]> git.llucax.com Git - z.facultad/75.68/celdas.git/blob - trunk/src/breve/robot/Celdas-2-6.tz
Evitamos memory leaks.
[z.facultad/75.68/celdas.git] / trunk / src / breve / robot / Celdas-2-6.tz
1 @use PhysicalControl.\r
2 @use Shape.\r
3 @use Stationary.\r
4 @use Link.\r
5 @use MultiBody.\r
6 @use Drawing.\r
7 \r
8 @define CELDAS_MAX_VELOCITY 30.\r
9 \r
10 PhysicalControl : CeldasControl {\r
11         % This class is used for building simple vehicle \r
12         % simulations.  To create a vehicle simulation, \r
13         % subclass CeldasControl and use the init method to \r
14         % create OBJECT(CeldasObstacle) and \r
15         % OBJECT(CeldasVehicle) objects.\r
16 \r
17         + variables:\r
18                 floor (object).\r
19                 floorShape (object).\r
20                 cloudTexture (object).\r
21 \r
22 \r
23         + to init:\r
24                 self enable-lighting.\r
25                 #self enable-smooth-drawing.\r
26 \r
27                 floorShape = new Shape.\r
28                 floorShape init-with-cube size (200, .2, 200).\r
29 \r
30                 floor = new Stationary.\r
31                 floor register with-shape floorShape at-location (0, 0, 0).\r
32                 #floor catch-shadows.\r
33 \r
34                 self point-camera at (0, 0, 0) from (3, 3, 24).\r
35 \r
36                 #self enable-shadows.\r
37                 #self enable-reflections.\r
38 \r
39                 cloudTexture = (new Image load from "images/clouds.png"). \r
40                 self set-background-color to (.4, .6, .9).\r
41                 self set-background-texture-image to cloudTexture.\r
42 \r
43 }\r
44 \r
45 MultiBody : CeldasLightVehicle (aka CeldasLightVehicles) {\r
46         % This object is used in conjunction with OBJECT(CeldasControl) to\r
47         % create simple vehicles.\r
48 \r
49         + variables:\r
50                 bodyShape (object).\r
51                 wheelShape (object).\r
52                 sensorShape (object).\r
53                 bodyLink (object).\r
54 \r
55                 wheels (list).\r
56                 sensors (list).\r
57 \r
58         + to init:\r
59                 bodyShape = new Shape.\r
60                 bodyShape init-with-cube size (4.0, .75, 3.0).  \r
61 \r
62                 wheelShape = new Shape.\r
63                 wheelShape init-with-polygon-disk radius ( self get-wheel-radius ) sides 20 height ( self get-wheel-width ).\r
64                 # 40\r
65 \r
66                 sensorShape = new Shape.\r
67                 sensorShape init-with-polygon-cone radius .2 sides 5 height .5.\r
68                 # 10\r
69 \r
70                 bodyShape set-density to ( self get-density ).\r
71                 bodyLink = new Link.\r
72                 bodyLink set-shape to bodyShape.        \r
73                 bodyLink set-mu to -1.0.\r
74                 bodyLink set-eT to .8.\r
75 \r
76                 self set-root to bodyLink.\r
77 \r
78                 self move to (0, 0.9, 0).\r
79                 self set-texture-scale to 1.5.\r
80 \r
81         - to get-density:\r
82                 return 1.0.\r
83 \r
84         - to get-wheel-width:\r
85                 return 0.1.\r
86 \r
87         - to get-wheel-radius:\r
88                 return 0.6.\r
89 \r
90         + section "Adding Wheels and Sensors to a Vehicle"\r
91 \r
92         + to add-wheel at location (vector):\r
93                 % Adds a wheel at location on the vehicle.  This method returns\r
94                 % the wheel which is created, a OBJECT(CeldasWheel).\r
95 \r
96                 wheel, joint (object).\r
97 \r
98                 wheel = new CeldasWheel.\r
99                 wheel set-shape to wheelShape.\r
100 \r
101                 joint = new RevoluteJoint.\r
102 \r
103                 joint set-relative-rotation around-axis (1, 0, 0) by 1.5708.\r
104                 joint link parent bodyLink to-child wheel with-normal (0, 0, 1)\r
105                                         with-parent-point location with-child-point (0, 0, 0).\r
106 \r
107                 wheel set-eT to .8.\r
108                 wheel set-texture to 0.\r
109                 wheel set-joint to joint.\r
110                 joint set-strength-limit to (joint get-strength-hard-limit) / 2.\r
111                 wheel set-color to (.6, .6, .6).\r
112                 wheel set-mu to 100000.\r
113 \r
114                 self add-dependency on joint.\r
115                 self add-dependency on wheel.\r
116 \r
117                 push wheel onto wheels.\r
118 \r
119                 return wheel.\r
120 \r
121         + to add-sensor at location (vector) with-direction direction = (0,1,0)(vector) :\r
122                 % Adds a sensor at location on the vehicle.  This method returns\r
123                 % the sensor which is created, a OBJECT(CeldasSensor).\r
124 \r
125                 sensor, joint (object).\r
126 \r
127                 sensor = new CeldasSensor.\r
128                 sensor set-direction to direction.\r
129                 \r
130                 sensor set-shape to sensorShape.\r
131 \r
132                 joint = new RevoluteJoint.\r
133 \r
134                 joint set-relative-rotation around-axis (0, 0, 1) by -1.57.\r
135                 joint link parent bodyLink to-child sensor with-normal (1, 0, 0)\r
136                                         with-parent-point location with-child-point (0, 0, 0).\r
137 \r
138                 joint set-double-spring with-strength 300 with-max 0.01 with-min -0.01.\r
139 \r
140                 self add-dependency on joint.\r
141                 self add-dependency on sensor.\r
142 \r
143                 sensor set-color to (0, 0, 0).\r
144 \r
145                 #push sensor onto sensors.\r
146 \r
147                 return sensor.\r
148 \r
149         + to destroy:\r
150                 free sensorShape.\r
151                 free wheelShape.\r
152                 free bodyShape.\r
153 \r
154                 super destroy.\r
155 }\r
156 \r
157 CeldasLightVehicle : CeldasVehicle (aka CeldasVehicles) {\r
158         % A heavy duty version of OBJECT(CeldasLightVehicle), this\r
159         % vehicle is heavier and harder to control, but more stable\r
160         % at higher speeds.\r
161         +variables:\r
162             lSensor, rSensor, fSensor, bSensor (object).\r
163             lfWheel,rfWheel,lbWheel,rbWheel (object).\r
164             tleft,tright (int).     \r
165         \r
166             avanzando,retrocediendo,girando(int).           \r
167             \r
168                     \r
169         - to get-density:\r
170                 return 20.0.\r
171 \r
172         - to get-wheel-width:\r
173                 return 0.4.\r
174 \r
175         - to get-wheel-radius:\r
176                 return 0.8.\r
177 \r
178         + to set-global-velocity to velocity (float):\r
179                 rfWheel set-velocity to velocity.\r
180                 lfWheel set-velocity to velocity.\r
181                 rbWheel set-velocity to velocity.\r
182                 lbWheel set-velocity to velocity.\r
183 \r
184         + to get-global-velocity:\r
185                 return ((rfWheel get-velocity) + (lfWheel get-velocity)) / 2.\r
186 \r
187         + to turn-right:                \r
188                 tright++.\r
189 \r
190                 self rotate around-axis (0,1,0) by (-1.5709/10)*tright. \r
191                         \r
192                 if(tright==10): tright=0.\r
193 \r
194 \r
195         + to turn-left:\r
196                 tleft++.\r
197 \r
198                 self rotate around-axis (0,1,0) by (1.5709/10)*tleft. \r
199                         \r
200                 if(tleft==10): tleft=0.\r
201 \r
202 \r
203         + to get-sensor-value:\r
204                 return (fSensor get-sensor-value).\r
205 \r
206         +to init:\r
207             fSensor = (self add-sensor at (2.0, .4, 0)).            \r
208             fSensor set-direction to (1,0,0).\r
209             #fSensor set-direction to (0,0,1).\r
210             fSensor set-id at 1.\r
211             fSensor set-body at self.\r
212             bSensor = (self add-sensor at (-2.0, .4, 0)).\r
213             bSensor set-direction to (-1,0,0).\r
214             #bSensor set-direction to (0,0,1).\r
215             bSensor set-id at 2.\r
216             bSensor set-body at self.\r
217             lSensor = (self add-sensor at (0, .4, 1.5)).\r
218             lSensor set-direction to (0,0,1).\r
219             #lSensor set-direction to (1,0,0).\r
220             lSensor set-id at 3.\r
221             lSensor set-body at self.\r
222 \r
223 \r
224             rSensor = (self add-sensor at (0, .4, -1.5)).\r
225             rSensor set-direction to (0,0,-1).\r
226             #rSensor set-direction to (-1,0,0).\r
227             rSensor set-id at 4.\r
228             rSensor set-body at self.\r
229 \r
230             lfWheel = (self add-wheel at (2, 0, -1.5)).\r
231             lbWheel = (self add-wheel at (-2, 0, -1.5)).\r
232             rfWheel = (self add-wheel at (2, 0, 1.5)).\r
233             rbWheel = (self add-wheel at (-2, 0, 1.5)).\r
234 \r
235             tleft=tright=0.     #Debe ser inicializado en 0 esta asi para probar!!!!!!!!!!!!!!!!!!!!!!!!\r
236             avanzando=1.\r
237             retrocediendo=0.\r
238             girando=0.            \r
239             \r
240         +to iterate:\r
241                 valuef,valueb,valuer,valuel (float).\r
242                 fl, fr(float).\r
243                 \r
244                 valuef=fSensor get-data.\r
245                 valueb=bSensor get-data.\r
246                 valuel=lSensor get-data.\r
247                 valuer=rSensor get-data.\r
248                 \r
249                 print "senforl: $valuel".\r
250 \r
251                 if(avanzando):\r
252                         if(valuef>15):\r
253                                 self set-global-velocity to (15).\r
254                         else \r
255                                 {               \r
256                                  avanzando=0.\r
257                                  retrocediendo=1.\r
258                                 }       \r
259 \r
260 \r
261                if(retrocediendo):\r
262                         if(valueb>15):\r
263                                 self set-global-velocity to (-15).\r
264                         else \r
265                                 {               \r
266                                  tleft=1.\r
267                                  retrocediendo=0.\r
268                                 }\r
269 \r
270 \r
271                 if((tleft) && (valuel>10)):                                             \r
272                         {\r
273                          #self set-global-velocity to (0).\r
274                          self turn-left.\r
275                         }\r
276                 else\r
277                         {\r
278                          avanzando=1.\r
279                          #tright=1.\r
280                         }\r
281 \r
282 #!\r
283                 if((tright) && (valuer>10)):                                            \r
284                         {\r
285                          #self set-global-velocity to (0).\r
286                          self turn-right.\r
287                         }\r
288                 else\r
289                         {\r
290                          avanzando=1.\r
291                          #tright=1.\r
292                         }       \r
293 !#      \r
294             \r
295 }\r
296 \r
297 Stationary : CeldasObstacle (aka CeldasObstacles) {\r
298         % A CeldasObstacle is used in conjunction with OBJECT(CeldasControl)\r
299         % and OBJECT(CeldasVehicle).  It is what the OBJECT(CeldasSensor)\r
300         % objects on the CeldasVehicle detect.\r
301         % <p>\r
302         % There are no special behaviors associated with the walls--they're \r
303         % basically just plain OBJECT(Stationary) objects.\r
304    \r
305         +variables:\r
306             large (float).\r
307             direction (vector). \r
308 \r
309 \r
310         + to init with-size theSize = (10, 3, .1) (vector) with-color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 0, 0, 1 ), ( 0, 1, 0 ), ( 1, 0, 0 ) ] (matrix):                    \r
311                 self init-with-shape shape (new Shape init-with-cube size theSize) color theColor at-location theLocation with-rotation theRotation.\r
312                 large=20.\r
313 \r
314         + to init-with-shape shape theShape (object) color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 1, 0, 0 ), ( 0, 1, 0 ), ( 0, 0, 1 ) ] (matrix):\r
315                 self register with-shape theShape at-location theLocation with-rotation theRotation.\r
316                 self set-color to theColor.\r
317                 \r
318         + to get-large:\r
319             return large.\r
320 \r
321         + to set-direction at theDirection (vector):\r
322             direction=theDirection.\r
323 \r
324         + to get-direction:\r
325             return direction.\r
326 }\r
327 \r
328 Link : CeldasWheel (aka CeldasWheels) {\r
329         % A CeldasWheel is used in conjunction with OBJECT(CeldasVehicle)\r
330         % to build Celdas vehicles.  This class is typically not instantiated\r
331         % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
332         % add a wheel to the vehicle.\r
333 \r
334         + variables:\r
335                 joint (object).\r
336                 velocity (float).\r
337 \r
338         + to init:\r
339                 velocity = 0.\r
340 \r
341         - to set-joint to j (object):\r
342                 % Used internally.\r
343 \r
344                 joint = j.\r
345 \r
346         + section "Configuring the Wheel's Velocity"\r
347 \r
348         + to set-velocity to n (float):\r
349                 % Sets the velocity of this wheel.\r
350 \r
351                 if n > CELDAS_MAX_VELOCITY: n = CELDAS_MAX_VELOCITY.\r
352                 velocity = n.\r
353 \r
354                 joint set-joint-velocity to velocity.\r
355 \r
356         + to get-velocity:\r
357                 % Gets the velocity of this wheel.\r
358                 \r
359                 return velocity.\r
360 \r
361 }\r
362 \r
363 Link : CeldasSensor (aka CeldasSensors) {\r
364         % A CeldasSensor is used in conjunction with OBJECT(CeldasVehicle)\r
365         % to build Celdas vehicles.  This class is typically not instantiated\r
366         % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
367         % add a sensor to the vehicle.\r
368 \r
369         + variables:\r
370                 direction (vector).\r
371                 positiveDirection(vector).\r
372                 sensorAngle (float).\r
373                 value (float).\r
374                 draw (object).\r
375                 body(object).\r
376                 id(int).\r
377 \r
378         + to init :\r
379                 direction = (1,0,1).\r
380                 positiveDirection= (1,0,1).\r
381                 sensorAngle = 1.6.\r
382                 value = 0.0.\r
383                 draw = new Drawing.\r
384                                 \r
385 \r
386   + section "Configuring the Sensor Values"\r
387         + to set-id at n (int):\r
388             id=n.\r
389 \r
390         + to set-body at robotBody(object):\r
391                 body=robotBody.\r
392                 \r
393         + to set-sensor-angle to n (float):\r
394                 % Sets the angle in which this sensor can detect obstacles.  The default\r
395                 % value of 1.6 means that the sensor can see most of everything in\r
396                 % front of it.  Setting the value to be any higher leads to general\r
397                 % wackiness, so I don't suggest it.\r
398 \r
399                 sensorAngle = n.\r
400 \r
401         + to set-direction to n (vector):\r
402                 direction = n.\r
403                 positiveDirection::x=|n::x|.\r
404                 positiveDirection::y=|n::y|.\r
405                 positiveDirection::z=|n::z|.\r
406 \r
407   + section "Getting the Sensor Values"\r
408 \r
409         + to get-sensor-value:\r
410                 % Gets the sensor value. This should be used from post-iterate,\r
411                 % if not, the sensor reading correspond to the previous\r
412                 % iteration.\r
413         \r
414         #+ to iterate:\r
415         \r
416         + to get-data:\r
417                 i (object).\r
418                 min,dist (float).\r
419                 v,obs(vector).\r
420                 aux(float).\r
421                 j (int).\r
422                 des2,des3(int).\r
423                 wallBegin,wallEnd,wallCenter (float).\r
424                 \r
425                 toObstacle(vector).\r
426                 largeWall (float).\r
427                 \r
428                 obsLoc (vector).                \r
429                 location (vector).\r
430                 posObstacle,destiny,yo(vector).\r
431                                              \r
432                 draw clear.\r
433                 value = 0.0.\r
434                 j=0.\r
435                 min=0.\r
436                 foreach i in (all CeldasObstacles): \r
437                         {\r
438                          posObstacle=i get-location.\r
439                          v = (body get-location) - (self get-location ).\r
440                          obsLoc::y=posObstacle::y.\r
441                          \r
442                          if (dot((i get-direction),(1,0,0))):\r
443                           {\r
444                            obsLoc::x=((self get-location)::x + ((posObstacle::z - (self get-location)::z)*v::x/v::z)).\r
445                            obsLoc::z=posObstacle::z.\r
446                           }                             \r
447                           else\r
448                           {\r
449                            obsLoc::z=((self get-location)::z + ((posObstacle::x - (self get-location)::x)*v::z/v::x)).\r
450                            obsLoc::x=posObstacle::x.\r
451                           } \r
452                                                                 \r
453                         #!\r
454                         if(dot((i get-direction),direction)==0):\r
455                                 des1=1.\r
456                         else\r
457                                 des1=0.\r
458                         !#\r
459 \r
460                         des2=0.\r
461                         if(dot(direction,(1,1,1))<0):\r
462                         {                        \r
463                             if((dot((self get-location),positiveDirection))>(dot(obsLoc,positiveDirection))):\r
464                                         des2=1.      \r
465                         }\r
466                         else\r
467                         {\r
468                             if((dot((self get-location),positiveDirection))<(dot(obsLoc,positiveDirection))):\r
469                                         des2=1.         \r
470                         }                       \r
471 \r
472 \r
473                         #Compruebo que el robot este frente a la pared\r
474                         wallCenter=dot((i get-location),(i get-direction)).\r
475                         wallBegin=wallCenter- (i get-large)/2.\r
476                         wallEnd=wallCenter + (i get-large)/2.           \r
477 \r
478                         \r
479                         yo=self get-location.\r
480                         destiny=i get-direction.\r
481 \r
482                                                                                                                 \r
483 \r
484                         if (dot((self get-location),(i get-direction)) > wallBegin) && (dot((self get-location),(i get-direction)) < wallEnd):\r
485                                 des3=1.\r
486                         else\r
487                         {\r
488                                  des3=0.\r
489                                  \r
490                         }                               \r
491                        \r
492                         if ((des2) && (des3)):\r
493                          {                                    \r
494                                 draw clear.                                                     \r
495 \r
496                                 dist=|obsLoc - (self get-location)|.\r
497 \r
498                                 if( (j==0) || (min>dist) ):\r
499                                  {\r
500                                         min=dist.\r
501                                         obs=obsLoc.\r
502                                         \r
503                                         j++.\r
504                                         #print "sensor: $id obstaculo: $posObstacle direP: $destiny direS: $direction yo: $yo ".        \r
505                                  }\r
506 \r
507                          }                                              \r
508 \r
509                         \r
510                 } #end for\r
511 \r
512                 if(j!=0):\r
513                         {\r
514                           #Dibujo el laser\r
515                           draw set-color to (1, 0, 0).\r
516                           draw draw-line from (self get-location) to (obs).\r
517                           return min.\r
518                         }\r
519                 \r
520 \r
521                 value = -1.\r
522                 return value.\r
523 \r
524 \r
525 }\r
526