<meta name="description" content="Pod documentation for libev" />
<meta name="inputfile" content="<standard input>" />
<meta name="outputfile" content="<standard output>" />
- <meta name="created" content="Mon Nov 12 10:01:12 2007" />
+ <meta name="created" content="Mon Nov 12 10:06:08 2007" />
<meta name="generator" content="Pod::Xhtml 1.57" />
<link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
<body>
</ul>
</li>
<li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
+<li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
+<li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
<li><a href="#AUTHOR">AUTHOR</a>
</li>
</ul><hr />
will usually be called just before the callback will be triggered, but
might be called at other times, too.</p>
<p>NOTE: <i>This callback must always return a time that is later than the
-passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it must be larger.</p>
+passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
<p>This can be used to create very complex timers, such as a timer that
triggers on each midnight, local time. To do this, you would calculate the
-next midnight after <code>now</code> and return the timestamp value for this. How you do this
-is, again, up to you (but it is not trivial).</p>
+next midnight after <code>now</code> and return the timestamp value for this. How
+you do this is, again, up to you (but it is not trivial, which is the main
+reason I omitted it as an example).</p>
</dd>
</dl>
</p>
<h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop</h2>
<div id="code_ev_prepare_code_and_code_ev_che-2">
<p>Prepare and check watchers are usually (but not always) used in tandem:
-Prepare watchers get invoked before the process blocks and check watchers
+prepare watchers get invoked before the process blocks and check watchers
afterwards.</p>
<p>Their main purpose is to integrate other event mechanisms into libev. This
could be used, for example, to track variable changes, implement your own
provide just this functionality). Then, in the check watcher you check for
any events that occured (by checking the pending status of all watchers
and stopping them) and call back into the library. The I/O and timer
-callbacks will never actually be called (but must be valid neverthelles,
+callbacks will never actually be called (but must be valid nevertheless,
because you never know, you know?).</p>
<p>As another example, the Perl Coro module uses these hooks to integrate
coroutines into libev programs, by yielding to other active coroutines
during each prepare and only letting the process block if no coroutines
-are ready to run (its actually more complicated, it only runs coroutines
-with priority higher than the event loop and one lower priority once,
-using idle watchers to keep the event loop from blocking if lower-priority
-coroutines exist, thus mapping low-priority coroutines to idle/background
-tasks).</p>
+are ready to run (it's actually more complicated: it only runs coroutines
+with priority higher than or equal to the event loop and one coroutine
+of lower priority, but only once, using idle watchers to keep the event
+loop from blocking if lower-priority coroutines are active, thus mapping
+low-priority coroutines to idle/background tasks).</p>
<dl>
<dt>ev_prepare_init (ev_prepare *, callback)</dt>
<dt>ev_check_init (ev_check *, callback)</dt>
</dd>
</dl>
+</div>
+<h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
+<div id="LIBEVENT_EMULATION_CONTENT">
+<p>TBD.</p>
+
+</div>
+<h1 id="C_SUPPORT">C++ SUPPORT</h1><p><a href="#TOP" class="toplink">Top</a></p>
+<div id="C_SUPPORT_CONTENT">
+<p>TBD.</p>
+
</div>
<h1 id="AUTHOR">AUTHOR</h1><p><a href="#TOP" class="toplink">Top</a></p>
<div id="AUTHOR_CONTENT">