]> git.llucax.com Git - software/libev.git/blobdiff - ev.3
*** empty log message ***
[software/libev.git] / ev.3
diff --git a/ev.3 b/ev.3
index cf2a42d0ed588cb64e1f7f687915fa6518f5fdc5..dad4e52daa173fe868b9a7bc3267f84a4334f6b3 100644 (file)
--- a/ev.3
+++ b/ev.3
 .\" ========================================================================
 .\"
 .IX Title ""<STANDARD INPUT>" 1"
 .\" ========================================================================
 .\"
 .IX Title ""<STANDARD INPUT>" 1"
-.TH "<STANDARD INPUT>" 1 "2007-11-29" "perl v5.8.8" "User Contributed Perl Documentation"
+.TH "<STANDARD INPUT>" 1 "2007-12-07" "perl v5.8.8" "User Contributed Perl Documentation"
 .SH "NAME"
 libev \- a high performance full\-featured event loop written in C
 .SH "SYNOPSIS"
 .SH "NAME"
 libev \- a high performance full\-featured event loop written in C
 .SH "SYNOPSIS"
@@ -198,6 +198,10 @@ libev \- a high performance full\-featured event loop written in C
 .Ve
 .SH "DESCRIPTION"
 .IX Header "DESCRIPTION"
 .Ve
 .SH "DESCRIPTION"
 .IX Header "DESCRIPTION"
+The newest version of this document is also available as a html-formatted
+web page you might find easier to navigate when reading it for the first
+time: <http://cvs.schmorp.de/libev/ev.html>.
+.PP
 Libev is an event loop: you register interest in certain events (such as a
 file descriptor being readable or a timeout occuring), and it will manage
 these event sources and provide your program with events.
 Libev is an event loop: you register interest in certain events (such as a
 file descriptor being readable or a timeout occuring), and it will manage
 these event sources and provide your program with events.
@@ -422,7 +426,7 @@ enabling this flag.
 .Sp
 This works by calling \f(CW\*(C`getpid ()\*(C'\fR on every iteration of the loop,
 and thus this might slow down your event loop if you do a lot of loop
 .Sp
 This works by calling \f(CW\*(C`getpid ()\*(C'\fR on every iteration of the loop,
 and thus this might slow down your event loop if you do a lot of loop
-iterations and little real work, but is usually not noticable (on my
+iterations and little real work, but is usually not noticeable (on my
 Linux system for example, \f(CW\*(C`getpid\*(C'\fR is actually a simple 5\-insn sequence
 without a syscall and thus \fIvery\fR fast, but my Linux system also has
 \&\f(CW\*(C`pthread_atfork\*(C'\fR which is even faster).
 Linux system for example, \f(CW\*(C`getpid\*(C'\fR is actually a simple 5\-insn sequence
 without a syscall and thus \fIvery\fR fast, but my Linux system also has
 \&\f(CW\*(C`pthread_atfork\*(C'\fR which is even faster).
@@ -583,6 +587,15 @@ do not need to care.
 Like \f(CW\*(C`ev_default_fork\*(C'\fR, but acts on an event loop created by
 \&\f(CW\*(C`ev_loop_new\*(C'\fR. Yes, you have to call this on every allocated event loop
 after fork, and how you do this is entirely your own problem.
 Like \f(CW\*(C`ev_default_fork\*(C'\fR, but acts on an event loop created by
 \&\f(CW\*(C`ev_loop_new\*(C'\fR. Yes, you have to call this on every allocated event loop
 after fork, and how you do this is entirely your own problem.
+.IP "unsigned int ev_loop_count (loop)" 4
+.IX Item "unsigned int ev_loop_count (loop)"
+Returns the count of loop iterations for the loop, which is identical to
+the number of times libev did poll for new events. It starts at \f(CW0\fR and
+happily wraps around with enough iterations.
+.Sp
+This value can sometimes be useful as a generation counter of sorts (it
+\&\*(L"ticks\*(R" the number of loop iterations), as it roughly corresponds with
+\&\f(CW\*(C`ev_prepare\*(C'\fR and \f(CW\*(C`ev_check\*(C'\fR calls.
 .IP "unsigned int ev_backend (loop)" 4
 .IX Item "unsigned int ev_backend (loop)"
 Returns one of the \f(CW\*(C`EVBACKEND_*\*(C'\fR flags indicating the event backend in
 .IP "unsigned int ev_backend (loop)" 4
 .IX Item "unsigned int ev_backend (loop)"
 Returns one of the \f(CW\*(C`EVBACKEND_*\*(C'\fR flags indicating the event backend in
@@ -887,6 +900,32 @@ Returns the callback currently set on the watcher.
 .IX Item "ev_cb_set (ev_TYPE *watcher, callback)"
 Change the callback. You can change the callback at virtually any time
 (modulo threads).
 .IX Item "ev_cb_set (ev_TYPE *watcher, callback)"
 Change the callback. You can change the callback at virtually any time
 (modulo threads).
+.IP "ev_set_priority (ev_TYPE *watcher, priority)" 4
+.IX Item "ev_set_priority (ev_TYPE *watcher, priority)"
+.PD 0
+.IP "int ev_priority (ev_TYPE *watcher)" 4
+.IX Item "int ev_priority (ev_TYPE *watcher)"
+.PD
+Set and query the priority of the watcher. The priority is a small
+integer between \f(CW\*(C`EV_MAXPRI\*(C'\fR (default: \f(CW2\fR) and \f(CW\*(C`EV_MINPRI\*(C'\fR
+(default: \f(CW\*(C`\-2\*(C'\fR). Pending watchers with higher priority will be invoked
+before watchers with lower priority, but priority will not keep watchers
+from being executed (except for \f(CW\*(C`ev_idle\*(C'\fR watchers).
+.Sp
+This means that priorities are \fIonly\fR used for ordering callback
+invocation after new events have been received. This is useful, for
+example, to reduce latency after idling, or more often, to bind two
+watchers on the same event and make sure one is called first.
+.Sp
+If you need to suppress invocation when higher priority events are pending
+you need to look at \f(CW\*(C`ev_idle\*(C'\fR watchers, which provide this functionality.
+.Sp
+The default priority used by watchers when no priority has been set is
+always \f(CW0\fR, which is supposed to not be too high and not be too low :).
+.Sp
+Setting a priority outside the range of \f(CW\*(C`EV_MINPRI\*(C'\fR to \f(CW\*(C`EV_MAXPRI\*(C'\fR is
+fine, as long as you do not mind that the priority value you query might
+or might not have been adjusted to be within valid range.
 .Sh "\s-1ASSOCIATING\s0 \s-1CUSTOM\s0 \s-1DATA\s0 \s-1WITH\s0 A \s-1WATCHER\s0"
 .IX Subsection "ASSOCIATING CUSTOM DATA WITH A WATCHER"
 Each watcher has, by default, a member \f(CW\*(C`void *data\*(C'\fR that you can change
 .Sh "\s-1ASSOCIATING\s0 \s-1CUSTOM\s0 \s-1DATA\s0 \s-1WITH\s0 A \s-1WATCHER\s0"
 .IX Subsection "ASSOCIATING CUSTOM DATA WITH A WATCHER"
 Each watcher has, by default, a member \f(CW\*(C`void *data\*(C'\fR that you can change
@@ -1007,7 +1046,7 @@ it is best to always use non-blocking I/O: An extra \f(CW\*(C`read\*(C'\fR(2) re
 .PP
 If you cannot run the fd in non-blocking mode (for example you should not
 play around with an Xlib connection), then you have to seperately re-test
 .PP
 If you cannot run the fd in non-blocking mode (for example you should not
 play around with an Xlib connection), then you have to seperately re-test
-wether a file descriptor is really ready with a known-to-be good interface
+whether a file descriptor is really ready with a known-to-be good interface
 such as poll (fortunately in our Xlib example, Xlib already does this on
 its own, so its quite safe to use).
 .IP "ev_io_init (ev_io *, callback, int fd, int events)" 4
 such as poll (fortunately in our Xlib example, Xlib already does this on
 its own, so its quite safe to use).
 .IP "ev_io_init (ev_io *, callback, int fd, int events)" 4
@@ -1501,13 +1540,16 @@ Example: Watch \f(CW\*(C`/etc/passwd\*(C'\fR for attribute changes.
 .ie n .Sh """ev_idle"" \- when you've got nothing better to do..."
 .el .Sh "\f(CWev_idle\fP \- when you've got nothing better to do..."
 .IX Subsection "ev_idle - when you've got nothing better to do..."
 .ie n .Sh """ev_idle"" \- when you've got nothing better to do..."
 .el .Sh "\f(CWev_idle\fP \- when you've got nothing better to do..."
 .IX Subsection "ev_idle - when you've got nothing better to do..."
-Idle watchers trigger events when there are no other events are pending
-(prepare, check and other idle watchers do not count). That is, as long
-as your process is busy handling sockets or timeouts (or even signals,
-imagine) it will not be triggered. But when your process is idle all idle
-watchers are being called again and again, once per event loop iteration \-
-until stopped, that is, or your process receives more events and becomes
-busy.
+Idle watchers trigger events when no other events of the same or higher
+priority are pending (prepare, check and other idle watchers do not
+count).
+.PP
+That is, as long as your process is busy handling sockets or timeouts
+(or even signals, imagine) of the same or higher priority it will not be
+triggered. But when your process is idle (or only lower-priority watchers
+are pending), the idle watchers are being called once per event loop
+iteration \- until stopped, that is, or your process receives more events
+and becomes busy again with higher priority stuff.
 .PP
 The most noteworthy effect is that as long as any idle watchers are
 active, the process will not block when waiting for new events.
 .PP
 The most noteworthy effect is that as long as any idle watchers are
 active, the process will not block when waiting for new events.
@@ -1612,12 +1654,13 @@ pseudo-code only of course:
 \&  }
 .Ve
 .PP
 \&  }
 .Ve
 .PP
-.Vb 7
+.Vb 8
 \&  // create io watchers for each fd and a timer before blocking
 \&  static void
 \&  adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
 \&  {
 \&  // create io watchers for each fd and a timer before blocking
 \&  static void
 \&  adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
 \&  {
-\&    int timeout = 3600000;truct pollfd fds [nfd];
+\&    int timeout = 3600000;
+\&    struct pollfd fds [nfd];
 \&    // actual code will need to loop here and realloc etc.
 \&    adns_beforepoll (ads, fds, &nfd, &timeout, timeval_from (ev_time ()));
 .Ve
 \&    // actual code will need to loop here and realloc etc.
 \&    adns_beforepoll (ads, fds, &nfd, &timeout, timeval_from (ev_time ()));
 .Ve
@@ -1954,7 +1997,7 @@ the constructor.
 .SH "MACRO MAGIC"
 .IX Header "MACRO MAGIC"
 Libev can be compiled with a variety of options, the most fundemantal is
 .SH "MACRO MAGIC"
 .IX Header "MACRO MAGIC"
 Libev can be compiled with a variety of options, the most fundemantal is
-\&\f(CW\*(C`EV_MULTIPLICITY\*(C'\fR. This option determines wether (most) functions and
+\&\f(CW\*(C`EV_MULTIPLICITY\*(C'\fR. This option determines whether (most) functions and
 callbacks have an initial \f(CW\*(C`struct ev_loop *\*(C'\fR argument.
 .PP
 To make it easier to write programs that cope with either variant, the
 callbacks have an initial \f(CW\*(C`struct ev_loop *\*(C'\fR argument.
 .PP
 To make it easier to write programs that cope with either variant, the
@@ -1999,8 +2042,9 @@ suitable for use with \f(CW\*(C`EV_A\*(C'\fR.
 Similar to the other two macros, this gives you the value of the default
 loop, if multiple loops are supported (\*(L"ev loop default\*(R").
 .PP
 Similar to the other two macros, this gives you the value of the default
 loop, if multiple loops are supported (\*(L"ev loop default\*(R").
 .PP
-Example: Declare and initialise a check watcher, working regardless of
-wether multiple loops are supported or not.
+Example: Declare and initialise a check watcher, utilising the above
+macros so it will work regardless of whether multiple loops are supported
+or not.
 .PP
 .Vb 5
 \&  static void
 .PP
 .Vb 5
 \&  static void
@@ -2073,7 +2117,7 @@ in your include path (e.g. in libev/ when using \-Ilibev):
 .Ve
 .PP
 .Vb 5
 .Ve
 .PP
 .Vb 5
-\&  ev_select.c     only when select backend is enabled (which is by default)
+\&  ev_select.c     only when select backend is enabled (which is enabled by default)
 \&  ev_poll.c       only when poll backend is enabled (disabled by default)
 \&  ev_epoll.c      only when the epoll backend is enabled (disabled by default)
 \&  ev_kqueue.c     only when the kqueue backend is enabled (disabled by default)
 \&  ev_poll.c       only when poll backend is enabled (disabled by default)
 \&  ev_epoll.c      only when the epoll backend is enabled (disabled by default)
 \&  ev_kqueue.c     only when the kqueue backend is enabled (disabled by default)
@@ -2236,11 +2280,34 @@ will have the \f(CW\*(C`struct ev_loop *\*(C'\fR as first argument, and you can
 additional independent event loops. Otherwise there will be no support
 for multiple event loops and there is no first event loop pointer
 argument. Instead, all functions act on the single default loop.
 additional independent event loops. Otherwise there will be no support
 for multiple event loops and there is no first event loop pointer
 argument. Instead, all functions act on the single default loop.
+.IP "\s-1EV_MINPRI\s0" 4
+.IX Item "EV_MINPRI"
+.PD 0
+.IP "\s-1EV_MAXPRI\s0" 4
+.IX Item "EV_MAXPRI"
+.PD
+The range of allowed priorities. \f(CW\*(C`EV_MINPRI\*(C'\fR must be smaller or equal to
+\&\f(CW\*(C`EV_MAXPRI\*(C'\fR, but otherwise there are no non-obvious limitations. You can
+provide for more priorities by overriding those symbols (usually defined
+to be \f(CW\*(C`\-2\*(C'\fR and \f(CW2\fR, respectively).
+.Sp
+When doing priority-based operations, libev usually has to linearly search
+all the priorities, so having many of them (hundreds) uses a lot of space
+and time, so using the defaults of five priorities (\-2 .. +2) is usually
+fine.
+.Sp
+If your embedding app does not need any priorities, defining these both to
+\&\f(CW0\fR will save some memory and cpu.
 .IP "\s-1EV_PERIODIC_ENABLE\s0" 4
 .IX Item "EV_PERIODIC_ENABLE"
 If undefined or defined to be \f(CW1\fR, then periodic timers are supported. If
 defined to be \f(CW0\fR, then they are not. Disabling them saves a few kB of
 code.
 .IP "\s-1EV_PERIODIC_ENABLE\s0" 4
 .IX Item "EV_PERIODIC_ENABLE"
 If undefined or defined to be \f(CW1\fR, then periodic timers are supported. If
 defined to be \f(CW0\fR, then they are not. Disabling them saves a few kB of
 code.
+.IP "\s-1EV_IDLE_ENABLE\s0" 4
+.IX Item "EV_IDLE_ENABLE"
+If undefined or defined to be \f(CW1\fR, then idle watchers are supported. If
+defined to be \f(CW0\fR, then they are not. Disabling them saves a few kB of
+code.
 .IP "\s-1EV_EMBED_ENABLE\s0" 4
 .IX Item "EV_EMBED_ENABLE"
 If undefined or defined to be \f(CW1\fR, then embed watchers are supported. If
 .IP "\s-1EV_EMBED_ENABLE\s0" 4
 .IX Item "EV_EMBED_ENABLE"
 If undefined or defined to be \f(CW1\fR, then embed watchers are supported. If
@@ -2310,13 +2377,18 @@ will be compiled. It is pretty complex because it provides its own header
 file.
 .Sp
 The usage in rxvt-unicode is simpler. It has a \fIev_cpp.h\fR header file
 file.
 .Sp
 The usage in rxvt-unicode is simpler. It has a \fIev_cpp.h\fR header file
-that everybody includes and which overrides some autoconf choices:
+that everybody includes and which overrides some configure choices:
 .Sp
 .Sp
-.Vb 4
+.Vb 9
+\&  #define EV_MINIMAL 1
 \&  #define EV_USE_POLL 0
 \&  #define EV_MULTIPLICITY 0
 \&  #define EV_USE_POLL 0
 \&  #define EV_MULTIPLICITY 0
-\&  #define EV_PERIODICS 0
+\&  #define EV_PERIODIC_ENABLE 0
+\&  #define EV_STAT_ENABLE 0
+\&  #define EV_FORK_ENABLE 0
 \&  #define EV_CONFIG_H <config.h>
 \&  #define EV_CONFIG_H <config.h>
+\&  #define EV_MINPRI 0
+\&  #define EV_MAXPRI 0
 .Ve
 .Sp
 .Vb 1
 .Ve
 .Sp
 .Vb 1
@@ -2334,27 +2406,50 @@ And a \fIev_cpp.C\fR implementation file that contains libev proper and is compi
 In this section the complexities of (many of) the algorithms used inside
 libev will be explained. For complexity discussions about backends see the
 documentation for \f(CW\*(C`ev_default_init\*(C'\fR.
 In this section the complexities of (many of) the algorithms used inside
 libev will be explained. For complexity discussions about backends see the
 documentation for \f(CW\*(C`ev_default_init\*(C'\fR.
+.Sp
+All of the following are about amortised time: If an array needs to be
+extended, libev needs to realloc and move the whole array, but this
+happens asymptotically never with higher number of elements, so O(1) might
+mean it might do a lengthy realloc operation in rare cases, but on average
+it is much faster and asymptotically approaches constant time.
 .RS 4
 .IP "Starting and stopping timer/periodic watchers: O(log skipped_other_timers)" 4
 .IX Item "Starting and stopping timer/periodic watchers: O(log skipped_other_timers)"
 .RS 4
 .IP "Starting and stopping timer/periodic watchers: O(log skipped_other_timers)" 4
 .IX Item "Starting and stopping timer/periodic watchers: O(log skipped_other_timers)"
-.PD 0
+This means that, when you have a watcher that triggers in one hour and
+there are 100 watchers that would trigger before that then inserting will
+have to skip those 100 watchers.
 .IP "Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)" 4
 .IX Item "Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)"
 .IP "Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)" 4
 .IX Item "Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)"
+That means that for changing a timer costs less than removing/adding them
+as only the relative motion in the event queue has to be paid for.
 .IP "Starting io/check/prepare/idle/signal/child watchers: O(1)" 4
 .IX Item "Starting io/check/prepare/idle/signal/child watchers: O(1)"
 .IP "Starting io/check/prepare/idle/signal/child watchers: O(1)" 4
 .IX Item "Starting io/check/prepare/idle/signal/child watchers: O(1)"
-.IP "Stopping check/prepare/idle watchers: O(1)" 4
-.IX Item "Stopping check/prepare/idle watchers: O(1)"
+These just add the watcher into an array or at the head of a list.
+=item Stopping check/prepare/idle watchers: O(1)
 .IP "Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % \s-1EV_PID_HASHSIZE\s0))" 4
 .IX Item "Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))"
 .IP "Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % \s-1EV_PID_HASHSIZE\s0))" 4
 .IX Item "Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))"
+These watchers are stored in lists then need to be walked to find the
+correct watcher to remove. The lists are usually short (you don't usually
+have many watchers waiting for the same fd or signal).
 .IP "Finding the next timer per loop iteration: O(1)" 4
 .IX Item "Finding the next timer per loop iteration: O(1)"
 .IP "Finding the next timer per loop iteration: O(1)" 4
 .IX Item "Finding the next timer per loop iteration: O(1)"
+.PD 0
 .IP "Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)" 4
 .IX Item "Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)"
 .IP "Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)" 4
 .IX Item "Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)"
+.PD
+A change means an I/O watcher gets started or stopped, which requires
+libev to recalculate its status (and possibly tell the kernel).
 .IP "Activating one watcher: O(1)" 4
 .IX Item "Activating one watcher: O(1)"
 .IP "Activating one watcher: O(1)" 4
 .IX Item "Activating one watcher: O(1)"
+.PD 0
+.IP "Priority handling: O(number_of_priorities)" 4
+.IX Item "Priority handling: O(number_of_priorities)"
+.PD
+Priorities are implemented by allocating some space for each
+priority. When doing priority-based operations, libev usually has to
+linearly search all the priorities.
 .RE
 .RS 4
 .RE
 .RS 4
-.PD
 .SH "AUTHOR"
 .IX Header "AUTHOR"
 Marc Lehmann <libev@schmorp.de>.
 .SH "AUTHOR"
 .IX Header "AUTHOR"
 Marc Lehmann <libev@schmorp.de>.