]> git.llucax.com Git - software/libev.git/blob - ev.c
*** empty log message ***
[software/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are
9  * met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *
14  *     * Redistributions in binary form must reproduce the above
15  *       copyright notice, this list of conditions and the following
16  *       disclaimer in the documentation and/or other materials provided
17  *       with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 #if EV_USE_CONFIG_H
32 # include "config.h"
33 #endif
34
35 #include <math.h>
36 #include <stdlib.h>
37 #include <unistd.h>
38 #include <fcntl.h>
39 #include <signal.h>
40 #include <stddef.h>
41
42 #include <stdio.h>
43
44 #include <assert.h>
45 #include <errno.h>
46 #include <sys/types.h>
47 #include <sys/wait.h>
48 #include <sys/time.h>
49 #include <time.h>
50
51 /**/
52
53 #ifndef EV_USE_MONOTONIC
54 # define EV_USE_MONOTONIC 1
55 #endif
56
57 #ifndef EV_USE_SELECT
58 # define EV_USE_SELECT 1
59 #endif
60
61 #ifndef EV_USE_POLL
62 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
63 #endif
64
65 #ifndef EV_USE_EPOLL
66 # define EV_USE_EPOLL 0
67 #endif
68
69 #ifndef EV_USE_KQUEUE
70 # define EV_USE_KQUEUE 0
71 #endif
72
73 #ifndef EV_USE_REALTIME
74 # define EV_USE_REALTIME 1
75 #endif
76
77 /**/
78
79 #ifndef CLOCK_MONOTONIC
80 # undef EV_USE_MONOTONIC
81 # define EV_USE_MONOTONIC 0
82 #endif
83
84 #ifndef CLOCK_REALTIME
85 # undef EV_USE_REALTIME
86 # define EV_USE_REALTIME 0
87 #endif
88
89 /**/
90
91 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
92 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
93 #define PID_HASHSIZE  16 /* size of pid hash table, must be power of two */
94 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
95
96 #include "ev.h"
97
98 #if __GNUC__ >= 3
99 # define expect(expr,value)         __builtin_expect ((expr),(value))
100 # define inline                     inline
101 #else
102 # define expect(expr,value)         (expr)
103 # define inline                     static
104 #endif
105
106 #define expect_false(expr) expect ((expr) != 0, 0)
107 #define expect_true(expr)  expect ((expr) != 0, 1)
108
109 #define NUMPRI    (EV_MAXPRI - EV_MINPRI + 1)
110 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
111
112 typedef struct ev_watcher *W;
113 typedef struct ev_watcher_list *WL;
114 typedef struct ev_watcher_time *WT;
115
116 static ev_tstamp now_floor, now, diff; /* monotonic clock */
117 ev_tstamp ev_now;
118 int ev_method;
119
120 static int have_monotonic; /* runtime */
121
122 static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
123 static void (*method_modify)(int fd, int oev, int nev);
124 static void (*method_poll)(ev_tstamp timeout);
125
126 /*****************************************************************************/
127
128 ev_tstamp
129 ev_time (void)
130 {
131 #if EV_USE_REALTIME
132   struct timespec ts;
133   clock_gettime (CLOCK_REALTIME, &ts);
134   return ts.tv_sec + ts.tv_nsec * 1e-9;
135 #else
136   struct timeval tv;
137   gettimeofday (&tv, 0);
138   return tv.tv_sec + tv.tv_usec * 1e-6;
139 #endif
140 }
141
142 static ev_tstamp
143 get_clock (void)
144 {
145 #if EV_USE_MONOTONIC
146   if (expect_true (have_monotonic))
147     {
148       struct timespec ts;
149       clock_gettime (CLOCK_MONOTONIC, &ts);
150       return ts.tv_sec + ts.tv_nsec * 1e-9;
151     }
152 #endif
153
154   return ev_time ();
155 }
156
157 #define array_roundsize(base,n) ((n) | 4 & ~3)
158
159 #define array_needsize(base,cur,cnt,init)               \
160   if (expect_false ((cnt) > cur))                       \
161     {                                                   \
162       int newcnt = cur;                                 \
163       do                                                \
164         {                                               \
165           newcnt = array_roundsize (base, newcnt << 1); \
166         }                                               \
167       while ((cnt) > newcnt);                           \
168                                                         \
169       base = realloc (base, sizeof (*base) * (newcnt)); \
170       init (base + cur, newcnt - cur);                  \
171       cur = newcnt;                                     \
172     }
173
174 /*****************************************************************************/
175
176 typedef struct
177 {
178   struct ev_io *head;
179   unsigned char events;
180   unsigned char reify;
181 } ANFD;
182
183 static ANFD *anfds;
184 static int anfdmax;
185
186 static void
187 anfds_init (ANFD *base, int count)
188 {
189   while (count--)
190     {
191       base->head   = 0;
192       base->events = EV_NONE;
193       base->reify  = 0;
194
195       ++base;
196     }
197 }
198
199 typedef struct
200 {
201   W w;
202   int events;
203 } ANPENDING;
204
205 static ANPENDING *pendings [NUMPRI];
206 static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
207
208 static void
209 event (W w, int events)
210 {
211   if (w->pending)
212     {
213       pendings [ABSPRI (w)][w->pending - 1].events |= events;
214       return;
215     }
216
217   w->pending = ++pendingcnt [ABSPRI (w)];
218   array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
219   pendings [ABSPRI (w)][w->pending - 1].w      = w;
220   pendings [ABSPRI (w)][w->pending - 1].events = events;
221 }
222
223 static void
224 queue_events (W *events, int eventcnt, int type)
225 {
226   int i;
227
228   for (i = 0; i < eventcnt; ++i)
229     event (events [i], type);
230 }
231
232 static void
233 fd_event (int fd, int events)
234 {
235   ANFD *anfd = anfds + fd;
236   struct ev_io *w;
237
238   for (w = anfd->head; w; w = w->next)
239     {
240       int ev = w->events & events;
241
242       if (ev)
243         event ((W)w, ev);
244     }
245 }
246
247 /*****************************************************************************/
248
249 static int *fdchanges;
250 static int fdchangemax, fdchangecnt;
251
252 static void
253 fd_reify (void)
254 {
255   int i;
256
257   for (i = 0; i < fdchangecnt; ++i)
258     {
259       int fd = fdchanges [i];
260       ANFD *anfd = anfds + fd;
261       struct ev_io *w;
262
263       int events = 0;
264
265       for (w = anfd->head; w; w = w->next)
266         events |= w->events;
267
268       anfd->reify = 0;
269
270       if (anfd->events != events)
271         {
272           method_modify (fd, anfd->events, events);
273           anfd->events = events;
274         }
275     }
276
277   fdchangecnt = 0;
278 }
279
280 static void
281 fd_change (int fd)
282 {
283   if (anfds [fd].reify || fdchangecnt < 0)
284     return;
285
286   anfds [fd].reify = 1;
287
288   ++fdchangecnt;
289   array_needsize (fdchanges, fdchangemax, fdchangecnt, );
290   fdchanges [fdchangecnt - 1] = fd;
291 }
292
293 static void
294 fd_kill (int fd)
295 {
296   struct ev_io *w;
297
298   printf ("killing fd %d\n", fd);//D
299   while ((w = anfds [fd].head))
300     {
301       ev_io_stop (w);
302       event ((W)w, EV_ERROR | EV_READ | EV_WRITE);
303     }
304 }
305
306 /* called on EBADF to verify fds */
307 static void
308 fd_ebadf (void)
309 {
310   int fd;
311
312   for (fd = 0; fd < anfdmax; ++fd)
313     if (anfds [fd].events)
314       if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
315         fd_kill (fd);
316 }
317
318 /* called on ENOMEM in select/poll to kill some fds and retry */
319 static void
320 fd_enomem (void)
321 {
322   int fd = anfdmax;
323
324   while (fd--)
325     if (anfds [fd].events)
326       {
327         close (fd);
328         fd_kill (fd);
329         return;
330       }
331 }
332
333 /*****************************************************************************/
334
335 static struct ev_timer **timers;
336 static int timermax, timercnt;
337
338 static struct ev_periodic **periodics;
339 static int periodicmax, periodiccnt;
340
341 static void
342 upheap (WT *timers, int k)
343 {
344   WT w = timers [k];
345
346   while (k && timers [k >> 1]->at > w->at)
347     {
348       timers [k] = timers [k >> 1];
349       timers [k]->active = k + 1;
350       k >>= 1;
351     }
352
353   timers [k] = w;
354   timers [k]->active = k + 1;
355
356 }
357
358 static void
359 downheap (WT *timers, int N, int k)
360 {
361   WT w = timers [k];
362
363   while (k < (N >> 1))
364     {
365       int j = k << 1;
366
367       if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
368         ++j;
369
370       if (w->at <= timers [j]->at)
371         break;
372
373       timers [k] = timers [j];
374       timers [k]->active = k + 1;
375       k = j;
376     }
377
378   timers [k] = w;
379   timers [k]->active = k + 1;
380 }
381
382 /*****************************************************************************/
383
384 typedef struct
385 {
386   struct ev_signal *head;
387   sig_atomic_t volatile gotsig;
388 } ANSIG;
389
390 static ANSIG *signals;
391 static int signalmax;
392
393 static int sigpipe [2];
394 static sig_atomic_t volatile gotsig;
395 static struct ev_io sigev;
396
397 static void
398 signals_init (ANSIG *base, int count)
399 {
400   while (count--)
401     {
402       base->head   = 0;
403       base->gotsig = 0;
404
405       ++base;
406     }
407 }
408
409 static void
410 sighandler (int signum)
411 {
412   signals [signum - 1].gotsig = 1;
413
414   if (!gotsig)
415     {
416       gotsig = 1;
417       write (sigpipe [1], &signum, 1);
418     }
419 }
420
421 static void
422 sigcb (struct ev_io *iow, int revents)
423 {
424   struct ev_signal *w;
425   int signum;
426
427   read (sigpipe [0], &revents, 1);
428   gotsig = 0;
429
430   for (signum = signalmax; signum--; )
431     if (signals [signum].gotsig)
432       {
433         signals [signum].gotsig = 0;
434
435         for (w = signals [signum].head; w; w = w->next)
436           event ((W)w, EV_SIGNAL);
437       }
438 }
439
440 static void
441 siginit (void)
442 {
443   fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
444   fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
445
446   /* rather than sort out wether we really need nb, set it */
447   fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
448   fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
449
450   ev_io_set (&sigev, sigpipe [0], EV_READ);
451   ev_io_start (&sigev);
452 }
453
454 /*****************************************************************************/
455
456 static struct ev_idle **idles;
457 static int idlemax, idlecnt;
458
459 static struct ev_prepare **prepares;
460 static int preparemax, preparecnt;
461
462 static struct ev_check **checks;
463 static int checkmax, checkcnt;
464
465 /*****************************************************************************/
466
467 static struct ev_child *childs [PID_HASHSIZE];
468 static struct ev_signal childev;
469
470 #ifndef WCONTINUED
471 # define WCONTINUED 0
472 #endif
473
474 static void
475 childcb (struct ev_signal *sw, int revents)
476 {
477   struct ev_child *w;
478   int pid, status;
479
480   while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1)
481     for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next)
482       if (w->pid == pid || !w->pid)
483         {
484           w->status = status;
485           event ((W)w, EV_CHILD);
486         }
487 }
488
489 /*****************************************************************************/
490
491 #if EV_USE_KQUEUE
492 # include "ev_kqueue.c"
493 #endif
494 #if EV_USE_EPOLL
495 # include "ev_epoll.c"
496 #endif
497 #if EV_USE_POLL
498 # include "ev_poll.c"
499 #endif
500 #if EV_USE_SELECT
501 # include "ev_select.c"
502 #endif
503
504 int
505 ev_version_major (void)
506 {
507   return EV_VERSION_MAJOR;
508 }
509
510 int
511 ev_version_minor (void)
512 {
513   return EV_VERSION_MINOR;
514 }
515
516 /* return true if we are running with elevated privileges and ignore env variables */
517 static int
518 enable_secure ()
519 {
520   return getuid () != geteuid ()
521       || getgid () != getegid ();
522 }
523
524 int ev_init (int methods)
525 {
526   if (!ev_method)
527     {
528 #if EV_USE_MONOTONIC
529       {
530         struct timespec ts;
531         if (!clock_gettime (CLOCK_MONOTONIC, &ts))
532           have_monotonic = 1;
533       }
534 #endif
535
536       ev_now    = ev_time ();
537       now       = get_clock ();
538       now_floor = now;
539       diff      = ev_now - now;
540
541       if (pipe (sigpipe))
542         return 0;
543
544       if (methods == EVMETHOD_AUTO)
545           if (!enable_secure () && getenv ("LIBEV_METHODS"))
546             methods = atoi (getenv ("LIBEV_METHODS"));
547           else
548             methods = EVMETHOD_ANY;
549
550       ev_method = 0;
551 #if EV_USE_KQUEUE
552       if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods);
553 #endif
554 #if EV_USE_EPOLL
555       if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init  (methods);
556 #endif
557 #if EV_USE_POLL
558       if (!ev_method && (methods & EVMETHOD_POLL  )) poll_init   (methods);
559 #endif
560 #if EV_USE_SELECT
561       if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods);
562 #endif
563
564       if (ev_method)
565         {
566           ev_watcher_init (&sigev, sigcb);
567           siginit ();
568
569           ev_signal_init (&childev, childcb, SIGCHLD);
570           ev_signal_start (&childev);
571         }
572     }
573
574   return ev_method;
575 }
576
577 /*****************************************************************************/
578
579 void
580 ev_fork_prepare (void)
581 {
582   /* nop */
583 }
584
585 void
586 ev_fork_parent (void)
587 {
588   /* nop */
589 }
590
591 void
592 ev_fork_child (void)
593 {
594 #if EV_USE_EPOLL
595   if (ev_method == EVMETHOD_EPOLL)
596     epoll_postfork_child ();
597 #endif
598
599   ev_io_stop (&sigev);
600   close (sigpipe [0]);
601   close (sigpipe [1]);
602   pipe (sigpipe);
603   siginit ();
604 }
605
606 /*****************************************************************************/
607
608 static void
609 call_pending (void)
610 {
611   int pri;
612
613   for (pri = NUMPRI; pri--; )
614     while (pendingcnt [pri])
615       {
616         ANPENDING *p = pendings [pri] + --pendingcnt [pri];
617
618         if (p->w)
619           {
620             p->w->pending = 0;
621             p->w->cb (p->w, p->events);
622           }
623       }
624 }
625
626 static void
627 timers_reify (void)
628 {
629   while (timercnt && timers [0]->at <= now)
630     {
631       struct ev_timer *w = timers [0];
632
633       /* first reschedule or stop timer */
634       if (w->repeat)
635         {
636           assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
637           w->at = now + w->repeat;
638           downheap ((WT *)timers, timercnt, 0);
639         }
640       else
641         ev_timer_stop (w); /* nonrepeating: stop timer */
642
643       event ((W)w, EV_TIMEOUT);
644     }
645 }
646
647 static void
648 periodics_reify (void)
649 {
650   while (periodiccnt && periodics [0]->at <= ev_now)
651     {
652       struct ev_periodic *w = periodics [0];
653
654       /* first reschedule or stop timer */
655       if (w->interval)
656         {
657           w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval;
658           assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now));
659           downheap ((WT *)periodics, periodiccnt, 0);
660         }
661       else
662         ev_periodic_stop (w); /* nonrepeating: stop timer */
663
664       event ((W)w, EV_PERIODIC);
665     }
666 }
667
668 static void
669 periodics_reschedule (ev_tstamp diff)
670 {
671   int i;
672
673   /* adjust periodics after time jump */
674   for (i = 0; i < periodiccnt; ++i)
675     {
676       struct ev_periodic *w = periodics [i];
677
678       if (w->interval)
679         {
680           ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
681
682           if (fabs (diff) >= 1e-4)
683             {
684               ev_periodic_stop (w);
685               ev_periodic_start (w);
686
687               i = 0; /* restart loop, inefficient, but time jumps should be rare */
688             }
689         }
690     }
691 }
692
693 static int
694 time_update_monotonic (void)
695 {
696   now = get_clock ();
697
698   if (expect_true (now - now_floor < MIN_TIMEJUMP * .5))
699     {
700       ev_now = now + diff;
701       return 0;
702     }
703   else
704     {
705       now_floor = now;
706       ev_now = ev_time ();
707       return 1;
708     }
709 }
710
711 static void
712 time_update (void)
713 {
714   int i;
715
716 #if EV_USE_MONOTONIC
717   if (expect_true (have_monotonic))
718     {
719       if (time_update_monotonic ())
720         {
721           ev_tstamp odiff = diff;
722
723           for (i = 4; --i; ) /* loop a few times, before making important decisions */
724             {
725               diff = ev_now - now;
726
727               if (fabs (odiff - diff) < MIN_TIMEJUMP)
728                 return; /* all is well */
729
730               ev_now    = ev_time ();
731               now       = get_clock ();
732               now_floor = now;
733             }
734
735           periodics_reschedule (diff - odiff);
736           /* no timer adjustment, as the monotonic clock doesn't jump */
737         }
738     }
739   else
740 #endif
741     {
742       ev_now = ev_time ();
743
744       if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
745         {
746           periodics_reschedule (ev_now - now);
747
748           /* adjust timers. this is easy, as the offset is the same for all */
749           for (i = 0; i < timercnt; ++i)
750             timers [i]->at += diff;
751         }
752
753       now = ev_now;
754     }
755 }
756
757 int ev_loop_done;
758
759 void ev_loop (int flags)
760 {
761   double block;
762   ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
763
764   do
765     {
766       /* queue check watchers (and execute them) */
767       if (expect_false (preparecnt))
768         {
769           queue_events ((W *)prepares, preparecnt, EV_PREPARE);
770           call_pending ();
771         }
772
773       /* update fd-related kernel structures */
774       fd_reify ();
775
776       /* calculate blocking time */
777
778       /* we only need this for !monotonic clockor timers, but as we basically
779          always have timers, we just calculate it always */
780 #if EV_USE_MONOTONIC
781       if (expect_true (have_monotonic))
782         time_update_monotonic ();
783       else
784 #endif
785         {
786           ev_now = ev_time ();
787           now    = ev_now;
788         }
789
790       if (flags & EVLOOP_NONBLOCK || idlecnt)
791         block = 0.;
792       else
793         {
794           block = MAX_BLOCKTIME;
795
796           if (timercnt)
797             {
798               ev_tstamp to = timers [0]->at - now + method_fudge;
799               if (block > to) block = to;
800             }
801
802           if (periodiccnt)
803             {
804               ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
805               if (block > to) block = to;
806             }
807
808           if (block < 0.) block = 0.;
809         }
810
811       method_poll (block);
812
813       /* update ev_now, do magic */
814       time_update ();
815
816       /* queue pending timers and reschedule them */
817       timers_reify (); /* relative timers called last */
818       periodics_reify (); /* absolute timers called first */
819
820       /* queue idle watchers unless io or timers are pending */
821       if (!pendingcnt)
822         queue_events ((W *)idles, idlecnt, EV_IDLE);
823
824       /* queue check watchers, to be executed first */
825       if (checkcnt)
826         queue_events ((W *)checks, checkcnt, EV_CHECK);
827
828       call_pending ();
829     }
830   while (!ev_loop_done);
831
832   if (ev_loop_done != 2)
833     ev_loop_done = 0;
834 }
835
836 /*****************************************************************************/
837
838 static void
839 wlist_add (WL *head, WL elem)
840 {
841   elem->next = *head;
842   *head = elem;
843 }
844
845 static void
846 wlist_del (WL *head, WL elem)
847 {
848   while (*head)
849     {
850       if (*head == elem)
851         {
852           *head = elem->next;
853           return;
854         }
855
856       head = &(*head)->next;
857     }
858 }
859
860 static void
861 ev_clear_pending (W w)
862 {
863   if (w->pending)
864     {
865       pendings [ABSPRI (w)][w->pending - 1].w = 0;
866       w->pending = 0;
867     }
868 }
869
870 static void
871 ev_start (W w, int active)
872 {
873   if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
874   if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
875
876   w->active = active;
877 }
878
879 static void
880 ev_stop (W w)
881 {
882   w->active = 0;
883 }
884
885 /*****************************************************************************/
886
887 void
888 ev_io_start (struct ev_io *w)
889 {
890   int fd = w->fd;
891
892   if (ev_is_active (w))
893     return;
894
895   assert (("ev_io_start called with negative fd", fd >= 0));
896
897   ev_start ((W)w, 1);
898   array_needsize (anfds, anfdmax, fd + 1, anfds_init);
899   wlist_add ((WL *)&anfds[fd].head, (WL)w);
900
901   fd_change (fd);
902 }
903
904 void
905 ev_io_stop (struct ev_io *w)
906 {
907   ev_clear_pending ((W)w);
908   if (!ev_is_active (w))
909     return;
910
911   wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
912   ev_stop ((W)w);
913
914   fd_change (w->fd);
915 }
916
917 void
918 ev_timer_start (struct ev_timer *w)
919 {
920   if (ev_is_active (w))
921     return;
922
923   w->at += now;
924
925   assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
926
927   ev_start ((W)w, ++timercnt);
928   array_needsize (timers, timermax, timercnt, );
929   timers [timercnt - 1] = w;
930   upheap ((WT *)timers, timercnt - 1);
931 }
932
933 void
934 ev_timer_stop (struct ev_timer *w)
935 {
936   ev_clear_pending ((W)w);
937   if (!ev_is_active (w))
938     return;
939
940   if (w->active < timercnt--)
941     {
942       timers [w->active - 1] = timers [timercnt];
943       downheap ((WT *)timers, timercnt, w->active - 1);
944     }
945
946   w->at = w->repeat;
947
948   ev_stop ((W)w);
949 }
950
951 void
952 ev_timer_again (struct ev_timer *w)
953 {
954   if (ev_is_active (w))
955     {
956       if (w->repeat)
957         {
958           w->at = now + w->repeat;
959           downheap ((WT *)timers, timercnt, w->active - 1);
960         }
961       else
962         ev_timer_stop (w);
963     }
964   else if (w->repeat)
965     ev_timer_start (w);
966 }
967
968 void
969 ev_periodic_start (struct ev_periodic *w)
970 {
971   if (ev_is_active (w))
972     return;
973
974   assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
975
976   /* this formula differs from the one in periodic_reify because we do not always round up */
977   if (w->interval)
978     w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
979
980   ev_start ((W)w, ++periodiccnt);
981   array_needsize (periodics, periodicmax, periodiccnt, );
982   periodics [periodiccnt - 1] = w;
983   upheap ((WT *)periodics, periodiccnt - 1);
984 }
985
986 void
987 ev_periodic_stop (struct ev_periodic *w)
988 {
989   ev_clear_pending ((W)w);
990   if (!ev_is_active (w))
991     return;
992
993   if (w->active < periodiccnt--)
994     {
995       periodics [w->active - 1] = periodics [periodiccnt];
996       downheap ((WT *)periodics, periodiccnt, w->active - 1);
997     }
998
999   ev_stop ((W)w);
1000 }
1001
1002 void
1003 ev_signal_start (struct ev_signal *w)
1004 {
1005   if (ev_is_active (w))
1006     return;
1007
1008   assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1009
1010   ev_start ((W)w, 1);
1011   array_needsize (signals, signalmax, w->signum, signals_init);
1012   wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1013
1014   if (!w->next)
1015     {
1016       struct sigaction sa;
1017       sa.sa_handler = sighandler;
1018       sigfillset (&sa.sa_mask);
1019       sa.sa_flags = 0;
1020       sigaction (w->signum, &sa, 0);
1021     }
1022 }
1023
1024 void
1025 ev_signal_stop (struct ev_signal *w)
1026 {
1027   ev_clear_pending ((W)w);
1028   if (!ev_is_active (w))
1029     return;
1030
1031   wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1032   ev_stop ((W)w);
1033
1034   if (!signals [w->signum - 1].head)
1035     signal (w->signum, SIG_DFL);
1036 }
1037
1038 void
1039 ev_idle_start (struct ev_idle *w)
1040 {
1041   if (ev_is_active (w))
1042     return;
1043
1044   ev_start ((W)w, ++idlecnt);
1045   array_needsize (idles, idlemax, idlecnt, );
1046   idles [idlecnt - 1] = w;
1047 }
1048
1049 void
1050 ev_idle_stop (struct ev_idle *w)
1051 {
1052   ev_clear_pending ((W)w);
1053   if (ev_is_active (w))
1054     return;
1055
1056   idles [w->active - 1] = idles [--idlecnt];
1057   ev_stop ((W)w);
1058 }
1059
1060 void
1061 ev_prepare_start (struct ev_prepare *w)
1062 {
1063   if (ev_is_active (w))
1064     return;
1065
1066   ev_start ((W)w, ++preparecnt);
1067   array_needsize (prepares, preparemax, preparecnt, );
1068   prepares [preparecnt - 1] = w;
1069 }
1070
1071 void
1072 ev_prepare_stop (struct ev_prepare *w)
1073 {
1074   ev_clear_pending ((W)w);
1075   if (ev_is_active (w))
1076     return;
1077
1078   prepares [w->active - 1] = prepares [--preparecnt];
1079   ev_stop ((W)w);
1080 }
1081
1082 void
1083 ev_check_start (struct ev_check *w)
1084 {
1085   if (ev_is_active (w))
1086     return;
1087
1088   ev_start ((W)w, ++checkcnt);
1089   array_needsize (checks, checkmax, checkcnt, );
1090   checks [checkcnt - 1] = w;
1091 }
1092
1093 void
1094 ev_check_stop (struct ev_check *w)
1095 {
1096   ev_clear_pending ((W)w);
1097   if (ev_is_active (w))
1098     return;
1099
1100   checks [w->active - 1] = checks [--checkcnt];
1101   ev_stop ((W)w);
1102 }
1103
1104 void
1105 ev_child_start (struct ev_child *w)
1106 {
1107   if (ev_is_active (w))
1108     return;
1109
1110   ev_start ((W)w, 1);
1111   wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1112 }
1113
1114 void
1115 ev_child_stop (struct ev_child *w)
1116 {
1117   ev_clear_pending ((W)w);
1118   if (ev_is_active (w))
1119     return;
1120
1121   wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1122   ev_stop ((W)w);
1123 }
1124
1125 /*****************************************************************************/
1126
1127 struct ev_once
1128 {
1129   struct ev_io io;
1130   struct ev_timer to;
1131   void (*cb)(int revents, void *arg);
1132   void *arg;
1133 };
1134
1135 static void
1136 once_cb (struct ev_once *once, int revents)
1137 {
1138   void (*cb)(int revents, void *arg) = once->cb;
1139   void *arg = once->arg;
1140
1141   ev_io_stop (&once->io);
1142   ev_timer_stop (&once->to);
1143   free (once);
1144
1145   cb (revents, arg);
1146 }
1147
1148 static void
1149 once_cb_io (struct ev_io *w, int revents)
1150 {
1151   once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1152 }
1153
1154 static void
1155 once_cb_to (struct ev_timer *w, int revents)
1156 {
1157   once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1158 }
1159
1160 void
1161 ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1162 {
1163   struct ev_once *once = malloc (sizeof (struct ev_once));
1164
1165   if (!once)
1166     cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1167   else
1168     {
1169       once->cb  = cb;
1170       once->arg = arg;
1171
1172       ev_watcher_init (&once->io, once_cb_io);
1173       if (fd >= 0)
1174         {
1175           ev_io_set (&once->io, fd, events);
1176           ev_io_start (&once->io);
1177         }
1178
1179       ev_watcher_init (&once->to, once_cb_to);
1180       if (timeout >= 0.)
1181         {
1182           ev_timer_set (&once->to, timeout, 0.);
1183           ev_timer_start (&once->to);
1184         }
1185     }
1186 }
1187
1188 /*****************************************************************************/
1189
1190 #if 0
1191
1192 struct ev_io wio;
1193
1194 static void
1195 sin_cb (struct ev_io *w, int revents)
1196 {
1197   fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1198 }
1199
1200 static void
1201 ocb (struct ev_timer *w, int revents)
1202 {
1203   //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1204   ev_timer_stop (w);
1205   ev_timer_start (w);
1206 }
1207
1208 static void
1209 scb (struct ev_signal *w, int revents)
1210 {
1211   fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1212   ev_io_stop (&wio);
1213   ev_io_start (&wio);
1214 }
1215
1216 static void
1217 gcb (struct ev_signal *w, int revents)
1218 {
1219   fprintf (stderr, "generic %x\n", revents);
1220
1221 }
1222
1223 int main (void)
1224 {
1225   ev_init (0);
1226
1227   ev_io_init (&wio, sin_cb, 0, EV_READ);
1228   ev_io_start (&wio);
1229
1230   struct ev_timer t[10000];
1231
1232 #if 0
1233   int i;
1234   for (i = 0; i < 10000; ++i)
1235     {
1236       struct ev_timer *w = t + i;
1237       ev_watcher_init (w, ocb, i);
1238       ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1239       ev_timer_start (w);
1240       if (drand48 () < 0.5)
1241         ev_timer_stop (w);
1242     }
1243 #endif
1244
1245   struct ev_timer t1;
1246   ev_timer_init (&t1, ocb, 5, 10);
1247   ev_timer_start (&t1);
1248
1249   struct ev_signal sig;
1250   ev_signal_init (&sig, scb, SIGQUIT);
1251   ev_signal_start (&sig);
1252
1253   struct ev_check cw;
1254   ev_check_init (&cw, gcb);
1255   ev_check_start (&cw);
1256
1257   struct ev_idle iw;
1258   ev_idle_init (&iw, gcb);
1259   ev_idle_start (&iw);
1260
1261   ev_loop (0);
1262
1263   return 0;
1264 }
1265
1266 #endif
1267
1268
1269
1270