_USE_POLL 0
+  #define EV_MULTIPLICITY 0
+  #define EV_PERIODICS 0
+  #define EV_CONFIG_H &lt;config.h&gt;
+
+  #include &quot;ev++.h&quot;
+
+</pre>
+               <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
+<pre>  #include &quot;ev_cpp.h&quot;
+  #include &quot;ev.c&quot;
+
+
+
+
+</pre>
+
+</div>
+<h1 id="COMPLEXITIES">COMPLEXITIES</h1><p><a href="#TOP" class="toplink">Top</a></p>
+<div id="COMPLEXITIES_CONTENT">
+               <p>In this section the complexities of (many of) the algorithms used inside
+libev will be explained. For complexity discussions about backends see the
+documentation for <code>ev_default_init</code>.</p>
+               <p>
+                       <dl>
+                               <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
+                               <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
+                               <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
+                               <dt>Stopping check/prepare/idle watchers: O(1)</dt>
+                               <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % 16))</dt>
+                               <dt>Finding the next timer per loop iteration: O(1)</dt>
+                               <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
+                               <dt>Activating one watcher: O(1)</dt>
+                       </dl>
+               </p>
+
+
+
+
+
 </div>
 <h1 id="AUTHOR">AUTHOR</h1><p><a href="#TOP" class="toplink">Top</a></p>
 <div id="AUTHOR_CONTENT">
-<p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
+               <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
 
 </div>
 </div></body>