+void
+ev_loop_destroy (EV_P)
+{
+ loop_destroy (EV_A);
+ ev_free (loop);
+}
+
+void
+ev_loop_fork (EV_P)
+{
+ postfork = 1;
+}
+
+#endif
+
+#if EV_MULTIPLICITY
+struct ev_loop default_loop_struct;
+static struct ev_loop *default_loop;
+
+struct ev_loop *
+#else
+static int default_loop;
+
+int
+#endif
+ev_default_loop (int methods)
+{
+ if (sigpipe [0] == sigpipe [1])
+ if (pipe (sigpipe))
+ return 0;
+
+ if (!default_loop)
+ {
+#if EV_MULTIPLICITY
+ struct ev_loop *loop = default_loop = &default_loop_struct;
+#else
+ default_loop = 1;
+#endif
+
+ loop_init (EV_A_ methods);
+
+ if (ev_method (EV_A))
+ {
+ siginit (EV_A);
+
+#ifndef WIN32
+ ev_signal_init (&childev, childcb, SIGCHLD);
+ ev_set_priority (&childev, EV_MAXPRI);
+ ev_signal_start (EV_A_ &childev);
+ ev_unref (EV_A); /* child watcher should not keep loop alive */
+#endif
+ }
+ else
+ default_loop = 0;
+ }
+
+ return default_loop;
+}
+
+void
+ev_default_destroy (void)
+{
+#if EV_MULTIPLICITY
+ struct ev_loop *loop = default_loop;
+#endif
+
+#ifndef WIN32
+ ev_ref (EV_A); /* child watcher */
+ ev_signal_stop (EV_A_ &childev);
+#endif
+
+ ev_ref (EV_A); /* signal watcher */
+ ev_io_stop (EV_A_ &sigev);
+
+ close (sigpipe [0]); sigpipe [0] = 0;
+ close (sigpipe [1]); sigpipe [1] = 0;
+
+ loop_destroy (EV_A);
+}
+
+void
+ev_default_fork (void)
+{
+#if EV_MULTIPLICITY
+ struct ev_loop *loop = default_loop;
+#endif
+
+ if (method)
+ postfork = 1;
+}
+
+/*****************************************************************************/
+
+static void
+call_pending (EV_P)
+{
+ int pri;
+
+ for (pri = NUMPRI; pri--; )
+ while (pendingcnt [pri])
+ {
+ ANPENDING *p = pendings [pri] + --pendingcnt [pri];
+
+ if (p->w)
+ {
+ p->w->pending = 0;
+ p->w->cb (EV_A_ p->w, p->events);
+ }
+ }
+}
+
+static void
+timers_reify (EV_P)
+{
+ while (timercnt && ((WT)timers [0])->at <= mn_now)
+ {
+ struct ev_timer *w = timers [0];
+
+ assert (("inactive timer on timer heap detected", ev_is_active (w)));
+
+ /* first reschedule or stop timer */
+ if (w->repeat)
+ {
+ assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
+ ((WT)w)->at = mn_now + w->repeat;
+ downheap ((WT *)timers, timercnt, 0);
+ }
+ else
+ ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
+
+ event (EV_A_ (W)w, EV_TIMEOUT);
+ }
+}
+
+static void
+periodics_reify (EV_P)
+{
+ while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
+ {
+ struct ev_periodic *w = periodics [0];
+
+ assert (("inactive timer on periodic heap detected", ev_is_active (w)));
+
+ /* first reschedule or stop timer */
+ if (w->interval)
+ {
+ ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
+ assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
+ downheap ((WT *)periodics, periodiccnt, 0);
+ }
+ else
+ ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
+
+ event (EV_A_ (W)w, EV_PERIODIC);
+ }
+}
+
+static void
+periodics_reschedule (EV_P)
+{
+ int i;
+
+ /* adjust periodics after time jump */
+ for (i = 0; i < periodiccnt; ++i)
+ {
+ struct ev_periodic *w = periodics [i];
+
+ if (w->interval)
+ {
+ ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
+
+ if (fabs (diff) >= 1e-4)
+ {
+ ev_periodic_stop (EV_A_ w);
+ ev_periodic_start (EV_A_ w);
+
+ i = 0; /* restart loop, inefficient, but time jumps should be rare */
+ }
+ }
+ }
+}
+
+inline int
+time_update_monotonic (EV_P)
+{
+ mn_now = get_clock ();
+
+ if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
+ {
+ rt_now = rtmn_diff + mn_now;
+ return 0;
+ }
+ else
+ {
+ now_floor = mn_now;
+ rt_now = ev_time ();
+ return 1;
+ }
+}
+
+static void
+time_update (EV_P)
+{
+ int i;
+
+#if EV_USE_MONOTONIC
+ if (expect_true (have_monotonic))
+ {
+ if (time_update_monotonic (EV_A))
+ {
+ ev_tstamp odiff = rtmn_diff;
+
+ for (i = 4; --i; ) /* loop a few times, before making important decisions */
+ {
+ rtmn_diff = rt_now - mn_now;
+
+ if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
+ return; /* all is well */
+
+ rt_now = ev_time ();
+ mn_now = get_clock ();
+ now_floor = mn_now;
+ }
+
+ periodics_reschedule (EV_A);
+ /* no timer adjustment, as the monotonic clock doesn't jump */
+ /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
+ }
+ }
+ else
+#endif
+ {
+ rt_now = ev_time ();
+
+ if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
+ {
+ periodics_reschedule (EV_A);
+
+ /* adjust timers. this is easy, as the offset is the same for all */
+ for (i = 0; i < timercnt; ++i)
+ ((WT)timers [i])->at += rt_now - mn_now;
+ }
+
+ mn_now = rt_now;
+ }
+}
+
+void
+ev_ref (EV_P)
+{
+ ++activecnt;
+}
+
+void
+ev_unref (EV_P)
+{
+ --activecnt;
+}
+
+static int loop_done;
+
+void
+ev_loop (EV_P_ int flags)
+{
+ double block;
+ loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
+
+ do
+ {
+ /* queue check watchers (and execute them) */
+ if (expect_false (preparecnt))
+ {
+ queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
+ call_pending (EV_A);
+ }
+
+ /* we might have forked, so reify kernel state if necessary */
+ if (expect_false (postfork))
+ loop_fork (EV_A);
+
+ /* update fd-related kernel structures */
+ fd_reify (EV_A);
+
+ /* calculate blocking time */
+
+ /* we only need this for !monotonic clockor timers, but as we basically
+ always have timers, we just calculate it always */
+#if EV_USE_MONOTONIC
+ if (expect_true (have_monotonic))
+ time_update_monotonic (EV_A);
+ else
+#endif
+ {
+ rt_now = ev_time ();
+ mn_now = rt_now;
+ }
+
+ if (flags & EVLOOP_NONBLOCK || idlecnt)
+ block = 0.;
+ else
+ {
+ block = MAX_BLOCKTIME;
+
+ if (timercnt)
+ {
+ ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
+ if (block > to) block = to;
+ }
+
+ if (periodiccnt)
+ {
+ ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
+ if (block > to) block = to;
+ }
+
+ if (block < 0.) block = 0.;
+ }
+
+ method_poll (EV_A_ block);
+
+ /* update rt_now, do magic */
+ time_update (EV_A);
+
+ /* queue pending timers and reschedule them */
+ timers_reify (EV_A); /* relative timers called last */
+ periodics_reify (EV_A); /* absolute timers called first */
+
+ /* queue idle watchers unless io or timers are pending */
+ if (!pendingcnt)
+ queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
+
+ /* queue check watchers, to be executed first */
+ if (checkcnt)
+ queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
+
+ call_pending (EV_A);
+ }
+ while (activecnt && !loop_done);
+
+ if (loop_done != 2)
+ loop_done = 0;
+}
+
+void
+ev_unloop (EV_P_ int how)
+{
+ loop_done = how;
+}
+
+/*****************************************************************************/
+
+inline void
+wlist_add (WL *head, WL elem)
+{
+ elem->next = *head;
+ *head = elem;
+}
+
+inline void
+wlist_del (WL *head, WL elem)
+{
+ while (*head)
+ {
+ if (*head == elem)
+ {
+ *head = elem->next;
+ return;
+ }
+
+ head = &(*head)->next;
+ }
+}
+
+inline void
+ev_clear_pending (EV_P_ W w)
+{
+ if (w->pending)
+ {
+ pendings [ABSPRI (w)][w->pending - 1].w = 0;
+ w->pending = 0;
+ }
+}
+
+inline void
+ev_start (EV_P_ W w, int active)
+{
+ if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
+ if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
+
+ w->active = active;
+ ev_ref (EV_A);
+}
+
+inline void
+ev_stop (EV_P_ W w)
+{
+ ev_unref (EV_A);
+ w->active = 0;
+}
+
+/*****************************************************************************/
+
+void
+ev_io_start (EV_P_ struct ev_io *w)
+{
+ int fd = w->fd;
+
+ if (ev_is_active (w))
+ return;
+
+ assert (("ev_io_start called with negative fd", fd >= 0));
+
+ ev_start (EV_A_ (W)w, 1);
+ array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
+ wlist_add ((WL *)&anfds[fd].head, (WL)w);
+
+ fd_change (EV_A_ fd);
+}
+
+void
+ev_io_stop (EV_P_ struct ev_io *w)
+{
+ ev_clear_pending (EV_A_ (W)w);
+ if (!ev_is_active (w))
+ return;
+
+ wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
+ ev_stop (EV_A_ (W)w);
+
+ fd_change (EV_A_ w->fd);
+}
+
+void
+ev_timer_start (EV_P_ struct ev_timer *w)
+{
+ if (ev_is_active (w))
+ return;
+
+ ((WT)w)->at += mn_now;
+
+ assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
+
+ ev_start (EV_A_ (W)w, ++timercnt);
+ array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
+ timers [timercnt - 1] = w;
+ upheap ((WT *)timers, timercnt - 1);
+
+ assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
+}
+
+void
+ev_timer_stop (EV_P_ struct ev_timer *w)
+{
+ ev_clear_pending (EV_A_ (W)w);
+ if (!ev_is_active (w))
+ return;
+
+ assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
+
+ if (((W)w)->active < timercnt--)
+ {
+ timers [((W)w)->active - 1] = timers [timercnt];
+ downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
+ }
+
+ ((WT)w)->at = w->repeat;
+
+ ev_stop (EV_A_ (W)w);
+}
+
+void
+ev_timer_again (EV_P_ struct ev_timer *w)
+{
+ if (ev_is_active (w))
+ {
+ if (w->repeat)
+ {
+ ((WT)w)->at = mn_now + w->repeat;
+ downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
+ }
+ else
+ ev_timer_stop (EV_A_ w);
+ }
+ else if (w->repeat)
+ ev_timer_start (EV_A_ w);
+}
+
+void
+ev_periodic_start (EV_P_ struct ev_periodic *w)
+{
+ if (ev_is_active (w))
+ return;
+
+ assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
+
+ /* this formula differs from the one in periodic_reify because we do not always round up */
+ if (w->interval)
+ ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
+
+ ev_start (EV_A_ (W)w, ++periodiccnt);
+ array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
+ periodics [periodiccnt - 1] = w;
+ upheap ((WT *)periodics, periodiccnt - 1);
+
+ assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
+}
+
+void
+ev_periodic_stop (EV_P_ struct ev_periodic *w)
+{
+ ev_clear_pending (EV_A_ (W)w);
+ if (!ev_is_active (w))
+ return;
+
+ assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
+
+ if (((W)w)->active < periodiccnt--)
+ {
+ periodics [((W)w)->active - 1] = periodics [periodiccnt];
+ downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
+ }
+
+ ev_stop (EV_A_ (W)w);
+}
+
+void
+ev_idle_start (EV_P_ struct ev_idle *w)
+{
+ if (ev_is_active (w))
+ return;
+
+ ev_start (EV_A_ (W)w, ++idlecnt);
+ array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
+ idles [idlecnt - 1] = w;
+}
+
+void
+ev_idle_stop (EV_P_ struct ev_idle *w)
+{
+ ev_clear_pending (EV_A_ (W)w);
+ if (ev_is_active (w))
+ return;
+
+ idles [((W)w)->active - 1] = idles [--idlecnt];
+ ev_stop (EV_A_ (W)w);
+}
+
+void
+ev_prepare_start (EV_P_ struct ev_prepare *w)
+{
+ if (ev_is_active (w))
+ return;
+
+ ev_start (EV_A_ (W)w, ++preparecnt);
+ array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
+ prepares [preparecnt - 1] = w;
+}
+
+void
+ev_prepare_stop (EV_P_ struct ev_prepare *w)
+{
+ ev_clear_pending (EV_A_ (W)w);
+ if (ev_is_active (w))
+ return;
+
+ prepares [((W)w)->active - 1] = prepares [--preparecnt];
+ ev_stop (EV_A_ (W)w);
+}
+
+void
+ev_check_start (EV_P_ struct ev_check *w)
+{
+ if (ev_is_active (w))
+ return;
+
+ ev_start (EV_A_ (W)w, ++checkcnt);
+ array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
+ checks [checkcnt - 1] = w;
+}
+
+void
+ev_check_stop (EV_P_ struct ev_check *w)
+{
+ ev_clear_pending (EV_A_ (W)w);
+ if (ev_is_active (w))
+ return;
+
+ checks [((W)w)->active - 1] = checks [--checkcnt];
+ ev_stop (EV_A_ (W)w);
+}
+
+#ifndef SA_RESTART
+# define SA_RESTART 0