+This watcher type is not meant for massive numbers of stat watchers,
+as even with OS-supported change notifications, this can be
+resource-intensive.
+
+At the time of this writing, only the Linux inotify interface is
+implemented (implementing kqueue support is left as an exercise for the
+reader). Inotify will be used to give hints only and should not change the
+semantics of C<ev_stat> watchers, which means that libev sometimes needs
+to fall back to regular polling again even with inotify, but changes are
+usually detected immediately, and if the file exists there will be no
+polling.
+
+=head3 Watcher-Specific Functions and Data Members
+
+=over 4
+
+=item ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)
+
+=item ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)
+
+Configures the watcher to wait for status changes of the given
+C<path>. The C<interval> is a hint on how quickly a change is expected to
+be detected and should normally be specified as C<0> to let libev choose
+a suitable value. The memory pointed to by C<path> must point to the same
+path for as long as the watcher is active.
+
+The callback will be receive C<EV_STAT> when a change was detected,
+relative to the attributes at the time the watcher was started (or the
+last change was detected).
+
+=item ev_stat_stat (ev_stat *)
+
+Updates the stat buffer immediately with new values. If you change the
+watched path in your callback, you could call this fucntion to avoid
+detecting this change (while introducing a race condition). Can also be
+useful simply to find out the new values.
+
+=item ev_statdata attr [read-only]
+
+The most-recently detected attributes of the file. Although the type is of
+C<ev_statdata>, this is usually the (or one of the) C<struct stat> types
+suitable for your system. If the C<st_nlink> member is C<0>, then there
+was some error while C<stat>ing the file.
+
+=item ev_statdata prev [read-only]
+
+The previous attributes of the file. The callback gets invoked whenever
+C<prev> != C<attr>.
+
+=item ev_tstamp interval [read-only]
+
+The specified interval.
+
+=item const char *path [read-only]
+
+The filesystem path that is being watched.
+
+=back
+
+Example: Watch C</etc/passwd> for attribute changes.
+
+ static void
+ passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
+ {
+ /* /etc/passwd changed in some way */
+ if (w->attr.st_nlink)
+ {
+ printf ("passwd current size %ld\n", (long)w->attr.st_size);
+ printf ("passwd current atime %ld\n", (long)w->attr.st_mtime);
+ printf ("passwd current mtime %ld\n", (long)w->attr.st_mtime);
+ }
+ else
+ /* you shalt not abuse printf for puts */
+ puts ("wow, /etc/passwd is not there, expect problems. "
+ "if this is windows, they already arrived\n");
+ }
+
+ ...
+ ev_stat passwd;
+
+ ev_stat_init (&passwd, passwd_cb, "/etc/passwd");
+ ev_stat_start (loop, &passwd);
+
+
+=head2 C<ev_idle> - when you've got nothing better to do...
+
+Idle watchers trigger events when no other events of the same or higher
+priority are pending (prepare, check and other idle watchers do not
+count).
+
+That is, as long as your process is busy handling sockets or timeouts
+(or even signals, imagine) of the same or higher priority it will not be
+triggered. But when your process is idle (or only lower-priority watchers
+are pending), the idle watchers are being called once per event loop
+iteration - until stopped, that is, or your process receives more events
+and becomes busy again with higher priority stuff.