]> git.llucax.com Git - software/druntime.git/blob - src/compiler/dmd/cmath2.d
add hidden function error support
[software/druntime.git] / src / compiler / dmd / cmath2.d
1
2 // Copyright (C) 2001-2003 by Digital Mars
3 // All Rights Reserved
4 // www.digitalmars.com
5
6 // Runtime support for complex arithmetic code generation
7 // (for linux)
8
9 /*
10  *  Modified by Sean Kelly for use with the D Runtime Project
11  */
12
13 module rt.cmath2;
14
15 private import stdc.math;
16
17 extern (C):
18
19 /****************************
20  * Multiply two complex floating point numbers, x and y.
21  * Input:
22  *      x.re    ST3
23  *      x.im    ST2
24  *      y.re    ST1
25  *      y.im    ST0
26  * Output:
27  *      ST1     real part
28  *      ST0     imaginary part
29  */
30
31 void _Cmul()
32 {
33     // p.re = x.re * y.re - x.im * y.im;
34     // p.im = x.im * y.re + x.re * y.im;
35     asm
36     {   naked                   ;
37         fld     ST(1)           ; // x.re
38         fmul    ST,ST(4)        ; // ST0 = x.re * y.re
39
40         fld     ST(1)           ; // y.im
41         fmul    ST,ST(4)        ; // ST0 = x.im * y.im
42
43         fsubp   ST(1),ST        ; // ST0 = x.re * y.re - x.im * y.im
44
45         fld     ST(3)           ; // x.im
46         fmul    ST,ST(3)        ; // ST0 = x.im * y.re
47
48         fld     ST(5)           ; // x.re
49         fmul    ST,ST(3)        ; // ST0 = x.re * y.im
50
51         faddp   ST(1),ST        ; // ST0 = x.im * y.re + x.re * y.im
52
53         fxch    ST(4),ST        ;
54         fstp    ST(0)           ;
55         fxch    ST(4),ST        ;
56         fstp    ST(0)           ;
57         fstp    ST(0)           ;
58         fstp    ST(0)           ;
59
60         ret                     ;
61     }
62 /+
63     if (isnan(x) && isnan(y))
64     {
65         // Recover infinities that computed as NaN+ iNaN ...
66         int recalc = 0;
67         if ( isinf( a) || isinf( b) )
68         {   // z is infinite
69             // "Box" the infinity and change NaNs in the other factor to 0
70             a = copysignl( isinf( a) ? 1.0 : 0.0, a);
71             b = copysignl( isinf( b) ? 1.0 : 0.0, b);
72             if (isnan( c)) c = copysignl( 0.0, c);
73             if (isnan( d)) d = copysignl( 0.0, d);
74             recalc = 1;
75         }
76         if (isinf(c) || isinf(d))
77         {   // w is infinite
78             // "Box" the infinity and change NaNs in the other factor to 0
79             c = copysignl( isinf( c) ? 1.0 : 0.0, c);
80             d = copysignl( isinf( d) ? 1.0 : 0.0, d);
81             if (isnan( a)) a = copysignl( 0.0, a);
82             if (isnan( b)) b = copysignl( 0.0, b);
83             recalc = 1;
84         }
85         if (!recalc && (isinf(ac) || isinf(bd) ||
86             isinf(ad) || isinf(bc)))
87         {
88             // Recover infinities from overflow by changing NaNs to 0 ...
89             if (isnan( a)) a = copysignl( 0.0, a);
90             if (isnan( b)) b = copysignl( 0.0, b);
91             if (isnan( c)) c = copysignl( 0.0, c);
92             if (isnan( d)) d = copysignl( 0.0, d);
93             recalc = 1;
94         }
95         if (recalc)
96         {
97             x = INFINITY * (a * c - b * d);
98             y = INFINITY * (a * d + b * c);
99         }
100     }
101 +/
102 }
103
104 /****************************
105  * Divide two complex floating point numbers, x / y.
106  * Input:
107  *      x.re    ST3
108  *      x.im    ST2
109  *      y.re    ST1
110  *      y.im    ST0
111  * Output:
112  *      ST1     real part
113  *      ST0     imaginary part
114  */
115
116 void _Cdiv()
117 {
118     real x_re, x_im;
119     real y_re, y_im;
120     real q_re, q_im;
121     real r;
122     real den;
123
124     asm
125     {
126         fstp    y_im    ;
127         fstp    y_re    ;
128         fstp    x_im    ;
129         fstp    x_re    ;
130     }
131
132     if (fabs(y_re) < fabs(y_im))
133     {
134         r = y_re / y_im;
135         den = y_im + r * y_re;
136         q_re = (x_re * r + x_im) / den;
137         q_im = (x_im * r - x_re) / den;
138     }
139     else
140     {
141         r = y_im / y_re;
142         den = y_re + r * y_im;
143         q_re = (x_re + r * x_im) / den;
144         q_im = (x_im - r * x_re) / den;
145     }
146 //printf("q.re = %g, q.im = %g\n", (double)q_re, (double)q_im);
147 /+
148     if (isnan(q_re) && isnan(q_im))
149     {
150         real denom = y_re * y_re + y_im * y_im;
151
152         // non-zero / zero
153         if (denom == 0.0 && (!isnan(x_re) || !isnan(x_im)))
154         {
155             q_re = copysignl(INFINITY, y_re) * x_re;
156             q_im = copysignl(INFINITY, y_re) * x_im;
157         }
158         // infinite / finite
159         else if ((isinf(x_re) || isinf(x_im)) && isfinite(y_re) && isfinite(y_im))
160         {
161             x_re = copysignl(isinf(x_re) ? 1.0 : 0.0, x_re);
162             x_im = copysignl(isinf(x_im) ? 1.0 : 0.0, x_im);
163             q_re = INFINITY * (x_re * y_re + x_im * y_im);
164             q_im = INFINITY * (x_im * y_re - x_re * y_im);
165         }
166         // finite / infinite
167         else if (isinf(logbw) && isfinite(x_re) && isfinite(x_im))
168         {
169             y_re = copysignl(isinf(y_re) ? 1.0 : 0.0, y_re);
170             y_im = copysignl(isinf(y_im) ? 1.0 : 0.0, y_im);
171             q_re = 0.0 * (x_re * y_re + x_im * y_im);
172             q_im = 0.0 * (x_im * y_re - x_re * y_im);
173         }
174     }
175     return q_re + q_im * 1.0i;
176 +/
177     asm
178     {
179         fld     q_re;
180         fld     q_im;
181     }
182 }
183
184 /****************************
185  * Compare two complex floating point numbers, x and y.
186  * Input:
187  *      x.re    ST3
188  *      x.im    ST2
189  *      y.re    ST1
190  *      y.im    ST0
191  * Output:
192  *      8087 stack is cleared
193  *      flags set
194  */
195
196 void _Ccmp()
197 {
198     asm
199     {   naked                   ;
200         fucomp  ST(2)           ; // compare x.im and y.im
201         fstsw   AX              ;
202         sahf                    ;
203         jne     L1              ;
204         jp      L1              ; // jmp if NAN
205         fucomp  ST(2)           ; // compare x.re and y.re
206         fstsw   AX              ;
207         sahf                    ;
208         fstp    ST(0)           ; // pop
209         fstp    ST(0)           ; // pop
210         ret                     ;
211
212       L1:
213         fstp    ST(0)           ; // pop
214         fstp    ST(0)           ; // pop
215         fstp    ST(0)           ; // pop
216         ret                     ;
217     }
218 }