]> git.llucax.com Git - z.facultad/75.68/celdas.git/commitdiff
Termina de reestructurar y borrar cosas viejas y bugfixes mínimos que permiten que...
authorLeandro Lucarella <llucax@gmail.com>
Sat, 16 Dec 2006 23:55:24 +0000 (23:55 +0000)
committerLeandro Lucarella <llucax@gmail.com>
Sat, 16 Dec 2006 23:55:24 +0000 (23:55 +0000)
trunk/src/breve/robot/Celdas-2-2.tz [deleted file]
trunk/src/breve/robot/Celdas-2-3.tz [deleted file]
trunk/src/breve/robot/Celdas-2-5.tz [deleted file]
trunk/src/breve/robot/Celdas-2-6.tz [deleted file]
trunk/src/breve/robot/Celdas-2-7.tz [deleted file]
trunk/src/breve/robot/Demo-2wheels2-2.tz [deleted file]
trunk/src/breve/robot/Demo-2wheels2-3.tz [deleted file]
trunk/src/breve/robot/Demo-2wheels2-5.tz [deleted file]
trunk/src/breve/robot/laberintov4.tz [deleted file]

diff --git a/trunk/src/breve/robot/Celdas-2-2.tz b/trunk/src/breve/robot/Celdas-2-2.tz
deleted file mode 100644 (file)
index 3bacaf7..0000000
+++ /dev/null
@@ -1,414 +0,0 @@
-@use PhysicalControl.\r
-@use Shape.\r
-@use Stationary.\r
-@use Link.\r
-@use MultiBody.\r
-@use Drawing.\r
-\r
-@define CELDAS_MAX_VELOCITY 30.\r
-\r
-PhysicalControl : CeldasControl {\r
-       % This class is used for building simple vehicle \r
-       % simulations.  To create a vehicle simulation, \r
-       % subclass CeldasControl and use the init method to \r
-       % create OBJECT(CeldasObstacle) and \r
-       % OBJECT(CeldasVehicle) objects.\r
-\r
-       + variables:\r
-               floor (object).\r
-               floorShape (object).\r
-               cloudTexture (object).\r
-\r
-       + to init:\r
-               self enable-lighting.\r
-                #self enable-smooth-drawing.\r
-\r
-               floorShape = new Shape.\r
-               floorShape init-with-cube size (200, .2, 200).\r
-\r
-               floor = new Stationary.\r
-               floor register with-shape floorShape at-location (0, 0, 0).\r
-               #floor catch-shadows.\r
-\r
-               self point-camera at (0, 0, 0) from (3, 3, 24).\r
-\r
-               #self enable-shadows.\r
-               #self enable-reflections.\r
-\r
-               cloudTexture = (new Image load from "images/clouds.png"). \r
-               self set-background-color to (.4, .6, .9).\r
-               self set-background-texture-image to cloudTexture.\r
-\r
-}\r
-\r
-MultiBody : CeldasLightVehicle (aka CeldasLightVehicles) {\r
-       % This object is used in conjunction with OBJECT(CeldasControl) to\r
-       % create simple vehicles.\r
-\r
-       + variables:\r
-               bodyShape (object).\r
-               wheelShape (object).\r
-               sensorShape (object).\r
-               bodyLink (object).\r
-\r
-               wheels (list).\r
-               sensors (list).\r
-\r
-       + to init:\r
-               bodyShape = new Shape.\r
-               bodyShape init-with-cube size (4.0, .75, 3.0).  \r
-\r
-               wheelShape = new Shape.\r
-               wheelShape init-with-polygon-disk radius ( self get-wheel-radius ) sides 20 height ( self get-wheel-width ).\r
-               # 40\r
-\r
-               sensorShape = new Shape.\r
-               sensorShape init-with-polygon-cone radius .2 sides 5 height .5.\r
-               # 10\r
-\r
-               bodyShape set-density to ( self get-density ).\r
-               bodyLink = new Link.\r
-               bodyLink set-shape to bodyShape.        \r
-               bodyLink set-mu to -1.0.\r
-               bodyLink set-eT to .8.\r
-\r
-               self set-root to bodyLink.\r
-\r
-               self move to (0, 0.9, 0).\r
-               self set-texture-scale to 1.5.\r
-\r
-       - to get-density:\r
-               return 1.0.\r
-\r
-       - to get-wheel-width:\r
-               return 0.1.\r
-\r
-       - to get-wheel-radius:\r
-               return 0.6.\r
-\r
-       + section "Adding Wheels and Sensors to a Vehicle"\r
-\r
-       + to add-wheel at location (vector):\r
-               % Adds a wheel at location on the vehicle.  This method returns\r
-               % the wheel which is created, a OBJECT(CeldasWheel).\r
-\r
-               wheel, joint (object).\r
-\r
-               wheel = new CeldasWheel.\r
-               wheel set-shape to wheelShape.\r
-\r
-               joint = new RevoluteJoint.\r
-\r
-               joint set-relative-rotation around-axis (1, 0, 0) by 1.5708.\r
-               joint link parent bodyLink to-child wheel with-normal (0, 0, 1)\r
-                                       with-parent-point location with-child-point (0, 0, 0).\r
-\r
-               wheel set-eT to .8.\r
-               wheel set-texture to 0.\r
-               wheel set-joint to joint.\r
-               joint set-strength-limit to (joint get-strength-hard-limit) / 2.\r
-               wheel set-color to (.6, .6, .6).\r
-               wheel set-mu to 100000.\r
-\r
-               self add-dependency on joint.\r
-               self add-dependency on wheel.\r
-\r
-               push wheel onto wheels.\r
-\r
-               return wheel.\r
-\r
-       + to add-sensor at location (vector) with-direction direction = (0,1,0)(vector) :\r
-               % Adds a sensor at location on the vehicle.  This method returns\r
-               % the sensor which is created, a OBJECT(CeldasSensor).\r
-\r
-               sensor, joint (object).\r
-\r
-               sensor = new CeldasSensor.\r
-                sensor set-direction to direction.\r
-                \r
-               sensor set-shape to sensorShape.\r
-\r
-               joint = new RevoluteJoint.\r
-\r
-               joint set-relative-rotation around-axis (0, 0, 1) by -1.57.\r
-               joint link parent bodyLink to-child sensor with-normal (1, 0, 0)\r
-                                       with-parent-point location with-child-point (0, 0, 0).\r
-\r
-               joint set-double-spring with-strength 300 with-max 0.01 with-min -0.01.\r
-\r
-               self add-dependency on joint.\r
-               self add-dependency on sensor.\r
-\r
-               sensor set-color to (0, 0, 0).\r
-\r
-               #push sensor onto sensors.\r
-\r
-               return sensor.\r
-\r
-       + to destroy:\r
-               free sensorShape.\r
-               free wheelShape.\r
-               free bodyShape.\r
-\r
-               super destroy.\r
-}\r
-\r
-CeldasLightVehicle : CeldasVehicle (aka CeldasVehicles) {\r
-       % A heavy duty version of OBJECT(CeldasLightVehicle), this\r
-       % vehicle is heavier and harder to control, but more stable\r
-       % at higher speeds.\r
-        +variables:\r
-            lSensor, rSensor, fSensor, bSensor (object).\r
-            lWheel,rWheel (object).        \r
-        \r
-       - to get-density:\r
-               return 20.0.\r
-\r
-       - to get-wheel-width:\r
-               return 0.4.\r
-\r
-       - to get-wheel-radius:\r
-               return 0.8.\r
-\r
-        + to set-global-velocity to velocity (float):\r
-               rWheel set-velocity to velocity.\r
-               lWheel set-velocity to velocity.\r
-\r
-       + to get-global-velocity:\r
-               return ((rWheel get-velocity) + (lWheel get-velocity)) / 2.\r
-\r
-       + to turn-right with-velocity velocity (float):         \r
-               lWheel set-velocity to velocity.\r
-                rWheel set-velocity to -velocity.\r
-\r
-       + to turn-left with-velocity velocity (float):\r
-#                vehicle rotate around-axis (0,1,0) by 1. \r
-               lWheel set-velocity to -velocity.       \r
-               rWheel set-velocity to velocity.\r
-\r
-        + to get-sensor-value:\r
-               return (fSensor get-sensor-value).\r
-\r
-        +to init:\r
-            fSensor = (self add-sensor at (2.0, .4, 0)).            \r
-            fSensor set-direction to (1,0,0).\r
-            fSensor set-id at 1.\r
-            bSensor = (self add-sensor at (-2.0, .4, 0)).\r
-            bSensor set-direction to (-1,0,0).\r
-            bSensor set-id at 2.\r
-            #bSensor set-sensor-angle to (-1.6).\r
-            #lSensor = (self add-sensor at (1.0, .4, 1.4)).\r
-            #lSensor set-direction to (0,0,1).\r
-            #rSensor = (self add-sensor at (1.0, .4, -1.4)).\r
-            #rSensor set-direction to (0,0,-1).\r
-            lWheel  = (self add-wheel at (0, 0, -1.5)).\r
-            rWheel  = (self add-wheel at (0, 0, 1.5)).\r
-                        \r
-        +to iterate:            \r
-        #+ to post-iterate:\r
-               valuef,valueb,valuer,valuel (float).\r
-               fl, fr(float).\r
-               \r
-                valuef=fSensor get-data.\r
-               valueb=bSensor get-data.\r
-                #valuel=lSensor get-data.\r
-                #valuer=rSensor get-data.\r
-                \r
-               #value = sensor get-data.\r
-                #value = self get-sensor-value.\r
-                #valueb = sensor2 get-sensor-value.\r
-\r
-               if valuef >7: \r
-                    self set-global-velocity to (15).\r
-                else if (valuef <=7) && (valuef > 0):\r
-                {   \r
-                    self set-global-velocity to (0).\r
-                    #self turn-left with-velocity(2).\r
-                    #self turn-right with-velocity(2).\r
-                    #self set-global-velocity to (0).\r
-               }\r
-                #print "sensor valuef: $valuef  valueb: $valueb".\r
-                \r
-                #else if value < 0.1: self turn-left with-velocity CELDAS_MAX_TURN_VELOCITY.\r
-               #else if value > 10: self set-global-velocity to ((self get-global-velocity) - 1).\r
-\r
-               #fl = (flWheel get-velocity).\r
-               #fr = (frWheel get-velocity).\r
-               #print " sensorf: $value  sensorb $valueb, fr: $fr, fl: $fl".            \r
-            \r
-}\r
-\r
-Stationary : CeldasObstacle (aka CeldasObstacles) {\r
-       % A CeldasObstacle is used in conjunction with OBJECT(CeldasControl)\r
-       % and OBJECT(CeldasVehicle).  It is what the OBJECT(CeldasSensor)\r
-       % objects on the CeldasVehicle detect.\r
-       % <p>\r
-       % There are no special behaviors associated with the walls--they're \r
-       % basically just plain OBJECT(Stationary) objects.\r
-   \r
-        +variables:\r
-            large (float).\r
-\r
-\r
-       + to init with-size theSize = (10, 3, .1) (vector) with-color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 0, 0, 1 ), ( 0, 1, 0 ), ( 1, 0, 0 ) ] (matrix):                    \r
-               self init-with-shape shape (new Shape init-with-cube size theSize) color theColor at-location theLocation with-rotation theRotation.\r
-                large=10.\r
-\r
-       + to init-with-shape shape theShape (object) color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 1, 0, 0 ), ( 0, 1, 0 ), ( 0, 0, 1 ) ] (matrix):\r
-               self register with-shape theShape at-location theLocation with-rotation theRotation.\r
-               self set-color to theColor.\r
-                \r
-        + to get-large:\r
-            return large.\r
-}\r
-\r
-Link : CeldasWheel (aka CeldasWheels) {\r
-       % A CeldasWheel is used in conjunction with OBJECT(CeldasVehicle)\r
-       % to build Celdas vehicles.  This class is typically not instantiated\r
-       % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
-       % add a wheel to the vehicle.\r
-\r
-       + variables:\r
-               joint (object).\r
-               velocity (float).\r
-\r
-       + to init:\r
-               velocity = 0.\r
-\r
-       - to set-joint to j (object):\r
-               % Used internally.\r
-\r
-               joint = j.\r
-\r
-       + section "Configuring the Wheel's Velocity"\r
-\r
-       + to set-velocity to n (float):\r
-               % Sets the velocity of this wheel.\r
-\r
-               if n > CELDAS_MAX_VELOCITY: n = CELDAS_MAX_VELOCITY.\r
-               velocity = n.\r
-\r
-               joint set-joint-velocity to velocity.\r
-\r
-       + to get-velocity:\r
-               % Gets the velocity of this wheel.\r
-               \r
-               return velocity.\r
-\r
-}\r
-\r
-Link : CeldasSensor (aka CeldasSensors) {\r
-       % A CeldasSensor is used in conjunction with OBJECT(CeldasVehicle)\r
-       % to build Celdas vehicles.  This class is typically not instantiated\r
-       % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
-       % add a sensor to the vehicle.\r
-\r
-       + variables:\r
-               direction (vector).\r
-                positiveDirection(vector).\r
-               sensorAngle (float).\r
-               value (float).\r
-                draw (object).\r
-                id(int).\r
-\r
-       + to init :\r
-               direction = (1,0,1).\r
-                positiveDirection= (1,0,1).\r
-               sensorAngle = 1.6.\r
-               value = 0.0.\r
-                draw = new Drawing.\r
-                               \r
-\r
-  + section "Configuring the Sensor Values"\r
-        + to set-id at n (int):\r
-            id=n.\r
-        \r
-       + to set-sensor-angle to n (float):\r
-               % Sets the angle in which this sensor can detect obstacles.  The default\r
-               % value of 1.6 means that the sensor can see most of everything in\r
-               % front of it.  Setting the value to be any higher leads to general\r
-               % wackiness, so I don't suggest it.\r
-\r
-               sensorAngle = n.\r
-\r
-        + to set-direction to n (vector):\r
-                direction = n.\r
-                positiveDirection::x=|n::x|.\r
-                positiveDirection::y=|n::y|.\r
-                positiveDirection::z=|n::z|.\r
-\r
-  + section "Getting the Sensor Values"\r
-\r
-       + to get-sensor-value:\r
-               % Gets the sensor value. This should be used from post-iterate,\r
-               % if not, the sensor reading correspond to the previous\r
-               % iteration.\r
-        \r
-        #+ to iterate:\r
-        \r
-       + to get-data:\r
-               i (object).\r
-               strength, angle (float).\r
-               toObstacle, transDir (vector).\r
-                largeWall (float).\r
-                source,destiny (vector).\r
-                obsLoc (vector).                \r
-                location (vector).\r
-                posObstacle,posSensor (vector).\r
-                angulo(double).\r
-                des(int).\r
-                               \r
-               transDir = (self get-rotation) * direction.\r
-           \r
-               value = 0.0.\r
-               foreach i in (all CeldasObstacles): {                                   \r
-                                                \r
-                        posObstacle=i get-location.\r
-                        posObstacle::z = (self get-location)::z -posObstacle::z. \r
-                        \r
-                        #print " posObstacle: $posObstacle".                        \r
-                        \r
-                        toObstacle = (posObstacle) - (self get-location).\r
-                                                                   \r
-                        angle = angle(toObstacle, transDir).\r
-                        #angle = dot((1,1,1),direction)*angle(toObstacle, (0,0,1)).\r
-                        \r
-                        #print "toObstacle: $toObstacle, angle: $angle".\r
-                        \r
-                        posSensor=self get-location.\r
-                        source = self get-location.\r
-                        obsLoc = posObstacle.\r
-                        destiny = obsLoc.                        \r
-                        \r
-                        draw clear. \r
-                        \r
-                        if(dot(direction,(1,1,1))<0):                        \r
-                            des = ((dot((self get-location),positiveDirection))>(dot(posObstacle,positiveDirection))).        \r
-                        else\r
-                            des = ((dot((self get-location),positiveDirection))<(dot(posObstacle,positiveDirection))).        \r
-                            \r
-                        if (angle < sensorAngle) && (des): {\r
-                       #if angle < sensorAngle: {\r
-                                                       \r
-                               strength = | (self get-location) - (i get-location) |.\r
-                                largeWall=i get-large.\r
-                                \r
-                                print "id: $id, distancia= $toObstacle,  angle $angle".\r
-                                \r
-                                draw set-color to (1, 0, 0).\r
-                                draw draw-line from source to posObstacle.\r
-                               \r
-                                if |toObstacle::z|<=largeWall/2:{\r
-                                        value = |toObstacle::x|.\r
-                                    }\r
-                                else{                                        \r
-                                        value = -1.\r
-                                    }\r
-                                    return value.                                    \r
-                       }\r
-               }\r
-                value = -1.\r
-                return value.\r
-\r
-\r
-}\r
diff --git a/trunk/src/breve/robot/Celdas-2-3.tz b/trunk/src/breve/robot/Celdas-2-3.tz
deleted file mode 100644 (file)
index 2ac34c8..0000000
+++ /dev/null
@@ -1,429 +0,0 @@
-@use PhysicalControl.\r
-@use Shape.\r
-@use Stationary.\r
-@use Link.\r
-@use MultiBody.\r
-@use Drawing.\r
-\r
-@define CELDAS_MAX_VELOCITY 30.\r
-\r
-PhysicalControl : CeldasControl {\r
-       % This class is used for building simple vehicle \r
-       % simulations.  To create a vehicle simulation, \r
-       % subclass CeldasControl and use the init method to \r
-       % create OBJECT(CeldasObstacle) and \r
-       % OBJECT(CeldasVehicle) objects.\r
-\r
-       + variables:\r
-               floor (object).\r
-               floorShape (object).\r
-               cloudTexture (object).\r
-\r
-\r
-       + to init:\r
-               self enable-lighting.\r
-                #self enable-smooth-drawing.\r
-\r
-               floorShape = new Shape.\r
-               floorShape init-with-cube size (200, .2, 200).\r
-\r
-               floor = new Stationary.\r
-               floor register with-shape floorShape at-location (0, 0, 0).\r
-               #floor catch-shadows.\r
-\r
-               self point-camera at (0, 0, 0) from (3, 3, 24).\r
-\r
-               #self enable-shadows.\r
-               #self enable-reflections.\r
-\r
-               cloudTexture = (new Image load from "images/clouds.png"). \r
-               self set-background-color to (.4, .6, .9).\r
-               self set-background-texture-image to cloudTexture.\r
-\r
-}\r
-\r
-MultiBody : CeldasLightVehicle (aka CeldasLightVehicles) {\r
-       % This object is used in conjunction with OBJECT(CeldasControl) to\r
-       % create simple vehicles.\r
-\r
-       + variables:\r
-               bodyShape (object).\r
-               wheelShape (object).\r
-               sensorShape (object).\r
-               bodyLink (object).\r
-\r
-               wheels (list).\r
-               sensors (list).\r
-\r
-       + to init:\r
-               bodyShape = new Shape.\r
-               bodyShape init-with-cube size (4.0, .75, 3.0).  \r
-\r
-               wheelShape = new Shape.\r
-               wheelShape init-with-polygon-disk radius ( self get-wheel-radius ) sides 20 height ( self get-wheel-width ).\r
-               # 40\r
-\r
-               sensorShape = new Shape.\r
-               sensorShape init-with-polygon-cone radius .2 sides 5 height .5.\r
-               # 10\r
-\r
-               bodyShape set-density to ( self get-density ).\r
-               bodyLink = new Link.\r
-               bodyLink set-shape to bodyShape.        \r
-               bodyLink set-mu to -1.0.\r
-               bodyLink set-eT to .8.\r
-\r
-               self set-root to bodyLink.\r
-\r
-               self move to (0, 0.9, 0).\r
-               self set-texture-scale to 1.5.\r
-\r
-       - to get-density:\r
-               return 1.0.\r
-\r
-       - to get-wheel-width:\r
-               return 0.1.\r
-\r
-       - to get-wheel-radius:\r
-               return 0.6.\r
-\r
-       + section "Adding Wheels and Sensors to a Vehicle"\r
-\r
-       + to add-wheel at location (vector):\r
-               % Adds a wheel at location on the vehicle.  This method returns\r
-               % the wheel which is created, a OBJECT(CeldasWheel).\r
-\r
-               wheel, joint (object).\r
-\r
-               wheel = new CeldasWheel.\r
-               wheel set-shape to wheelShape.\r
-\r
-               joint = new RevoluteJoint.\r
-\r
-               joint set-relative-rotation around-axis (1, 0, 0) by 1.5708.\r
-               joint link parent bodyLink to-child wheel with-normal (0, 0, 1)\r
-                                       with-parent-point location with-child-point (0, 0, 0).\r
-\r
-               wheel set-eT to .8.\r
-               wheel set-texture to 0.\r
-               wheel set-joint to joint.\r
-               joint set-strength-limit to (joint get-strength-hard-limit) / 2.\r
-               wheel set-color to (.6, .6, .6).\r
-               wheel set-mu to 100000.\r
-\r
-               self add-dependency on joint.\r
-               self add-dependency on wheel.\r
-\r
-               push wheel onto wheels.\r
-\r
-               return wheel.\r
-\r
-       + to add-sensor at location (vector) with-direction direction = (0,1,0)(vector) :\r
-               % Adds a sensor at location on the vehicle.  This method returns\r
-               % the sensor which is created, a OBJECT(CeldasSensor).\r
-\r
-               sensor, joint (object).\r
-\r
-               sensor = new CeldasSensor.\r
-                sensor set-direction to direction.\r
-                \r
-               sensor set-shape to sensorShape.\r
-\r
-               joint = new RevoluteJoint.\r
-\r
-               joint set-relative-rotation around-axis (0, 0, 1) by -1.57.\r
-               joint link parent bodyLink to-child sensor with-normal (1, 0, 0)\r
-                                       with-parent-point location with-child-point (0, 0, 0).\r
-\r
-               joint set-double-spring with-strength 300 with-max 0.01 with-min -0.01.\r
-\r
-               self add-dependency on joint.\r
-               self add-dependency on sensor.\r
-\r
-               sensor set-color to (0, 0, 0).\r
-\r
-               #push sensor onto sensors.\r
-\r
-               return sensor.\r
-\r
-       + to destroy:\r
-               free sensorShape.\r
-               free wheelShape.\r
-               free bodyShape.\r
-\r
-               super destroy.\r
-}\r
-\r
-CeldasLightVehicle : CeldasVehicle (aka CeldasVehicles) {\r
-       % A heavy duty version of OBJECT(CeldasLightVehicle), this\r
-       % vehicle is heavier and harder to control, but more stable\r
-       % at higher speeds.\r
-        +variables:\r
-            lSensor, rSensor, fSensor, bSensor (object).\r
-            lWheel,rWheel (object).        \r
-        \r
-       - to get-density:\r
-               return 20.0.\r
-\r
-       - to get-wheel-width:\r
-               return 0.4.\r
-\r
-       - to get-wheel-radius:\r
-               return 0.8.\r
-\r
-        + to set-global-velocity to velocity (float):\r
-               rWheel set-velocity to velocity.\r
-               lWheel set-velocity to velocity.\r
-\r
-       + to get-global-velocity:\r
-               return ((rWheel get-velocity) + (lWheel get-velocity)) / 2.\r
-\r
-       + to turn-right with-velocity velocity (float):         \r
-               lWheel set-velocity to velocity.\r
-                rWheel set-velocity to -velocity.\r
-\r
-       + to turn-left with-velocity velocity (float):\r
-#                vehicle rotate around-axis (0,1,0) by 1. \r
-               lWheel set-velocity to -velocity.       \r
-               rWheel set-velocity to velocity.\r
-\r
-        + to get-sensor-value:\r
-               return (fSensor get-sensor-value).\r
-\r
-        +to init:\r
-            fSensor = (self add-sensor at (2.0, .4, 0)).            \r
-            fSensor set-direction to (1,0,0).\r
-            fSensor set-id at 1.\r
-           fSensor set-body at self.\r
-            bSensor = (self add-sensor at (-2.0, .4, 0)).\r
-            bSensor set-direction to (-1,0,0).\r
-            bSensor set-id at 2.\r
-           bSensor set-body at self.\r
-            #bSensor set-sensor-angle to (-1.6).\r
-            lSensor = (self add-sensor at (1.0, .4, 1.4)).\r
-            lSensor set-direction to (0,0,1).\r
-            bSensor set-id at 3.\r
-           bSensor set-body at self.\r
-\r
-            #rSensor = (self add-sensor at (1.0, .4, -1.4)).\r
-            #rSensor set-direction to (0,0,-1).\r
-            lWheel  = (self add-wheel at (0, 0, -1.5)).\r
-            rWheel  = (self add-wheel at (0, 0, 1.5)).\r
-                        \r
-        +to iterate:            \r
-        #+ to post-iterate:\r
-               valuef,valueb,valuer,valuel (float).\r
-               fl, fr(float).\r
-               \r
-                valuef=fSensor get-data.\r
-               valueb=bSensor get-data.\r
-                #valuel=lSensor get-data.\r
-                #valuer=rSensor get-data.\r
-                \r
-               #value = sensor get-data.\r
-                #value = self get-sensor-value.\r
-                #valueb = sensor2 get-sensor-value.\r
-\r
-               if valuef >7: \r
-                    self set-global-velocity to (15).\r
-                else if (valuef <=7) && (valuef > 0):\r
-                {   \r
-                    self set-global-velocity to (0).\r
-                    #self turn-left with-velocity(2).\r
-                    #self turn-right with-velocity(2).\r
-                    #self set-global-velocity to (0).\r
-               }\r
-                #print "sensor valuef: $valuef  valueb: $valueb".\r
-                \r
-                #else if value < 0.1: self turn-left with-velocity CELDAS_MAX_TURN_VELOCITY.\r
-               #else if value > 10: self set-global-velocity to ((self get-global-velocity) - 1).\r
-\r
-               #fl = (flWheel get-velocity).\r
-               #fr = (frWheel get-velocity).\r
-               #print " sensorf: $value  sensorb $valueb, fr: $fr, fl: $fl".            \r
-            \r
-}\r
-\r
-Stationary : CeldasObstacle (aka CeldasObstacles) {\r
-       % A CeldasObstacle is used in conjunction with OBJECT(CeldasControl)\r
-       % and OBJECT(CeldasVehicle).  It is what the OBJECT(CeldasSensor)\r
-       % objects on the CeldasVehicle detect.\r
-       % <p>\r
-       % There are no special behaviors associated with the walls--they're \r
-       % basically just plain OBJECT(Stationary) objects.\r
-   \r
-        +variables:\r
-            large (float).\r
-\r
-\r
-       + to init with-size theSize = (10, 3, .1) (vector) with-color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 0, 0, 1 ), ( 0, 1, 0 ), ( 1, 0, 0 ) ] (matrix):                    \r
-               self init-with-shape shape (new Shape init-with-cube size theSize) color theColor at-location theLocation with-rotation theRotation.\r
-                large=10.\r
-\r
-       + to init-with-shape shape theShape (object) color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 1, 0, 0 ), ( 0, 1, 0 ), ( 0, 0, 1 ) ] (matrix):\r
-               self register with-shape theShape at-location theLocation with-rotation theRotation.\r
-               self set-color to theColor.\r
-                \r
-        + to get-large:\r
-            return large.\r
-}\r
-\r
-Link : CeldasWheel (aka CeldasWheels) {\r
-       % A CeldasWheel is used in conjunction with OBJECT(CeldasVehicle)\r
-       % to build Celdas vehicles.  This class is typically not instantiated\r
-       % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
-       % add a wheel to the vehicle.\r
-\r
-       + variables:\r
-               joint (object).\r
-               velocity (float).\r
-\r
-       + to init:\r
-               velocity = 0.\r
-\r
-       - to set-joint to j (object):\r
-               % Used internally.\r
-\r
-               joint = j.\r
-\r
-       + section "Configuring the Wheel's Velocity"\r
-\r
-       + to set-velocity to n (float):\r
-               % Sets the velocity of this wheel.\r
-\r
-               if n > CELDAS_MAX_VELOCITY: n = CELDAS_MAX_VELOCITY.\r
-               velocity = n.\r
-\r
-               joint set-joint-velocity to velocity.\r
-\r
-       + to get-velocity:\r
-               % Gets the velocity of this wheel.\r
-               \r
-               return velocity.\r
-\r
-}\r
-\r
-Link : CeldasSensor (aka CeldasSensors) {\r
-       % A CeldasSensor is used in conjunction with OBJECT(CeldasVehicle)\r
-       % to build Celdas vehicles.  This class is typically not instantiated\r
-       % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
-       % add a sensor to the vehicle.\r
-\r
-       + variables:\r
-               direction (vector).\r
-                positiveDirection(vector).\r
-               sensorAngle (float).\r
-               value (float).\r
-                draw (object).\r
-               body(object).\r
-                id(int).\r
-\r
-       + to init :\r
-               direction = (1,0,1).\r
-                positiveDirection= (1,0,1).\r
-               sensorAngle = 1.6.\r
-               value = 0.0.\r
-                draw = new Drawing.\r
-                               \r
-\r
-  + section "Configuring the Sensor Values"\r
-        + to set-id at n (int):\r
-            id=n.\r
-\r
-       + to set-body at robotBody(object):\r
-               body=robotBody.\r
-               \r
-       + to set-sensor-angle to n (float):\r
-               % Sets the angle in which this sensor can detect obstacles.  The default\r
-               % value of 1.6 means that the sensor can see most of everything in\r
-               % front of it.  Setting the value to be any higher leads to general\r
-               % wackiness, so I don't suggest it.\r
-\r
-               sensorAngle = n.\r
-\r
-        + to set-direction to n (vector):\r
-                direction = n.\r
-                positiveDirection::x=|n::x|.\r
-                positiveDirection::y=|n::y|.\r
-                positiveDirection::z=|n::z|.\r
-\r
-  + section "Getting the Sensor Values"\r
-\r
-       + to get-sensor-value:\r
-               % Gets the sensor value. This should be used from post-iterate,\r
-               % if not, the sensor reading correspond to the previous\r
-               % iteration.\r
-        \r
-        #+ to iterate:\r
-        \r
-       + to get-data:\r
-               i (object).\r
-                x,y,z (float).\r
-                v(vector).\r
-               aux(float).\r
-\r
-                \r
-               strength, angle (float).\r
-               toObstacle, transDir (vector).\r
-                largeWall (float).\r
-                source,destiny (vector).\r
-                obsLoc (vector).                \r
-                location (vector).\r
-                posObstacle,posSensor (vector).\r
-                angulo(double).\r
-                des(int).\r
-                               \r
-               transDir = (self get-rotation) * direction.\r
-           \r
-               value = 0.0.\r
-               foreach i in (all CeldasObstacles): {                                   \r
-                                                \r
-                        posObstacle=i get-location.\r
-                       print "$i".\r
-                       \r
-                       \r
-                       \r
-                       if(dot(direction,(1,1,1))<0):                        \r
-                            des = ((dot((self get-location),positiveDirection))>(dot(posObstacle,positiveDirection))).        \r
-                        else\r
-                            des = ((dot((self get-location),positiveDirection))<(dot(posObstacle,positiveDirection))).        \r
-                       \r
-\r
-                       if (des):\r
-                        {\r
-                               #posObstacle::z = (self get-location)::z -posObstacle::z. \r
-                                                                       \r
-                               #print " posObstacle: $posObstacle".                        \r
-                                                                                   \r
-                               angle = angle(toObstacle, transDir).                                               \r
-                               posSensor=self get-location.\r
-                               source = self get-location.\r
-                               #obsLoc = posObstacle.                        \r
-                                                \r
-                               #v =  (self get-rotation) * (direction).\r
-                               v = (body get-location) - (self get-location ).\r
-                               #v = (direction).\r
-                               #aux=(self get-rotation).\r
-                               #print "rot: $aux".\r
-                               aux=v::z/v::x.\r
-                               print "m: $aux".\r
-       \r
-                               obsLoc::z=z=((self get-location)::z + ((posObstacle::x - (self get-location)::x)*v::z/v::x)).\r
-                               obsLoc::y=y=posObstacle::y.\r
-                               obsLoc::x=x=posObstacle::x.\r
-                        \r
-                               destiny = obsLoc.                        \r
-                               print "v:$direction x,y,z: $x,$y,$z".                                                            \r
-                               #print "v: $v".                                                                                    \r
-                               draw clear. \r
-                        \r
-                               draw set-color to (1, 0, 0).\r
-                               draw draw-line from source to obsLoc.\r
-                       }\r
-                        \r
-               }\r
-                value = -1.\r
-                return value.\r
-\r
-\r
-}\r
diff --git a/trunk/src/breve/robot/Celdas-2-5.tz b/trunk/src/breve/robot/Celdas-2-5.tz
deleted file mode 100644 (file)
index ee56a6e..0000000
+++ /dev/null
@@ -1,485 +0,0 @@
-@use PhysicalControl.\r
-@use Shape.\r
-@use Stationary.\r
-@use Link.\r
-@use MultiBody.\r
-@use Drawing.\r
-\r
-@define CELDAS_MAX_VELOCITY 30.\r
-\r
-PhysicalControl : CeldasControl {\r
-       % This class is used for building simple vehicle \r
-       % simulations.  To create a vehicle simulation, \r
-       % subclass CeldasControl and use the init method to \r
-       % create OBJECT(CeldasObstacle) and \r
-       % OBJECT(CeldasVehicle) objects.\r
-\r
-       + variables:\r
-               floor (object).\r
-               floorShape (object).\r
-               cloudTexture (object).\r
-\r
-\r
-       + to init:\r
-               self enable-lighting.\r
-                #self enable-smooth-drawing.\r
-\r
-               floorShape = new Shape.\r
-               floorShape init-with-cube size (200, .2, 200).\r
-\r
-               floor = new Stationary.\r
-               floor register with-shape floorShape at-location (0, 0, 0).\r
-               #floor catch-shadows.\r
-\r
-               self point-camera at (0, 0, 0) from (3, 3, 24).\r
-\r
-               #self enable-shadows.\r
-               #self enable-reflections.\r
-\r
-               cloudTexture = (new Image load from "images/clouds.png"). \r
-               self set-background-color to (.4, .6, .9).\r
-               self set-background-texture-image to cloudTexture.\r
-\r
-}\r
-\r
-MultiBody : CeldasLightVehicle (aka CeldasLightVehicles) {\r
-       % This object is used in conjunction with OBJECT(CeldasControl) to\r
-       % create simple vehicles.\r
-\r
-       + variables:\r
-               bodyShape (object).\r
-               wheelShape (object).\r
-               sensorShape (object).\r
-               bodyLink (object).\r
-\r
-               wheels (list).\r
-               sensors (list).\r
-\r
-       + to init:\r
-               bodyShape = new Shape.\r
-               bodyShape init-with-cube size (4.0, .75, 3.0).  \r
-\r
-               wheelShape = new Shape.\r
-               wheelShape init-with-polygon-disk radius ( self get-wheel-radius ) sides 20 height ( self get-wheel-width ).\r
-               # 40\r
-\r
-               sensorShape = new Shape.\r
-               sensorShape init-with-polygon-cone radius .2 sides 5 height .5.\r
-               # 10\r
-\r
-               bodyShape set-density to ( self get-density ).\r
-               bodyLink = new Link.\r
-               bodyLink set-shape to bodyShape.        \r
-               bodyLink set-mu to -1.0.\r
-               bodyLink set-eT to .8.\r
-\r
-               self set-root to bodyLink.\r
-\r
-               self move to (0, 0.9, 0).\r
-               self set-texture-scale to 1.5.\r
-\r
-       - to get-density:\r
-               return 1.0.\r
-\r
-       - to get-wheel-width:\r
-               return 0.1.\r
-\r
-       - to get-wheel-radius:\r
-               return 0.6.\r
-\r
-       + section "Adding Wheels and Sensors to a Vehicle"\r
-\r
-       + to add-wheel at location (vector):\r
-               % Adds a wheel at location on the vehicle.  This method returns\r
-               % the wheel which is created, a OBJECT(CeldasWheel).\r
-\r
-               wheel, joint (object).\r
-\r
-               wheel = new CeldasWheel.\r
-               wheel set-shape to wheelShape.\r
-\r
-               joint = new RevoluteJoint.\r
-\r
-               joint set-relative-rotation around-axis (1, 0, 0) by 1.5708.\r
-               joint link parent bodyLink to-child wheel with-normal (0, 0, 1)\r
-                                       with-parent-point location with-child-point (0, 0, 0).\r
-\r
-               wheel set-eT to .8.\r
-               wheel set-texture to 0.\r
-               wheel set-joint to joint.\r
-               joint set-strength-limit to (joint get-strength-hard-limit) / 2.\r
-               wheel set-color to (.6, .6, .6).\r
-               wheel set-mu to 100000.\r
-\r
-               self add-dependency on joint.\r
-               self add-dependency on wheel.\r
-\r
-               push wheel onto wheels.\r
-\r
-               return wheel.\r
-\r
-       + to add-sensor at location (vector) with-direction direction = (0,1,0)(vector) :\r
-               % Adds a sensor at location on the vehicle.  This method returns\r
-               % the sensor which is created, a OBJECT(CeldasSensor).\r
-\r
-               sensor, joint (object).\r
-\r
-               sensor = new CeldasSensor.\r
-                sensor set-direction to direction.\r
-                \r
-               sensor set-shape to sensorShape.\r
-\r
-               joint = new RevoluteJoint.\r
-\r
-               joint set-relative-rotation around-axis (0, 0, 1) by -1.57.\r
-               joint link parent bodyLink to-child sensor with-normal (1, 0, 0)\r
-                                       with-parent-point location with-child-point (0, 0, 0).\r
-\r
-               joint set-double-spring with-strength 300 with-max 0.01 with-min -0.01.\r
-\r
-               self add-dependency on joint.\r
-               self add-dependency on sensor.\r
-\r
-               sensor set-color to (0, 0, 0).\r
-\r
-               #push sensor onto sensors.\r
-\r
-               return sensor.\r
-\r
-       + to destroy:\r
-               free sensorShape.\r
-               free wheelShape.\r
-               free bodyShape.\r
-\r
-               super destroy.\r
-}\r
-\r
-CeldasLightVehicle : CeldasVehicle (aka CeldasVehicles) {\r
-       % A heavy duty version of OBJECT(CeldasLightVehicle), this\r
-       % vehicle is heavier and harder to control, but more stable\r
-       % at higher speeds.\r
-        +variables:\r
-            lSensor, rSensor, fSensor, bSensor (object).\r
-            lWheel,rWheel (object).        \r
-        \r
-       - to get-density:\r
-               return 20.0.\r
-\r
-       - to get-wheel-width:\r
-               return 0.4.\r
-\r
-       - to get-wheel-radius:\r
-               return 0.8.\r
-\r
-        + to set-global-velocity to velocity (float):\r
-               rWheel set-velocity to velocity.\r
-               lWheel set-velocity to velocity.\r
-\r
-       + to get-global-velocity:\r
-               return ((rWheel get-velocity) + (lWheel get-velocity)) / 2.\r
-\r
-       + to turn-right with-velocity velocity (float):         \r
-               lWheel set-velocity to velocity.\r
-                rWheel set-velocity to -velocity.\r
-\r
-       + to turn-left with-velocity velocity (float):\r
-#                vehicle rotate around-axis (0,1,0) by 1. \r
-               lWheel set-velocity to -velocity.       \r
-               rWheel set-velocity to velocity.\r
-\r
-        + to get-sensor-value:\r
-               return (fSensor get-sensor-value).\r
-\r
-        +to init:\r
-            fSensor = (self add-sensor at (2.0, .4, 0)).            \r
-            fSensor set-direction to (1,0,0).\r
-            fSensor set-id at 1.\r
-           fSensor set-body at self.\r
-            bSensor = (self add-sensor at (-2.0, .4, 0)).\r
-            bSensor set-direction to (-1,0,0).\r
-            bSensor set-id at 2.\r
-           bSensor set-body at self.\r
-            lSensor = (self add-sensor at (0, .4, 1.5)).\r
-            lSensor set-direction to (0,0,1).\r
-            lSensor set-id at 3.\r
-           lSensor set-body at self.\r
-\r
-\r
-            rSensor = (self add-sensor at (0, .4, -1.5)).\r
-            rSensor set-direction to (0,0,-1).\r
-            rSensor set-id at 4.\r
-           rSensor set-body at self.\r
-\r
-            lWheel  = (self add-wheel at (0, 0, -1.5)).\r
-            rWheel  = (self add-wheel at (0, 0, 1.5)).\r
-                        \r
-        +to iterate:            \r
-        #+ to post-iterate:\r
-               valuef,valueb,valuer,valuel (float).\r
-               fl, fr(float).\r
-               \r
-                valuef=fSensor get-data.\r
-               valueb=bSensor get-data.\r
-                valuel=lSensor get-data.\r
-                valuer=rSensor get-data.\r
-\r
-               self turn-left with-velocity(20).\r
-                self set-global-velocity to (15).\r
-               if valuef >7:           \r
-                    self set-global-velocity to (15).\r
-                else if (valuef <=7) && (valuef > 0):\r
-                {   \r
-                    self set-global-velocity to (0).\r
-                    #self turn-left with-velocity(2).\r
-                    #self turn-right with-velocity(2).\r
-                    #self set-global-velocity to (0).\r
-               }\r
-                #print "sensor valuef: $valuef  valueb: $valueb".\r
-                \r
-                #else if value < 0.1: self turn-left with-velocity CELDAS_MAX_TURN_VELOCITY.\r
-               #else if value > 10: self set-global-velocity to ((self get-global-velocity) - 1).\r
-\r
-               #fl = (flWheel get-velocity).\r
-               #fr = (frWheel get-velocity).\r
-               #print " sensorf: $value  sensorb $valueb, fr: $fr, fl: $fl".            \r
-            \r
-}\r
-\r
-Stationary : CeldasObstacle (aka CeldasObstacles) {\r
-       % A CeldasObstacle is used in conjunction with OBJECT(CeldasControl)\r
-       % and OBJECT(CeldasVehicle).  It is what the OBJECT(CeldasSensor)\r
-       % objects on the CeldasVehicle detect.\r
-       % <p>\r
-       % There are no special behaviors associated with the walls--they're \r
-       % basically just plain OBJECT(Stationary) objects.\r
-   \r
-        +variables:\r
-            large (float).\r
-           direction (vector). \r
-\r
-\r
-       + to init with-size theSize = (10, 3, .1) (vector) with-color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 0, 0, 1 ), ( 0, 1, 0 ), ( 1, 0, 0 ) ] (matrix):                    \r
-               self init-with-shape shape (new Shape init-with-cube size theSize) color theColor at-location theLocation with-rotation theRotation.\r
-                large=20.\r
-\r
-       + to init-with-shape shape theShape (object) color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 1, 0, 0 ), ( 0, 1, 0 ), ( 0, 0, 1 ) ] (matrix):\r
-               self register with-shape theShape at-location theLocation with-rotation theRotation.\r
-               self set-color to theColor.\r
-                \r
-        + to get-large:\r
-            return large.\r
-\r
-       + to set-direction at theDirection (vector):\r
-           direction=theDirection.\r
-\r
-       + to get-direction:\r
-           return direction.\r
-}\r
-\r
-Link : CeldasWheel (aka CeldasWheels) {\r
-       % A CeldasWheel is used in conjunction with OBJECT(CeldasVehicle)\r
-       % to build Celdas vehicles.  This class is typically not instantiated\r
-       % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
-       % add a wheel to the vehicle.\r
-\r
-       + variables:\r
-               joint (object).\r
-               velocity (float).\r
-\r
-       + to init:\r
-               velocity = 0.\r
-\r
-       - to set-joint to j (object):\r
-               % Used internally.\r
-\r
-               joint = j.\r
-\r
-       + section "Configuring the Wheel's Velocity"\r
-\r
-       + to set-velocity to n (float):\r
-               % Sets the velocity of this wheel.\r
-\r
-               if n > CELDAS_MAX_VELOCITY: n = CELDAS_MAX_VELOCITY.\r
-               velocity = n.\r
-\r
-               joint set-joint-velocity to velocity.\r
-\r
-       + to get-velocity:\r
-               % Gets the velocity of this wheel.\r
-               \r
-               return velocity.\r
-\r
-}\r
-\r
-Link : CeldasSensor (aka CeldasSensors) {\r
-       % A CeldasSensor is used in conjunction with OBJECT(CeldasVehicle)\r
-       % to build Celdas vehicles.  This class is typically not instantiated\r
-       % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
-       % add a sensor to the vehicle.\r
-\r
-       + variables:\r
-               direction (vector).\r
-                positiveDirection(vector).\r
-               sensorAngle (float).\r
-               value (float).\r
-                draw (object).\r
-               body(object).\r
-                id(int).\r
-\r
-       + to init :\r
-               direction = (1,0,1).\r
-                positiveDirection= (1,0,1).\r
-               sensorAngle = 1.6.\r
-               value = 0.0.\r
-                draw = new Drawing.\r
-                               \r
-\r
-  + section "Configuring the Sensor Values"\r
-        + to set-id at n (int):\r
-            id=n.\r
-\r
-       + to set-body at robotBody(object):\r
-               body=robotBody.\r
-               \r
-       + to set-sensor-angle to n (float):\r
-               % Sets the angle in which this sensor can detect obstacles.  The default\r
-               % value of 1.6 means that the sensor can see most of everything in\r
-               % front of it.  Setting the value to be any higher leads to general\r
-               % wackiness, so I don't suggest it.\r
-\r
-               sensorAngle = n.\r
-\r
-        + to set-direction to n (vector):\r
-                direction = n.\r
-                positiveDirection::x=|n::x|.\r
-                positiveDirection::y=|n::y|.\r
-                positiveDirection::z=|n::z|.\r
-\r
-  + section "Getting the Sensor Values"\r
-\r
-       + to get-sensor-value:\r
-               % Gets the sensor value. This should be used from post-iterate,\r
-               % if not, the sensor reading correspond to the previous\r
-               % iteration.\r
-        \r
-        #+ to iterate:\r
-        \r
-       + to get-data:\r
-               i (object).\r
-                x,y,z (float).\r
-               min,dist (float).\r
-                v,obs(vector).\r
-               aux(float).\r
-               j (int).\r
-               des1,des2,des3(int).\r
-               wallBegin,wallEnd (float).\r
-                \r
-               aux1,aux2,aux3,aux4 (float).\r
-               yo,toObstacle, transDir (vector).\r
-                largeWall (float).\r
-                source,destiny (vector).\r
-                obsLoc (vector).                \r
-                location (vector).\r
-                posObstacle,posSensor (vector).\r
-                                             \r
-               draw clear.\r
-               value = 0.0.\r
-               j=0.\r
-               min=0.\r
-               foreach i in (all CeldasObstacles): \r
-                       {\r
-                        posObstacle=i get-location.\r
-                        \r
-                                                               \r
-                       #!\r
-                       if(dot((i get-direction),direction)==0):\r
-                               des1=1.\r
-                       else\r
-                               des1=0.\r
-                       !#\r
-\r
-                       des2=0.\r
-                       if(dot(direction,(1,1,1))<0):\r
-                       {                        \r
-                            if((dot((self get-location),positiveDirection))>(dot(posObstacle,positiveDirection))):\r
-                                       des2=1.      \r
-                        }\r
-                       else\r
-                       {\r
-                            if((dot((self get-location),positiveDirection))<(dot(posObstacle,positiveDirection))):\r
-                                       des2=1.         \r
-                       }                       \r
-\r
-\r
-                       #Compruebo que el robot este frente a la pared\r
-                       wallBegin=dot((i get-location),(i get-direction) )- (i get-large)/2.\r
-                       wallEnd=dot((i get-location),(i get-direction) )+ (i get-large)/2.              \r
-\r
-\r
-                       #print "begin: $wallBegin end: $wallEnd".\r
-                       yo=self get-location.\r
-                       destiny=i get-direction.\r
-\r
-                       v = (body get-location) - (self get-location ).\r
-                       obsLoc::y=y=posObstacle::y.                                                             \r
-                               \r
-                       if (dot((i get-direction),(1,0,0))):\r
-                       {\r
-                        obsLoc::x=x=((self get-location)::x + ((posObstacle::z - (self get-location)::z)*v::x/v::z)).\r
-                         obsLoc::z=z=posObstacle::z.\r
-                       }                               \r
-                       else\r
-                       {\r
-                        obsLoc::z=z=((self get-location)::z + ((posObstacle::x - (self get-location)::x)*v::z/v::x)).\r
-                         obsLoc::x=x=posObstacle::x.\r
-                       }                                                       \r
-\r
-\r
-                       if (dot((obsLoc),(i get-direction)) > wallBegin) && (dot((obsLoc),(i get-direction)) < wallEnd):\r
-                               des3=1.\r
-                       else\r
-                       {\r
-                                des3=0.\r
-                                \r
-                       }                               \r
-\r
-                       aux1=dot((self get-location),(i get-direction)).\r
-\r
-                       #print "sensor: $id obstaculo: $posObstacle direP: $destiny direS: $direction yo: $yo ".\r
-                       #print "dist: $aux1 begin: $wallBegin end: $wallEnd".\r
-\r
-                       \r
-                       print "sensor: $id , des1: $des1, des2: $des2, des3: $des3".\r
-                       if ((des2) && (des3)):\r
-                         {                                    \r
-                               draw clear.                             \r
-                               #print " posObstacle: $posObstacle".                                                    \r
-                                                       \r
-                               dist=|obsLoc - (self get-location)|.\r
-                               if( (j==0) || (min>dist) ):\r
-                                {\r
-                                       min=dist.\r
-                                       obs=obsLoc.\r
-                                       j++.    \r
-                                }\r
-\r
-                        }                                              \r
-\r
-                        \r
-               } #end for\r
-\r
-               if(j!=0):\r
-                       {\r
-                         #Dibujo el laser\r
-                                 draw set-color to (1, 0, 0).\r
-                         draw draw-line from (self get-location) to (obs).\r
-                         return dist.\r
-                       }\r
-               \r
-\r
-                value = -1.\r
-                return value.\r
-\r
-\r
-}\r
-               
\ No newline at end of file
diff --git a/trunk/src/breve/robot/Celdas-2-6.tz b/trunk/src/breve/robot/Celdas-2-6.tz
deleted file mode 100644 (file)
index 9756afe..0000000
+++ /dev/null
@@ -1,526 +0,0 @@
-@use PhysicalControl.\r
-@use Shape.\r
-@use Stationary.\r
-@use Link.\r
-@use MultiBody.\r
-@use Drawing.\r
-\r
-@define CELDAS_MAX_VELOCITY 30.\r
-\r
-PhysicalControl : CeldasControl {\r
-       % This class is used for building simple vehicle \r
-       % simulations.  To create a vehicle simulation, \r
-       % subclass CeldasControl and use the init method to \r
-       % create OBJECT(CeldasObstacle) and \r
-       % OBJECT(CeldasVehicle) objects.\r
-\r
-       + variables:\r
-               floor (object).\r
-               floorShape (object).\r
-               cloudTexture (object).\r
-\r
-\r
-       + to init:\r
-               self enable-lighting.\r
-                #self enable-smooth-drawing.\r
-\r
-               floorShape = new Shape.\r
-               floorShape init-with-cube size (200, .2, 200).\r
-\r
-               floor = new Stationary.\r
-               floor register with-shape floorShape at-location (0, 0, 0).\r
-               #floor catch-shadows.\r
-\r
-               self point-camera at (0, 0, 0) from (3, 3, 24).\r
-\r
-               #self enable-shadows.\r
-               #self enable-reflections.\r
-\r
-               cloudTexture = (new Image load from "images/clouds.png"). \r
-               self set-background-color to (.4, .6, .9).\r
-               self set-background-texture-image to cloudTexture.\r
-\r
-}\r
-\r
-MultiBody : CeldasLightVehicle (aka CeldasLightVehicles) {\r
-       % This object is used in conjunction with OBJECT(CeldasControl) to\r
-       % create simple vehicles.\r
-\r
-       + variables:\r
-               bodyShape (object).\r
-               wheelShape (object).\r
-               sensorShape (object).\r
-               bodyLink (object).\r
-\r
-               wheels (list).\r
-               sensors (list).\r
-\r
-       + to init:\r
-               bodyShape = new Shape.\r
-               bodyShape init-with-cube size (4.0, .75, 3.0).  \r
-\r
-               wheelShape = new Shape.\r
-               wheelShape init-with-polygon-disk radius ( self get-wheel-radius ) sides 20 height ( self get-wheel-width ).\r
-               # 40\r
-\r
-               sensorShape = new Shape.\r
-               sensorShape init-with-polygon-cone radius .2 sides 5 height .5.\r
-               # 10\r
-\r
-               bodyShape set-density to ( self get-density ).\r
-               bodyLink = new Link.\r
-               bodyLink set-shape to bodyShape.        \r
-               bodyLink set-mu to -1.0.\r
-               bodyLink set-eT to .8.\r
-\r
-               self set-root to bodyLink.\r
-\r
-               self move to (0, 0.9, 0).\r
-               self set-texture-scale to 1.5.\r
-\r
-       - to get-density:\r
-               return 1.0.\r
-\r
-       - to get-wheel-width:\r
-               return 0.1.\r
-\r
-       - to get-wheel-radius:\r
-               return 0.6.\r
-\r
-       + section "Adding Wheels and Sensors to a Vehicle"\r
-\r
-       + to add-wheel at location (vector):\r
-               % Adds a wheel at location on the vehicle.  This method returns\r
-               % the wheel which is created, a OBJECT(CeldasWheel).\r
-\r
-               wheel, joint (object).\r
-\r
-               wheel = new CeldasWheel.\r
-               wheel set-shape to wheelShape.\r
-\r
-               joint = new RevoluteJoint.\r
-\r
-               joint set-relative-rotation around-axis (1, 0, 0) by 1.5708.\r
-               joint link parent bodyLink to-child wheel with-normal (0, 0, 1)\r
-                                       with-parent-point location with-child-point (0, 0, 0).\r
-\r
-               wheel set-eT to .8.\r
-               wheel set-texture to 0.\r
-               wheel set-joint to joint.\r
-               joint set-strength-limit to (joint get-strength-hard-limit) / 2.\r
-               wheel set-color to (.6, .6, .6).\r
-               wheel set-mu to 100000.\r
-\r
-               self add-dependency on joint.\r
-               self add-dependency on wheel.\r
-\r
-               push wheel onto wheels.\r
-\r
-               return wheel.\r
-\r
-       + to add-sensor at location (vector) with-direction direction = (0,1,0)(vector) :\r
-               % Adds a sensor at location on the vehicle.  This method returns\r
-               % the sensor which is created, a OBJECT(CeldasSensor).\r
-\r
-               sensor, joint (object).\r
-\r
-               sensor = new CeldasSensor.\r
-                sensor set-direction to direction.\r
-                \r
-               sensor set-shape to sensorShape.\r
-\r
-               joint = new RevoluteJoint.\r
-\r
-               joint set-relative-rotation around-axis (0, 0, 1) by -1.57.\r
-               joint link parent bodyLink to-child sensor with-normal (1, 0, 0)\r
-                                       with-parent-point location with-child-point (0, 0, 0).\r
-\r
-               joint set-double-spring with-strength 300 with-max 0.01 with-min -0.01.\r
-\r
-               self add-dependency on joint.\r
-               self add-dependency on sensor.\r
-\r
-               sensor set-color to (0, 0, 0).\r
-\r
-               #push sensor onto sensors.\r
-\r
-               return sensor.\r
-\r
-       + to destroy:\r
-               free sensorShape.\r
-               free wheelShape.\r
-               free bodyShape.\r
-\r
-               super destroy.\r
-}\r
-\r
-CeldasLightVehicle : CeldasVehicle (aka CeldasVehicles) {\r
-       % A heavy duty version of OBJECT(CeldasLightVehicle), this\r
-       % vehicle is heavier and harder to control, but more stable\r
-       % at higher speeds.\r
-        +variables:\r
-            lSensor, rSensor, fSensor, bSensor (object).\r
-            lfWheel,rfWheel,lbWheel,rbWheel (object).\r
-           tleft,tright (int).     \r
-        \r
-           avanzando,retrocediendo,girando(int).           \r
-           \r
-                   \r
-       - to get-density:\r
-               return 20.0.\r
-\r
-       - to get-wheel-width:\r
-               return 0.4.\r
-\r
-       - to get-wheel-radius:\r
-               return 0.8.\r
-\r
-        + to set-global-velocity to velocity (float):\r
-               rfWheel set-velocity to velocity.\r
-               lfWheel set-velocity to velocity.\r
-               rbWheel set-velocity to velocity.\r
-               lbWheel set-velocity to velocity.\r
-\r
-       + to get-global-velocity:\r
-               return ((rfWheel get-velocity) + (lfWheel get-velocity)) / 2.\r
-\r
-       + to turn-right:                \r
-               tright++.\r
-\r
-               self rotate around-axis (0,1,0) by (-1.5709/10)*tright. \r
-                       \r
-               if(tright==10): tright=0.\r
-\r
-\r
-       + to turn-left:\r
-               tleft++.\r
-\r
-               self rotate around-axis (0,1,0) by (1.5709/10)*tleft. \r
-                       \r
-               if(tleft==10): tleft=0.\r
-\r
-\r
-        + to get-sensor-value:\r
-               return (fSensor get-sensor-value).\r
-\r
-        +to init:\r
-            fSensor = (self add-sensor at (2.0, .4, 0)).            \r
-            fSensor set-direction to (1,0,0).\r
-            #fSensor set-direction to (0,0,1).\r
-            fSensor set-id at 1.\r
-           fSensor set-body at self.\r
-            bSensor = (self add-sensor at (-2.0, .4, 0)).\r
-            bSensor set-direction to (-1,0,0).\r
-            #bSensor set-direction to (0,0,1).\r
-            bSensor set-id at 2.\r
-           bSensor set-body at self.\r
-            lSensor = (self add-sensor at (0, .4, 1.5)).\r
-            lSensor set-direction to (0,0,1).\r
-            #lSensor set-direction to (1,0,0).\r
-            lSensor set-id at 3.\r
-           lSensor set-body at self.\r
-\r
-\r
-            rSensor = (self add-sensor at (0, .4, -1.5)).\r
-           rSensor set-direction to (0,0,-1).\r
-            #rSensor set-direction to (-1,0,0).\r
-            rSensor set-id at 4.\r
-           rSensor set-body at self.\r
-\r
-            lfWheel = (self add-wheel at (2, 0, -1.5)).\r
-            lbWheel = (self add-wheel at (-2, 0, -1.5)).\r
-            rfWheel = (self add-wheel at (2, 0, 1.5)).\r
-            rbWheel = (self add-wheel at (-2, 0, 1.5)).\r
-\r
-           tleft=tright=0.     #Debe ser inicializado en 0 esta asi para probar!!!!!!!!!!!!!!!!!!!!!!!!\r
-           avanzando=1.\r
-           retrocediendo=0.\r
-           girando=0.            \r
-            \r
-        +to iterate:\r
-               valuef,valueb,valuer,valuel (float).\r
-               fl, fr(float).\r
-               \r
-                valuef=fSensor get-data.\r
-               valueb=bSensor get-data.\r
-                valuel=lSensor get-data.\r
-                valuer=rSensor get-data.\r
-               \r
-               print "senforl: $valuel".\r
-\r
-                if(avanzando):\r
-                       if(valuef>15):\r
-                               self set-global-velocity to (15).\r
-                       else \r
-                               {               \r
-                                avanzando=0.\r
-                                retrocediendo=1.\r
-                               }       \r
-\r
-\r
-               if(retrocediendo):\r
-                       if(valueb>15):\r
-                               self set-global-velocity to (-15).\r
-                       else \r
-                               {               \r
-                                tleft=1.\r
-                                retrocediendo=0.\r
-                               }\r
-\r
-\r
-               if((tleft) && (valuel>10)):                                             \r
-                       {\r
-                        #self set-global-velocity to (0).\r
-                        self turn-left.\r
-                       }\r
-               else\r
-                       {\r
-                        avanzando=1.\r
-                        #tright=1.\r
-                       }\r
-\r
-#!\r
-               if((tright) && (valuer>10)):                                            \r
-                       {\r
-                        #self set-global-velocity to (0).\r
-                        self turn-right.\r
-                       }\r
-               else\r
-                       {\r
-                        avanzando=1.\r
-                        #tright=1.\r
-                       }       \r
-!#     \r
-            \r
-}\r
-\r
-Stationary : CeldasObstacle (aka CeldasObstacles) {\r
-       % A CeldasObstacle is used in conjunction with OBJECT(CeldasControl)\r
-       % and OBJECT(CeldasVehicle).  It is what the OBJECT(CeldasSensor)\r
-       % objects on the CeldasVehicle detect.\r
-       % <p>\r
-       % There are no special behaviors associated with the walls--they're \r
-       % basically just plain OBJECT(Stationary) objects.\r
-   \r
-        +variables:\r
-            large (float).\r
-           direction (vector). \r
-\r
-\r
-       + to init with-size theSize = (10, 3, .1) (vector) with-color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 0, 0, 1 ), ( 0, 1, 0 ), ( 1, 0, 0 ) ] (matrix):                    \r
-               self init-with-shape shape (new Shape init-with-cube size theSize) color theColor at-location theLocation with-rotation theRotation.\r
-                large=20.\r
-\r
-       + to init-with-shape shape theShape (object) color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 1, 0, 0 ), ( 0, 1, 0 ), ( 0, 0, 1 ) ] (matrix):\r
-               self register with-shape theShape at-location theLocation with-rotation theRotation.\r
-               self set-color to theColor.\r
-                \r
-        + to get-large:\r
-            return large.\r
-\r
-       + to set-direction at theDirection (vector):\r
-           direction=theDirection.\r
-\r
-       + to get-direction:\r
-           return direction.\r
-}\r
-\r
-Link : CeldasWheel (aka CeldasWheels) {\r
-       % A CeldasWheel is used in conjunction with OBJECT(CeldasVehicle)\r
-       % to build Celdas vehicles.  This class is typically not instantiated\r
-       % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
-       % add a wheel to the vehicle.\r
-\r
-       + variables:\r
-               joint (object).\r
-               velocity (float).\r
-\r
-       + to init:\r
-               velocity = 0.\r
-\r
-       - to set-joint to j (object):\r
-               % Used internally.\r
-\r
-               joint = j.\r
-\r
-       + section "Configuring the Wheel's Velocity"\r
-\r
-       + to set-velocity to n (float):\r
-               % Sets the velocity of this wheel.\r
-\r
-               if n > CELDAS_MAX_VELOCITY: n = CELDAS_MAX_VELOCITY.\r
-               velocity = n.\r
-\r
-               joint set-joint-velocity to velocity.\r
-\r
-       + to get-velocity:\r
-               % Gets the velocity of this wheel.\r
-               \r
-               return velocity.\r
-\r
-}\r
-\r
-Link : CeldasSensor (aka CeldasSensors) {\r
-       % A CeldasSensor is used in conjunction with OBJECT(CeldasVehicle)\r
-       % to build Celdas vehicles.  This class is typically not instantiated\r
-       % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
-       % add a sensor to the vehicle.\r
-\r
-       + variables:\r
-               direction (vector).\r
-                positiveDirection(vector).\r
-               sensorAngle (float).\r
-               value (float).\r
-                draw (object).\r
-               body(object).\r
-                id(int).\r
-\r
-       + to init :\r
-               direction = (1,0,1).\r
-                positiveDirection= (1,0,1).\r
-               sensorAngle = 1.6.\r
-               value = 0.0.\r
-                draw = new Drawing.\r
-                               \r
-\r
-  + section "Configuring the Sensor Values"\r
-        + to set-id at n (int):\r
-            id=n.\r
-\r
-       + to set-body at robotBody(object):\r
-               body=robotBody.\r
-               \r
-       + to set-sensor-angle to n (float):\r
-               % Sets the angle in which this sensor can detect obstacles.  The default\r
-               % value of 1.6 means that the sensor can see most of everything in\r
-               % front of it.  Setting the value to be any higher leads to general\r
-               % wackiness, so I don't suggest it.\r
-\r
-               sensorAngle = n.\r
-\r
-        + to set-direction to n (vector):\r
-                direction = n.\r
-                positiveDirection::x=|n::x|.\r
-                positiveDirection::y=|n::y|.\r
-                positiveDirection::z=|n::z|.\r
-\r
-  + section "Getting the Sensor Values"\r
-\r
-       + to get-sensor-value:\r
-               % Gets the sensor value. This should be used from post-iterate,\r
-               % if not, the sensor reading correspond to the previous\r
-               % iteration.\r
-        \r
-        #+ to iterate:\r
-        \r
-       + to get-data:\r
-               i (object).\r
-               min,dist (float).\r
-                v,obs(vector).\r
-               aux(float).\r
-               j (int).\r
-               des2,des3(int).\r
-               wallBegin,wallEnd,wallCenter (float).\r
-                \r
-               toObstacle(vector).\r
-                largeWall (float).\r
-                \r
-                obsLoc (vector).                \r
-                location (vector).\r
-                posObstacle,destiny,yo(vector).\r
-                                             \r
-               draw clear.\r
-               value = 0.0.\r
-               j=0.\r
-               min=0.\r
-               foreach i in (all CeldasObstacles): \r
-                       {\r
-                        posObstacle=i get-location.\r
-                        v = (body get-location) - (self get-location ).\r
-                        obsLoc::y=posObstacle::y.\r
-                        \r
-                        if (dot((i get-direction),(1,0,0))):\r
-                         {\r
-                          obsLoc::x=((self get-location)::x + ((posObstacle::z - (self get-location)::z)*v::x/v::z)).\r
-                           obsLoc::z=posObstacle::z.\r
-                         }                             \r
-                         else\r
-                         {\r
-                          obsLoc::z=((self get-location)::z + ((posObstacle::x - (self get-location)::x)*v::z/v::x)).\r
-                           obsLoc::x=posObstacle::x.\r
-                         } \r
-                                                               \r
-                       #!\r
-                       if(dot((i get-direction),direction)==0):\r
-                               des1=1.\r
-                       else\r
-                               des1=0.\r
-                       !#\r
-\r
-                       des2=0.\r
-                       if(dot(direction,(1,1,1))<0):\r
-                       {                        \r
-                            if((dot((self get-location),positiveDirection))>(dot(obsLoc,positiveDirection))):\r
-                                       des2=1.      \r
-                        }\r
-                       else\r
-                       {\r
-                            if((dot((self get-location),positiveDirection))<(dot(obsLoc,positiveDirection))):\r
-                                       des2=1.         \r
-                       }                       \r
-\r
-\r
-                       #Compruebo que el robot este frente a la pared\r
-                       wallCenter=dot((i get-location),(i get-direction)).\r
-                       wallBegin=wallCenter- (i get-large)/2.\r
-                       wallEnd=wallCenter + (i get-large)/2.           \r
-\r
-                       \r
-                       yo=self get-location.\r
-                       destiny=i get-direction.\r
-\r
-                                                                                                               \r
-\r
-                       if (dot((self get-location),(i get-direction)) > wallBegin) && (dot((self get-location),(i get-direction)) < wallEnd):\r
-                               des3=1.\r
-                       else\r
-                       {\r
-                                des3=0.\r
-                                \r
-                       }                               \r
-                       \r
-                       if ((des2) && (des3)):\r
-                         {                                    \r
-                               draw clear.                                                     \r
-\r
-                               dist=|obsLoc - (self get-location)|.\r
-\r
-                               if( (j==0) || (min>dist) ):\r
-                                {\r
-                                       min=dist.\r
-                                       obs=obsLoc.\r
-                                       \r
-                                       j++.\r
-                                       #print "sensor: $id obstaculo: $posObstacle direP: $destiny direS: $direction yo: $yo ".        \r
-                                }\r
-\r
-                        }                                              \r
-\r
-                        \r
-               } #end for\r
-\r
-               if(j!=0):\r
-                       {\r
-                         #Dibujo el laser\r
-                                 draw set-color to (1, 0, 0).\r
-                         draw draw-line from (self get-location) to (obs).\r
-                         return min.\r
-                       }\r
-               \r
-\r
-                value = -1.\r
-                return value.\r
-\r
-\r
-}\r
-               
\ No newline at end of file
diff --git a/trunk/src/breve/robot/Celdas-2-7.tz b/trunk/src/breve/robot/Celdas-2-7.tz
deleted file mode 100644 (file)
index 30e36db..0000000
+++ /dev/null
@@ -1,636 +0,0 @@
-@use PhysicalControl.\r
-@use Shape.\r
-@use Stationary.\r
-@use Link.\r
-@use MultiBody.\r
-@use Drawing.\r
-@use SistemaAutonomo.\r
-\r
-@define CELDAS_MAX_VELOCITY 30.\r
-@define CELDAS_TURNO 100.\r
-\r
-PhysicalControl : CeldasControl {\r
-       % This class is used for building simple vehicle \r
-       % simulations.  To create a vehicle simulation, \r
-       % subclass CeldasControl and use the init method to \r
-       % create OBJECT(CeldasObstacle) and \r
-       % OBJECT(CeldasVehicle) objects.\r
-\r
-       + variables:\r
-               floor (object).\r
-               floorShape (object).\r
-               cloudTexture (object).\r
-\r
-\r
-       + to init:\r
-               self enable-lighting.\r
-                #self enable-smooth-drawing.\r
-\r
-               floorShape = new Shape.\r
-               floorShape init-with-cube size (200, .2, 200).\r
-\r
-               floor = new Stationary.\r
-               floor register with-shape floorShape at-location (0, 0, 0).\r
-               #floor catch-shadows.\r
-\r
-               self point-camera at (0, 0, 0) from (3, 3, 24).\r
-\r
-               #self enable-shadows.\r
-               #self enable-reflections.\r
-\r
-               cloudTexture = (new Image load from "images/clouds.png"). \r
-               self set-background-color to (.4, .6, .9).\r
-               self set-background-texture-image to cloudTexture.\r
-\r
-}\r
-\r
-MultiBody : CeldasLightVehicle (aka CeldasLightVehicles) {\r
-       % This object is used in conjunction with OBJECT(CeldasControl) to\r
-       % create simple vehicles.\r
-\r
-       + variables:\r
-               bodyShape (object).\r
-               wheelShape (object).\r
-               sensorShape (object).\r
-               bodyLink (object).\r
-\r
-               wheels (list).\r
-               sensors (list).\r
-\r
-       + to init:\r
-               bodyShape = new Shape.\r
-               bodyShape init-with-cube size (4.0, .75, 3.0).  \r
-\r
-               wheelShape = new Shape.\r
-               wheelShape init-with-polygon-disk radius ( self get-wheel-radius ) sides 20 height ( self get-wheel-width ).\r
-               # 40\r
-\r
-               sensorShape = new Shape.\r
-               sensorShape init-with-polygon-cone radius .2 sides 5 height .5.\r
-               # 10\r
-\r
-               bodyShape set-density to ( self get-density ).\r
-               bodyLink = new Link.\r
-               bodyLink set-shape to bodyShape.        \r
-               bodyLink set-mu to -1.0.\r
-               bodyLink set-eT to .8.\r
-\r
-               self set-root to bodyLink.\r
-\r
-               self move to (0, 0.9, 0).\r
-               self set-texture-scale to 1.5.\r
-\r
-       - to get-density:\r
-               return 1.0.\r
-\r
-       - to get-wheel-width:\r
-               return 0.1.\r
-\r
-       - to get-wheel-radius:\r
-               return 0.6.\r
-\r
-       + section "Adding Wheels and Sensors to a Vehicle"\r
-\r
-       + to add-wheel at location (vector):\r
-               % Adds a wheel at location on the vehicle.  This method returns\r
-               % the wheel which is created, a OBJECT(CeldasWheel).\r
-\r
-               wheel, joint (object).\r
-\r
-               wheel = new CeldasWheel.\r
-               wheel set-shape to wheelShape.\r
-\r
-               joint = new RevoluteJoint.\r
-\r
-               joint set-relative-rotation around-axis (1, 0, 0) by 1.5708.\r
-               joint link parent bodyLink to-child wheel with-normal (0, 0, 1)\r
-                                       with-parent-point location with-child-point (0, 0, 0).\r
-\r
-               wheel set-eT to .8.\r
-               wheel set-texture to 0.\r
-               wheel set-joint to joint.\r
-               joint set-strength-limit to (joint get-strength-hard-limit) / 2.\r
-               wheel set-color to (.6, .6, .6).\r
-               wheel set-mu to 100000.\r
-\r
-               self add-dependency on joint.\r
-               self add-dependency on wheel.\r
-\r
-               push wheel onto wheels.\r
-\r
-               return wheel.\r
-\r
-       + to add-sensor at location (vector) with-direction direction = (0,1,0)(vector) :\r
-               % Adds a sensor at location on the vehicle.  This method returns\r
-               % the sensor which is created, a OBJECT(CeldasSensor).\r
-\r
-               sensor, joint (object).\r
-\r
-               sensor = new CeldasSensor.\r
-                sensor set-direction to direction.\r
-                \r
-               sensor set-shape to sensorShape.\r
-\r
-               joint = new RevoluteJoint.\r
-\r
-               joint set-relative-rotation around-axis (0, 0, 1) by -1.57.\r
-               joint link parent bodyLink to-child sensor with-normal (1, 0, 0)\r
-                                       with-parent-point location with-child-point (0, 0, 0).\r
-\r
-               joint set-double-spring with-strength 300 with-max 0.01 with-min -0.01.\r
-\r
-               self add-dependency on joint.\r
-               self add-dependency on sensor.\r
-\r
-               sensor set-color to (0, 0, 0).\r
-\r
-               #push sensor onto sensors.\r
-\r
-               return sensor.\r
-\r
-       + to destroy:\r
-               free sensorShape.\r
-               free wheelShape.\r
-               free bodyShape.\r
-\r
-               super destroy.\r
-}\r
-\r
-CeldasLightVehicle : CeldasVehicle (aka CeldasVehicles) {\r
-       % A heavy duty version of OBJECT(CeldasLightVehicle), this\r
-       % vehicle is heavier and harder to control, but more stable\r
-       % at higher speeds.\r
-        +variables:\r
-               lSensor, rSensor, fSensor, bSensor (object).\r
-               lfWheel,rfWheel,lbWheel,rbWheel (object).\r
-               tleft,tright (int).         \r
-               avanzando,retrocediendo,girando_izq,girando_der(int).       \r
-               iterate(int).\r
-               teorias (list).\r
-               sa (object).\r
-               teoria (object).\r
-               entorno (hash).\r
-               datos-finales (hash).\r
-               plan_finished (int).\r
-        \r
-       - to get-density:\r
-               return 20.0.\r
-\r
-       - to get-wheel-width:\r
-               return 0.4.\r
-\r
-       - to get-wheel-radius:\r
-               return 0.8.\r
-\r
-        + to set-global-velocity to velocity (float):\r
-               rfWheel set-velocity to velocity.\r
-               lfWheel set-velocity to velocity.\r
-               rbWheel set-velocity to velocity.\r
-               lbWheel set-velocity to velocity.\r
-\r
-       + to get-global-velocity:\r
-               return ((rfWheel get-velocity) + (lfWheel get-velocity)) / 2.\r
-\r
-       + to turn-right:                \r
-               tright++.\r
-\r
-               self rotate around-axis (0,1,0) by (-1.5709/CELDAS_TURNO)*tright. \r
-                       \r
-               if (tright == CELDAS_TURNO): tright=0.\r
-\r
-\r
-       + to turn-left:\r
-               tleft++.\r
-\r
-               self rotate around-axis (0,1,0) by (1.5709/CELDAS_TURNO)*tleft. \r
-                       \r
-               if (tleft == CELDAS_TURNO): tleft=0.\r
-\r
-\r
-        + to get-sensor-value:\r
-               return (fSensor get-sensor-value).\r
-\r
-       +to update-entorno:\r
-               entorno{"sensor_f"} = (fSensor get-data).\r
-               entorno{"sensor_b"} = (bSensor get-data).\r
-               entorno{"sensor_r"} = (rSensor get-data).\r
-               entorno{"sensor_l"} = (lSensor get-data).\r
-               entorno{"movido"} = 0. # TODO\r
-               sa update-entorno with entorno.            \r
-\r
-        +to init:\r
-               # Configuracion de robot\r
-               fSensor = (self add-sensor at (2.0, .4, 0)).            \r
-               fSensor set-direction to (1,0,0).\r
-               #fSensor set-direction to (0,0,1).\r
-               fSensor set-id at 1.\r
-               fSensor set-body at self.\r
-               bSensor = (self add-sensor at (-2.0, .4, 0)).\r
-               bSensor set-direction to (-1,0,0).\r
-               #bSensor set-direction to (0,0,1).\r
-               bSensor set-id at 2.\r
-               bSensor set-body at self.\r
-               lSensor = (self add-sensor at (0, .4, 1.5)).\r
-               lSensor set-direction to (0,0,1).\r
-               #lSensor set-direction to (1,0,0).\r
-               lSensor set-id at 3.\r
-               lSensor set-body at self.\r
-\r
-               rSensor = (self add-sensor at (0, .4, -1.5)).\r
-               rSensor set-direction to (0,0,-1).\r
-               #rSensor set-direction to (-1,0,0).\r
-               rSensor set-id at 4.\r
-               rSensor set-body at self.\r
-\r
-               lfWheel = (self add-wheel at (2, 0, -1.5)).\r
-               lbWheel = (self add-wheel at (-2, 0, -1.5)).\r
-               rfWheel = (self add-wheel at (2, 0, 1.5)).\r
-               rbWheel = (self add-wheel at (-2, 0, 1.5)).\r
-\r
-               tleft=tright=0.\r
-               avanzando=0.\r
-               retrocediendo=0.\r
-               girando_izq=0.            \r
-               girando_der=0.            \r
-\r
-               # Configuracion de sistema autonomo\r
-               sa = new SistemaAutonomo.\r
-               iterate = 0.\r
-               plan_finished = 1. # así planificamos apenas empezamos\r
-\r
-               teorias = 4 new Teorias.\r
-               teorias{0} init named "Avanzar" with-action "adelante".\r
-               teorias{0} set-dato-inicial name "sensor_f" value 0.\r
-               teorias{0} set-dato-inicial name "sensor_b" value ANY.\r
-               teorias{0} set-dato-inicial name "sensor_r" value ANY.\r
-               teorias{0} set-dato-inicial name "sensor_l" value ANY.\r
-               teorias{0} set-dato-inicial name "movido" value ANY.\r
-               teorias{0} set-dato-final name "sensor_f" value ANY.\r
-               teorias{0} set-dato-final name "sensor_b" value ANY.\r
-               teorias{0} set-dato-final name "sensor_r" value ANY.\r
-               teorias{0} set-dato-final name "sensor_l" value ANY.\r
-               teorias{0} set-dato-final name "movido" value 1.\r
-\r
-               teorias{1} init named "Retroceder" with-action "atras".\r
-               teorias{1} set-dato-inicial name "sensor_f" value 1.\r
-               teorias{1} set-dato-inicial name "sensor_b" value ANY.\r
-               teorias{1} set-dato-inicial name "sensor_r" value ANY.\r
-               teorias{1} set-dato-inicial name "sensor_l" value ANY.\r
-               teorias{1} set-dato-inicial name "movido" value ANY.\r
-               teorias{1} set-dato-final name "sensor_f" value 0.\r
-               teorias{1} set-dato-final name "sensor_b" value ANY.\r
-               teorias{1} set-dato-final name "sensor_r" value ANY.\r
-               teorias{1} set-dato-final name "sensor_l" value ANY.\r
-               teorias{1} set-dato-final name "movido" value 1.\r
-\r
-               teorias{2} init named "Rotar a derecha" with-action "derecha".\r
-               teorias{2} set-dato-inicial name "sensor_f" value 1.\r
-               teorias{2} set-dato-inicial name "sensor_b" value ANY.\r
-               teorias{2} set-dato-inicial name "sensor_r" value ANY.\r
-               teorias{2} set-dato-inicial name "sensor_l" value ANY.\r
-               teorias{2} set-dato-inicial name "movido" value ANY.\r
-               teorias{2} set-dato-final name "sensor_f" value 0.\r
-               teorias{2} set-dato-final name "sensor_b" value ANY.\r
-               teorias{2} set-dato-final name "sensor_r" value ANY.\r
-               teorias{2} set-dato-final name "sensor_l" value 1.\r
-               teorias{2} set-dato-final name "movido" value 0.\r
-\r
-               teorias{3} init named "Rotar a izquierda" with-action "izquierda".\r
-               teorias{3} set-dato-inicial name "sensor_f" value 1.\r
-               teorias{3} set-dato-inicial name "sensor_b" value ANY.\r
-               teorias{3} set-dato-inicial name "sensor_r" value ANY.\r
-               teorias{3} set-dato-inicial name "sensor_l" value ANY.\r
-               teorias{3} set-dato-inicial name "movido" value ANY.\r
-               teorias{3} set-dato-final name "sensor_f" value 0.\r
-               teorias{3} set-dato-final name "sensor_b" value ANY.\r
-               teorias{3} set-dato-final name "sensor_r" value 1.\r
-               teorias{3} set-dato-final name "sensor_l" value ANY.\r
-               teorias{3} set-dato-final name "movido" value 0.\r
-\r
-               sa add teoria teorias{0}.\r
-               sa add teoria teorias{1}.\r
-               sa add teoria teorias{2}.\r
-               sa add teoria teorias{3}.\r
-\r
-               datos-finales{"movido"} = 1.\r
-               sa update-datos-finales with datos-finales.\r
-\r
-        +to iterate:\r
-               fl, fr(float).\r
-\r
-               if (0): # TODO posicion_final == posicion_actual\r
-               {\r
-                       print "Llegamos al FINAL!!!".\r
-                       return.\r
-               }\r
-\r
-               if (plan_finished):\r
-               {\r
-                       self update-entorno.\r
-                       sa plan. # Si no tenemos plan, lo hacemos\r
-                       plan_finished = 0.\r
-                       # TODO posicion_inicial = posicion_actual\r
-                       if (! sa-has-next-theory):\r
-                       {\r
-                               print "El planificador no encuentra PLAN!!!".\r
-                               return.\r
-                       }\r
-               }\r
-\r
-               if (iterate == 0):\r
-               {\r
-                       print "iteracion 0".\r
-                       if (sa has-next-theory):\r
-                       {\r
-                               print "hay teoria".\r
-                               teoria = sa get-next-theory.\r
-                               if ((teoria get-accion) == "adelante"):\r
-                               {\r
-                                       avanzando = 1.\r
-                                       retrocediendo = 0.\r
-                                       girando_izq = 0.\r
-                                       girando_der = 0.\r
-                               }\r
-                               if ((teoria get-accion) == "atras"):\r
-                               {\r
-                                       avanzando = 0.\r
-                                       retrocediendo = 1.\r
-                                       girando_izq = 0.\r
-                                       girando_der = 0.\r
-                               }\r
-                               if ((teoria get-accion) == "izquierda"):\r
-                               {\r
-                                       avanzando = 0.\r
-                                       retrocediendo = 0.\r
-                                       girando_izq = 1.\r
-                                       girando_der = 0.\r
-                               }\r
-                               if ((teoria get-accion) == "derecha"):\r
-                               {\r
-                                       avanzando = 0.\r
-                                       retrocediendo = 0.\r
-                                       girando_izq = 0.\r
-                                       girando_der = 1.\r
-                               }\r
-                       }\r
-               }\r
-\r
-               if (iterate == CELDAS_TURNO):\r
-               {\r
-                       self update-entorno.\r
-                       # TODO if (posicion_actual == posicion_inicial): movido = false. else movido = true.\r
-                       if (sa validate theory teoria):\r
-                       {\r
-                               print "valida".\r
-                       }\r
-                       else\r
-                       {\r
-                               print "Teoria no valida".\r
-                               plan_finished = 1.\r
-                       }\r
-               }\r
-\r
-               iterate++.\r
-               if (iterate == CELDAS_TURNO + 1):\r
-                       iterate = 0.\r
-\r
-               # Movimiento del robot\r
-               if (avanzando):\r
-                       self set-global-velocity to (15).\r
-               if (retrocediendo):\r
-                       self set-global-velocity to (-15).\r
-               if (girando_izq):\r
-                       self turn-left.\r
-               if (girando_der):\r
-                       self turn-right.\r
-\r
-}\r
-\r
-Stationary : CeldasObstacle (aka CeldasObstacles) {\r
-       % A CeldasObstacle is used in conjunction with OBJECT(CeldasControl)\r
-       % and OBJECT(CeldasVehicle).  It is what the OBJECT(CeldasSensor)\r
-       % objects on the CeldasVehicle detect.\r
-       % <p>\r
-       % There are no special behaviors associated with the walls--they're \r
-       % basically just plain OBJECT(Stationary) objects.\r
-   \r
-        +variables:\r
-            large (float).\r
-           direction (vector). \r
-\r
-\r
-       + to init with-size theSize = (10, 3, .1) (vector) with-color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 0, 0, 1 ), ( 0, 1, 0 ), ( 1, 0, 0 ) ] (matrix):                    \r
-               self init-with-shape shape (new Shape init-with-cube size theSize) color theColor at-location theLocation with-rotation theRotation.\r
-                large=20.\r
-\r
-       + to init-with-shape shape theShape (object) color theColor = (1, 0, 0) (vector) at-location theLocation = (0, 0, 0) (vector) with-rotation theRotation = [ ( 1, 0, 0 ), ( 0, 1, 0 ), ( 0, 0, 1 ) ] (matrix):\r
-               self register with-shape theShape at-location theLocation with-rotation theRotation.\r
-               self set-color to theColor.\r
-                \r
-        + to get-large:\r
-            return large.\r
-\r
-       + to set-direction at theDirection (vector):\r
-           direction=theDirection.\r
-\r
-       + to get-direction:\r
-           return direction.\r
-}\r
-\r
-Link : CeldasWheel (aka CeldasWheels) {\r
-       % A CeldasWheel is used in conjunction with OBJECT(CeldasVehicle)\r
-       % to build Celdas vehicles.  This class is typically not instantiated\r
-       % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
-       % add a wheel to the vehicle.\r
-\r
-       + variables:\r
-               joint (object).\r
-               velocity (float).\r
-\r
-       + to init:\r
-               velocity = 0.\r
-\r
-       - to set-joint to j (object):\r
-               % Used internally.\r
-\r
-               joint = j.\r
-\r
-       + section "Configuring the Wheel's Velocity"\r
-\r
-       + to set-velocity to n (float):\r
-               % Sets the velocity of this wheel.\r
-\r
-               if n > CELDAS_MAX_VELOCITY: n = CELDAS_MAX_VELOCITY.\r
-               velocity = n.\r
-\r
-               joint set-joint-velocity to velocity.\r
-\r
-       + to get-velocity:\r
-               % Gets the velocity of this wheel.\r
-               \r
-               return velocity.\r
-\r
-}\r
-\r
-Link : CeldasSensor (aka CeldasSensors) {\r
-       % A CeldasSensor is used in conjunction with OBJECT(CeldasVehicle)\r
-       % to build Celdas vehicles.  This class is typically not instantiated\r
-       % manually, since OBJECT(CeldasVehicle) creates one for you when you\r
-       % add a sensor to the vehicle.\r
-\r
-       + variables:\r
-               direction (vector).\r
-                positiveDirection(vector).\r
-               sensorAngle (float).\r
-               value (float).\r
-                draw (object).\r
-               body(object).\r
-                id(int).\r
-\r
-       + to init :\r
-               direction = (1,0,1).\r
-                positiveDirection= (1,0,1).\r
-               sensorAngle = 1.6.\r
-               value = 0.0.\r
-                draw = new Drawing.\r
-                               \r
-\r
-  + section "Configuring the Sensor Values"\r
-        + to set-id at n (int):\r
-            id=n.\r
-\r
-       + to set-body at robotBody(object):\r
-               body=robotBody.\r
-               \r
-       + to set-sensor-angle to n (float):\r
-               % Sets the angle in which this sensor can detect obstacles.  The default\r
-               % value of 1.6 means that the sensor can see most of everything in\r
-               % front of it.  Setting the value to be any higher leads to general\r
-               % wackiness, so I don't suggest it.\r
-\r
-               sensorAngle = n.\r
-\r
-        + to set-direction to n (vector):\r
-                direction = n.\r
-                positiveDirection::x=|n::x|.\r
-                positiveDirection::y=|n::y|.\r
-                positiveDirection::z=|n::z|.\r
-\r
-  + section "Getting the Sensor Values"\r
-\r
-       + to get-sensor-value:\r
-               % Gets the sensor value. This should be used from post-iterate,\r
-               % if not, the sensor reading correspond to the previous\r
-               % iteration.\r
-        \r
-        #+ to iterate:\r
-        \r
-       + to get-data:\r
-               i (object).\r
-               min,dist (float).\r
-                v,obs(vector).\r
-               aux(float).\r
-               j (int).\r
-               des2,des3(int).\r
-               wallBegin,wallEnd,wallCenter (float).\r
-                \r
-               toObstacle(vector).\r
-                largeWall (float).\r
-                \r
-                obsLoc (vector).                \r
-                location (vector).\r
-                posObstacle,destiny,yo(vector).\r
-                                             \r
-               draw clear.\r
-               value = 0.0.\r
-               j=0.\r
-               min=0.\r
-               foreach i in (all CeldasObstacles): \r
-                       {\r
-                        posObstacle=i get-location.\r
-                        v = (body get-location) - (self get-location ).\r
-                        obsLoc::y=posObstacle::y.\r
-                        \r
-                        if (dot((i get-direction),(1,0,0))):\r
-                         {\r
-                          obsLoc::x=((self get-location)::x + ((posObstacle::z - (self get-location)::z)*v::x/v::z)).\r
-                           obsLoc::z=posObstacle::z.\r
-                         }                             \r
-                         else\r
-                         {\r
-                          obsLoc::z=((self get-location)::z + ((posObstacle::x - (self get-location)::x)*v::z/v::x)).\r
-                           obsLoc::x=posObstacle::x.\r
-                         } \r
-                                                               \r
-                       #!\r
-                       if(dot((i get-direction),direction)==0):\r
-                               des1=1.\r
-                       else\r
-                               des1=0.\r
-                       !#\r
-\r
-                       des2=0.\r
-                       if(dot(direction,(1,1,1))<0):\r
-                       {                        \r
-                            if((dot((self get-location),positiveDirection))>(dot(obsLoc,positiveDirection))):\r
-                                       des2=1.      \r
-                        }\r
-                       else\r
-                       {\r
-                            if((dot((self get-location),positiveDirection))<(dot(obsLoc,positiveDirection))):\r
-                                       des2=1.         \r
-                       }                       \r
-\r
-\r
-                       #Compruebo que el robot este frente a la pared\r
-                       wallCenter=dot((i get-location),(i get-direction)).\r
-                       wallBegin=wallCenter- (i get-large)/2.\r
-                       wallEnd=wallCenter + (i get-large)/2.           \r
-\r
-                       \r
-                       yo=self get-location.\r
-                       destiny=i get-direction.\r
-\r
-                                                                                                               \r
-\r
-                       if (dot((self get-location),(i get-direction)) > wallBegin) && (dot((self get-location),(i get-direction)) < wallEnd):\r
-                               des3=1.\r
-                       else\r
-                       {\r
-                                des3=0.\r
-                                \r
-                       }                               \r
-                       \r
-                       if ((des2) && (des3)):\r
-                         {                                    \r
-                               draw clear.\r
-\r
-                               dist=|obsLoc - (self get-location)|.\r
-                               if( (j==0) || (min>dist) ):\r
-                                {\r
-                                       min=dist.\r
-                                       obs=obsLoc.\r
-                                       j++.\r
-                                       #print "sensor: $id obstaculo: $posObstacle direP: $destiny direS: $direction yo: $yo ".        \r
-                                }\r
-\r
-                        }                                              \r
-\r
-                        \r
-               } #end for\r
-\r
-               if(j!=0):\r
-                       {\r
-                         #Dibujo el laser\r
-                                 draw set-color to (1, 0, 0).\r
-                         draw draw-line from (self get-location) to (obs).\r
-                         return min.\r
-                       }\r
-               \r
-\r
-                value = -1.\r
-                return value.\r
-\r
-\r
-}\r
-               \r
diff --git a/trunk/src/breve/robot/Demo-2wheels2-2.tz b/trunk/src/breve/robot/Demo-2wheels2-2.tz
deleted file mode 100644 (file)
index 2c3ad99..0000000
+++ /dev/null
@@ -1,24 +0,0 @@
-
-@use Celdas-2-2.
-\r
-@define CELDAS_MAX_TURN_VELOCITY 2.\r
-
-Controller DemoController.
-
-CeldasControl : DemoController {
-       + variables:
-               vehicle (object).
-               n (int).
-
-       + to init:
-               
-                new CeldasObstacle init at-location (0,1,0).                \r
-                new CeldasObstacle init at-location (-25,1,0).
-
-               vehicle = new CeldasVehicle.
-               self watch item vehicle.
-
-               vehicle move to (-20, 0.8, -3).
-
-               vehicle set-global-velocity to 15.0.
-}
diff --git a/trunk/src/breve/robot/Demo-2wheels2-3.tz b/trunk/src/breve/robot/Demo-2wheels2-3.tz
deleted file mode 100644 (file)
index 9bc0ceb..0000000
+++ /dev/null
@@ -1,24 +0,0 @@
-
-@use Celdas-2-3.
-\r
-@define CELDAS_MAX_TURN_VELOCITY 2.\r
-
-Controller DemoController.
-
-CeldasControl : DemoController {
-       + variables:
-               vehicle (object).
-               n (int).
-
-       + to init:
-               
-                new CeldasObstacle init at-location (0,1,0).                \r
-                new CeldasObstacle init at-location (-25,1,0).
-
-               vehicle = new CeldasVehicle.
-               self watch item vehicle.
-
-               vehicle move to (-20, 0.8, -3).
-
-               vehicle set-global-velocity to 15.0.
-}
diff --git a/trunk/src/breve/robot/Demo-2wheels2-5.tz b/trunk/src/breve/robot/Demo-2wheels2-5.tz
deleted file mode 100644 (file)
index dd3f534..0000000
+++ /dev/null
@@ -1,23 +0,0 @@
-
-@use Celdas-2-6.
-\r
-@define CELDAS_MAX_TURN_VELOCITY 2.\r
-
-Controller DemoController.
-
-CeldasControl : DemoController {
-       + variables:
-               vehicle (object).
-               n (int).
-
-       + to init: \r
-                obs(object).\r
-\r
-\r
-               vehicle = new CeldasVehicle.
-               self watch item vehicle.
-
-               vehicle move to (-20, 0.8, -3).
-
-               vehicle set-global-velocity to 15.0.
-}
diff --git a/trunk/src/breve/robot/laberintov4.tz b/trunk/src/breve/robot/laberintov4.tz
deleted file mode 100644 (file)
index 488ae42..0000000
+++ /dev/null
@@ -1,198 +0,0 @@
-@use Control.\r
-@use Stationary.\r
-@use Celdas-2-7.\r
-\r
-@define altoPared  5.\r
-@define posYPared 25.\r
-@define seccion   20.\r
-@define distanciaTotalX    240.\r
-@define distanciaTotalZ    240.\r
-\r
-Controller myControl.\r
-\r
-\r
-CeldasObstacle  : Wall{\r
-\r
-\r
-     +to Create to-posX posX = 0 (float) to-posY posY = 2.5 (float) to-posZ posZ = 0 (float) to-widthX widthX = 5(float) to-widthZ widthZ = 5(float):\r
-    \r
-        if(widthX>widthZ):\r
-            {\r
-                large=widthX.\r
-                direction=(1,0,0).\r
-            }\r
-        else \r
-        {\r
-                large=widthZ.\r
-                direction=(0,0,1).\r
-         }       \r
-        self register with-shape (new Cube init-with size (widthX,altoPared,widthZ)) at-location (posX,posY,posZ).\r
-        self set-color to (0,1,0).\r
-\r
-\r
-}\r
-\r
-\r
-CeldasObstacle  : Labyrinth{\r
-\r
- +to init:\r
-    wall(object).\r
-    \r
-    wall=new Wall.\r
-    #Contorno del laberinto\r
-    wall  Create to-widthX 11.25*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-posX -5.5*seccion to-widthX 5 to-widthZ 11.25*seccion to-posZ 5.5*seccion .\r
-    wall=new Wall.\r
-    wall  Create to-posX -5.5*seccion to-widthX 5 to-widthZ 11.25*seccion to-posZ 5.5*seccion  to-posX 5.5*seccion .\r
-    wall=new Wall.\r
-    wall  Create to-widthX 5.25*seccion to-posZ 11*seccion to-posX -3*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthX 5.25*seccion to-posZ 11*seccion to-posX  3*seccion.\r
-    #fin contorno\r
\r
-    #Paredesd verticales (en el diagrama)\r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion   to-widthX 5 to-posZ 10.5*seccion to-posX 0.5*seccion.    \r
-    wall=new Wall.\r
-    wall  Create to-widthZ 2*seccion to-widthX 5 to-posZ 10*seccion to-posX -1.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion   to-widthX 5 to-posZ 10.5*seccion to-posX -3.5*seccion.\r
-    \r
-    wall=new Wall.\r
-    wall  Create to-widthZ 2*seccion to-widthX 5 to-posZ 9*seccion to-posX -0.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion to-widthX 5 to-posZ 9.5*seccion to-posX -4.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 3*seccion to-widthX 5 to-posZ 8.5*seccion to-posX -2.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 3*seccion to-widthX 5 to-posZ 8.5*seccion to-posX 3.5*seccion.\r
-    \r
-    wall=new Wall.    \r
-    wall  Create to-widthZ 5*seccion to-widthX 5 to-posZ 5.5*seccion to-posX -4.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 6*seccion to-widthX 5 to-posZ 4*seccion to-posX -3.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 3*seccion to-widthX 5 to-posZ 4.5*seccion to-posX -2.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 3*seccion to-widthX 5 to-posZ 5.5*seccion to-posX -1.5*seccion.\r
-    \r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion to-widthX 5 to-posZ 2.5*seccion to-posX 0.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion to-widthX 5 to-posZ 1.5*seccion to-posX 1.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion to-widthX 5 to-posZ 4.5*seccion to-posX 1.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion to-widthX 5 to-posZ 6.5*seccion to-posX 1.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion to-widthX 5 to-posZ 2.5*seccion to-posX -1.5*seccion. \r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion to-widthX 5 to-posZ 1.5*seccion to-posX -2.5*seccion.\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion to-widthX 5 to-posZ 3.5*seccion to-posX -0.5*seccion.\r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion to-widthX 5 to-posZ 3.5*seccion to-posX 2.5*seccion.\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 2*seccion to-widthX 5 to-posZ 7*seccion to-posX 2.5*seccion.\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ seccion to-widthX 5 to-posZ 4.5*seccion to-posX 3.5*seccion.\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 6*seccion to-widthX 5 to-posZ 6*seccion to-posX 4.5*seccion.    \r
-\r
-    wall=new Wall.\r
-    #Paredes horizontales (en el diagrama)\r
-    wall  Create to-widthZ 5 to-widthX 2.25*seccion to-posZ 10*seccion to-posX 1.5*seccion.    #1\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 2.25*seccion to-posZ 10*seccion to-posX 4.5*seccion.    #2\r
-\r
-    \r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 2.25*seccion to-posZ 9*seccion to-posX -3.5*seccion.    #3\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 1.25*seccion to-posZ 8*seccion to-posX -4*seccion.      #4\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 5.25*seccion to-posZ 8*seccion to-posX 0.               #5\r
-\r
-    \r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 3*seccion to-posZ 9*seccion to-posX 2*seccion.          #6\r
-\r
-    \r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 1.25*seccion to-posZ 7*seccion to-posX -3*seccion.      #7\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 3.25*seccion to-posZ 7*seccion to-posX 0.                  #8\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 2.25*seccion to-posZ 6*seccion to-posX 3.5*seccion.        #9\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 1.25*seccion to-posZ 6*seccion to-posX -2*seccion.         #10    \r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 3.25*seccion to-posZ 4*seccion to-posX 0.               #11\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 2.25*seccion to-posZ 5*seccion to-posX 2.5*seccion.     #12\r
-\r
-\r
-    wall=new Wall.        \r
-    wall  Create to-widthZ 5 to-widthX 1.25*seccion to-posZ 3*seccion to-posX -4*seccion.      #13\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 1.25*seccion to-posZ 3*seccion to-posX -2*seccion.      #14\r
-\r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 4.25*seccion to-posZ 3*seccion to-posX 2.5*seccion.     #15\r
-\r
-    #wall  Create to-widthZ 5 to-widthX 4*seccion to-posZ 3*seccion to-posX 2.5*seccion.     #15\r
-\r
-    wall=new Wall.    \r
-    wall  Create to-widthZ 5 to-widthX   seccion to-posZ 2*seccion to-posX -5*seccion.      #16\r
-    \r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 2.25*seccion to-posZ 2*seccion to-posX -0.5*seccion.    #17\r
-    \r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 4.25*seccion to-posZ 2*seccion to-posX  3.5*seccion.    #18\r
-    \r
-    wall=new Wall.\r
-    wall  Create to-widthZ 5 to-widthX 9*seccion to-posZ 1*seccion to-posX  0.              #19\r
-\r
-}\r
-\r
-\r
-Control: myControl{\r
-+ variables:\r
-    agent(object).\r
-    pared(object).\r
-    labe(object). \r
-    \r
-    sensor (object).\r
-    vehicle (object).\r
\r
-+ to init:\r
-    self point-camera at (0,0,0) from (200,200,200).\r
-    new Floor.\r
-\r
-    labe = new Labyrinth.\r
-    vehicle = new CeldasVehicle.\r
-    self watch item vehicle.\r
-\r
-    vehicle move to (0, 0, 10).\r
-\r
-+to iterate:\r
-    super iterate.\r
-\r
-}\r
-\r