Here are the gory details of what C<ev_loop> does:
+ - Before the first iteration, call any pending watchers.
* If there are no active watchers (reference count is zero), return.
- - Queue prepare watchers and then call all outstanding watchers.
+ - Queue all prepare watchers and then call all outstanding watchers.
- If we have been forked, recreate the kernel state.
- Update the kernel state with all outstanding changes.
- Update the "event loop time".
fine, as long as you do not mind that the priority value you query might
or might not have been adjusted to be within valid range.
+=item ev_invoke (loop, ev_TYPE *watcher, int revents)
+
+Invoke the C<watcher> with the given C<loop> and C<revents>. Neither
+C<loop> nor C<revents> need to be valid as long as the watcher callback
+can deal with that fact.
+
+=item int ev_clear_pending (loop, ev_TYPE *watcher)
+
+If the watcher is pending, this function returns clears its pending status
+and returns its C<revents> bitset (as if its callback was invoked). If the
+watcher isn't pending it does nothing and returns C<0>.
+
=back
periodic watcher to trigger in 10 seconds (by specifiying e.g. C<ev_now ()
+ 10.>) and then reset your system clock to the last year, then it will
take a year to trigger the event (unlike an C<ev_timer>, which would trigger
-roughly 10 seconds later and of course not if you reset your system time
-again).
+roughly 10 seconds later).
They can also be used to implement vastly more complex timers, such as
-triggering an event on eahc midnight, local time.
+triggering an event on each midnight, local time or other, complicated,
+rules.
As with timers, the callback is guarenteed to be invoked only when the
time (C<at>) has been passed, but if multiple periodic timers become ready
=over 4
-=item * absolute timer (interval = reschedule_cb = 0)
+=item * absolute timer (at = time, interval = reschedule_cb = 0)
In this configuration the watcher triggers an event at the wallclock time
C<at> and doesn't repeat. It will not adjust when a time jump occurs,
that is, if it is to be run at January 1st 2011 then it will run when the
system time reaches or surpasses this time.
-=item * non-repeating interval timer (interval > 0, reschedule_cb = 0)
+=item * non-repeating interval timer (at = offset, interval > 0, reschedule_cb = 0)
In this mode the watcher will always be scheduled to time out at the next
-C<at + N * interval> time (for some integer N) and then repeat, regardless
-of any time jumps.
+C<at + N * interval> time (for some integer N, which can also be negative)
+and then repeat, regardless of any time jumps.
This can be used to create timers that do not drift with respect to system
time:
C<ev_periodic> will try to run the callback in this mode at the next possible
time where C<time = at (mod interval)>, regardless of any time jumps.
-=item * manual reschedule mode (reschedule_cb = callback)
+For numerical stability it is preferable that the C<at> value is near
+C<ev_now ()> (the current time), but there is no range requirement for
+this value.
+
+=item * manual reschedule mode (at and interval ignored, reschedule_cb = callback)
In this mode the values for C<interval> and C<at> are both being
ignored. Instead, each time the periodic watcher gets scheduled, the
NOTE: I<This callback MUST NOT stop or destroy any periodic watcher,
ever, or make any event loop modifications>. If you need to stop it,
return C<now + 1e30> (or so, fudge fudge) and stop it afterwards (e.g. by
-starting a prepare watcher).
+starting an C<ev_prepare> watcher, which is legal).
Its prototype is C<ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
ev_tstamp now)>, e.g.:
a different time than the last time it was called (e.g. in a crond like
program when the crontabs have changed).
+=item ev_tstamp offset [read-write]
+
+When repeating, this contains the offset value, otherwise this is the
+absolute point in time (the C<at> value passed to C<ev_periodic_set>).
+
+Can be modified any time, but changes only take effect when the periodic
+timer fires or C<ev_periodic_again> is being called.
+
=item ev_tstamp interval [read-write]
The current interval value. Can be modified any time, but changes only
loop from blocking if lower-priority coroutines are active, thus mapping
low-priority coroutines to idle/background tasks).
+It is recommended to give C<ev_check> watchers highest (C<EV_MAXPRI>)
+priority, to ensure that they are being run before any other watchers
+after the poll. Also, C<ev_check> watchers (and C<ev_prepare> watchers,
+too) should not activate ("feed") events into libev. While libev fully
+supports this, they will be called before other C<ev_check> watchers did
+their job. As C<ev_check> watchers are often used to embed other event
+loops those other event loops might be in an unusable state until their
+C<ev_check> watcher ran (always remind yourself to coexist peacefully with
+others).
+
=over 4
=item ev_prepare_init (ev_prepare *, callback)
=back
-Example: To include a library such as adns, you would add IO watchers
-and a timeout watcher in a prepare handler, as required by libadns, and
-in a check watcher, destroy them and call into libadns. What follows is
-pseudo-code only of course:
+There are a number of principal ways to embed other event loops or modules
+into libev. Here are some ideas on how to include libadns into libev
+(there is a Perl module named C<EV::ADNS> that does this, which you could
+use for an actually working example. Another Perl module named C<EV::Glib>
+embeds a Glib main context into libev, and finally, C<Glib::EV> embeds EV
+into the Glib event loop).
+
+Method 1: Add IO watchers and a timeout watcher in a prepare handler,
+and in a check watcher, destroy them and call into libadns. What follows
+is pseudo-code only of course. This requires you to either use a low
+priority for the check watcher or use C<ev_clear_pending> explicitly, as
+the callbacks for the IO/timeout watchers might not have been called yet.
static ev_io iow [nfd];
static ev_timer tw;
static void
io_cb (ev_loop *loop, ev_io *w, int revents)
{
- // set the relevant poll flags
- // could also call adns_processreadable etc. here
- struct pollfd *fd = (struct pollfd *)w->data;
- if (revents & EV_READ ) fd->revents |= fd->events & POLLIN;
- if (revents & EV_WRITE) fd->revents |= fd->events & POLLOUT;
}
// create io watchers for each fd and a timer before blocking
ev_timer_init (&tw, 0, timeout * 1e-3);
ev_timer_start (loop, &tw);
- // create on ev_io per pollfd
+ // create one ev_io per pollfd
for (int i = 0; i < nfd; ++i)
{
ev_io_init (iow + i, io_cb, fds [i].fd,
| (fds [i].events & POLLOUT ? EV_WRITE : 0)));
fds [i].revents = 0;
- iow [i].data = fds + i;
ev_io_start (loop, iow + i);
}
}
ev_timer_stop (loop, &tw);
for (int i = 0; i < nfd; ++i)
- ev_io_stop (loop, iow + i);
+ {
+ // set the relevant poll flags
+ // could also call adns_processreadable etc. here
+ struct pollfd *fd = fds + i;
+ int revents = ev_clear_pending (iow + i);
+ if (revents & EV_READ ) fd->revents |= fd->events & POLLIN;
+ if (revents & EV_WRITE) fd->revents |= fd->events & POLLOUT;
+
+ // now stop the watcher
+ ev_io_stop (loop, iow + i);
+ }
adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
}
+Method 2: This would be just like method 1, but you run C<adns_afterpoll>
+in the prepare watcher and would dispose of the check watcher.
+
+Method 3: If the module to be embedded supports explicit event
+notification (adns does), you can also make use of the actual watcher
+callbacks, and only destroy/create the watchers in the prepare watcher.
+
+ static void
+ timer_cb (EV_P_ ev_timer *w, int revents)
+ {
+ adns_state ads = (adns_state)w->data;
+ update_now (EV_A);
+
+ adns_processtimeouts (ads, &tv_now);
+ }
+
+ static void
+ io_cb (EV_P_ ev_io *w, int revents)
+ {
+ adns_state ads = (adns_state)w->data;
+ update_now (EV_A);
+
+ if (revents & EV_READ ) adns_processreadable (ads, w->fd, &tv_now);
+ if (revents & EV_WRITE) adns_processwriteable (ads, w->fd, &tv_now);
+ }
+
+ // do not ever call adns_afterpoll
+
+Method 4: Do not use a prepare or check watcher because the module you
+want to embed is too inflexible to support it. Instead, youc na override
+their poll function. The drawback with this solution is that the main
+loop is now no longer controllable by EV. The C<Glib::EV> module does
+this.
+
+ static gint
+ event_poll_func (GPollFD *fds, guint nfds, gint timeout)
+ {
+ int got_events = 0;
+
+ for (n = 0; n < nfds; ++n)
+ // create/start io watcher that sets the relevant bits in fds[n] and increment got_events
+
+ if (timeout >= 0)
+ // create/start timer
+
+ // poll
+ ev_loop (EV_A_ 0);
+
+ // stop timer again
+ if (timeout >= 0)
+ ev_timer_stop (EV_A_ &to);
+
+ // stop io watchers again - their callbacks should have set
+ for (n = 0; n < nfds; ++n)
+ ev_io_stop (EV_A_ iow [n]);
+
+ return got_events;
+ }
+
=head2 C<ev_embed> - when one backend isn't enough...
ev::io iow;
iow.set <myclass, &myclass::io_cb> (&obj);
-=item w->set (void (*function)(watcher &w, int), void *data = 0)
+=item w->set<function> (void *data = 0)
Also sets a callback, but uses a static method or plain function as
callback. The optional C<data> argument will be stored in the watcher's
C<data> member and is free for you to use.
+The prototype of the C<function> must be C<void (*)(ev::TYPE &w, int)>.
+
See the method-C<set> above for more details.
+Example:
+
+ static void io_cb (ev::io &w, int revents) { }
+ iow.set <io_cb> ();
+
=item w->set (struct ev_loop *)
Associates a different C<struct ev_loop> with this watcher. You can only