]> git.llucax.com Git - software/libev.git/blob - ev.c
20d0e3b2e16285cf9e7b31c0e4e189a9fc0d390b
[software/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are
9  * met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *
14  *     * Redistributions in binary form must reproduce the above
15  *       copyright notice, this list of conditions and the following
16  *       disclaimer in the documentation and/or other materials provided
17  *       with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 #if EV_USE_CONFIG_H
32 # include "config.h"
33 #endif
34
35 #include <math.h>
36 #include <stdlib.h>
37 #include <unistd.h>
38 #include <fcntl.h>
39 #include <signal.h>
40 #include <stddef.h>
41
42 #include <stdio.h>
43
44 #include <assert.h>
45 #include <errno.h>
46 #include <sys/types.h>
47 #ifndef WIN32
48 # include <sys/wait.h>
49 #endif
50 #include <sys/time.h>
51 #include <time.h>
52
53 /**/
54
55 #ifndef EV_USE_MONOTONIC
56 # define EV_USE_MONOTONIC 1
57 #endif
58
59 #ifndef EV_USE_SELECT
60 # define EV_USE_SELECT 1
61 #endif
62
63 #ifndef EV_USE_POLL
64 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65 #endif
66
67 #ifndef EV_USE_EPOLL
68 # define EV_USE_EPOLL 0
69 #endif
70
71 #ifndef EV_USE_KQUEUE
72 # define EV_USE_KQUEUE 0
73 #endif
74
75 #ifndef EV_USE_REALTIME
76 # define EV_USE_REALTIME 1
77 #endif
78
79 /**/
80
81 #ifndef CLOCK_MONOTONIC
82 # undef EV_USE_MONOTONIC
83 # define EV_USE_MONOTONIC 0
84 #endif
85
86 #ifndef CLOCK_REALTIME
87 # undef EV_USE_REALTIME
88 # define EV_USE_REALTIME 0
89 #endif
90
91 /**/
92
93 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
94 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 #define PID_HASHSIZE  16 /* size of pid hash table, must be power of two */
96 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97
98 #include "ev.h"
99
100 #if __GNUC__ >= 3
101 # define expect(expr,value)         __builtin_expect ((expr),(value))
102 # define inline                     inline
103 #else
104 # define expect(expr,value)         (expr)
105 # define inline                     static
106 #endif
107
108 #define expect_false(expr) expect ((expr) != 0, 0)
109 #define expect_true(expr)  expect ((expr) != 0, 1)
110
111 #define NUMPRI    (EV_MAXPRI - EV_MINPRI + 1)
112 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113
114 typedef struct ev_watcher *W;
115 typedef struct ev_watcher_list *WL;
116 typedef struct ev_watcher_time *WT;
117
118 static ev_tstamp now_floor, now, diff; /* monotonic clock */
119 ev_tstamp ev_now;
120 int ev_method;
121
122 static int have_monotonic; /* runtime */
123
124 static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125 static void (*method_modify)(int fd, int oev, int nev);
126 static void (*method_poll)(ev_tstamp timeout);
127
128 /*****************************************************************************/
129
130 ev_tstamp
131 ev_time (void)
132 {
133 #if EV_USE_REALTIME
134   struct timespec ts;
135   clock_gettime (CLOCK_REALTIME, &ts);
136   return ts.tv_sec + ts.tv_nsec * 1e-9;
137 #else
138   struct timeval tv;
139   gettimeofday (&tv, 0);
140   return tv.tv_sec + tv.tv_usec * 1e-6;
141 #endif
142 }
143
144 static ev_tstamp
145 get_clock (void)
146 {
147 #if EV_USE_MONOTONIC
148   if (expect_true (have_monotonic))
149     {
150       struct timespec ts;
151       clock_gettime (CLOCK_MONOTONIC, &ts);
152       return ts.tv_sec + ts.tv_nsec * 1e-9;
153     }
154 #endif
155
156   return ev_time ();
157 }
158
159 #define array_roundsize(base,n) ((n) | 4 & ~3)
160
161 #define array_needsize(base,cur,cnt,init)               \
162   if (expect_false ((cnt) > cur))                       \
163     {                                                   \
164       int newcnt = cur;                                 \
165       do                                                \
166         {                                               \
167           newcnt = array_roundsize (base, newcnt << 1); \
168         }                                               \
169       while ((cnt) > newcnt);                           \
170                                                         \
171       base = realloc (base, sizeof (*base) * (newcnt)); \
172       init (base + cur, newcnt - cur);                  \
173       cur = newcnt;                                     \
174     }
175
176 /*****************************************************************************/
177
178 typedef struct
179 {
180   struct ev_io *head;
181   unsigned char events;
182   unsigned char reify;
183 } ANFD;
184
185 static ANFD *anfds;
186 static int anfdmax;
187
188 static void
189 anfds_init (ANFD *base, int count)
190 {
191   while (count--)
192     {
193       base->head   = 0;
194       base->events = EV_NONE;
195       base->reify  = 0;
196
197       ++base;
198     }
199 }
200
201 typedef struct
202 {
203   W w;
204   int events;
205 } ANPENDING;
206
207 static ANPENDING *pendings [NUMPRI];
208 static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210 static void
211 event (W w, int events)
212 {
213   if (w->pending)
214     {
215       pendings [ABSPRI (w)][w->pending - 1].events |= events;
216       return;
217     }
218
219   w->pending = ++pendingcnt [ABSPRI (w)];
220   array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
221   pendings [ABSPRI (w)][w->pending - 1].w      = w;
222   pendings [ABSPRI (w)][w->pending - 1].events = events;
223 }
224
225 static void
226 queue_events (W *events, int eventcnt, int type)
227 {
228   int i;
229
230   for (i = 0; i < eventcnt; ++i)
231     event (events [i], type);
232 }
233
234 static void
235 fd_event (int fd, int events)
236 {
237   ANFD *anfd = anfds + fd;
238   struct ev_io *w;
239
240   for (w = anfd->head; w; w = w->next)
241     {
242       int ev = w->events & events;
243
244       if (ev)
245         event ((W)w, ev);
246     }
247 }
248
249 /*****************************************************************************/
250
251 static int *fdchanges;
252 static int fdchangemax, fdchangecnt;
253
254 static void
255 fd_reify (void)
256 {
257   int i;
258
259   for (i = 0; i < fdchangecnt; ++i)
260     {
261       int fd = fdchanges [i];
262       ANFD *anfd = anfds + fd;
263       struct ev_io *w;
264
265       int events = 0;
266
267       for (w = anfd->head; w; w = w->next)
268         events |= w->events;
269
270       anfd->reify = 0;
271
272       if (anfd->events != events)
273         {
274           method_modify (fd, anfd->events, events);
275           anfd->events = events;
276         }
277     }
278
279   fdchangecnt = 0;
280 }
281
282 static void
283 fd_change (int fd)
284 {
285   if (anfds [fd].reify || fdchangecnt < 0)
286     return;
287
288   anfds [fd].reify = 1;
289
290   ++fdchangecnt;
291   array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292   fdchanges [fdchangecnt - 1] = fd;
293 }
294
295 static void
296 fd_kill (int fd)
297 {
298   struct ev_io *w;
299
300   printf ("killing fd %d\n", fd);//D
301   while ((w = anfds [fd].head))
302     {
303       ev_io_stop (w);
304       event ((W)w, EV_ERROR | EV_READ | EV_WRITE);
305     }
306 }
307
308 /* called on EBADF to verify fds */
309 static void
310 fd_ebadf (void)
311 {
312   int fd;
313
314   for (fd = 0; fd < anfdmax; ++fd)
315     if (anfds [fd].events)
316       if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317         fd_kill (fd);
318 }
319
320 /* called on ENOMEM in select/poll to kill some fds and retry */
321 static void
322 fd_enomem (void)
323 {
324   int fd = anfdmax;
325
326   while (fd--)
327     if (anfds [fd].events)
328       {
329         close (fd);
330         fd_kill (fd);
331         return;
332       }
333 }
334
335 /*****************************************************************************/
336
337 static struct ev_timer **timers;
338 static int timermax, timercnt;
339
340 static struct ev_periodic **periodics;
341 static int periodicmax, periodiccnt;
342
343 static void
344 upheap (WT *timers, int k)
345 {
346   WT w = timers [k];
347
348   while (k && timers [k >> 1]->at > w->at)
349     {
350       timers [k] = timers [k >> 1];
351       timers [k]->active = k + 1;
352       k >>= 1;
353     }
354
355   timers [k] = w;
356   timers [k]->active = k + 1;
357
358 }
359
360 static void
361 downheap (WT *timers, int N, int k)
362 {
363   WT w = timers [k];
364
365   while (k < (N >> 1))
366     {
367       int j = k << 1;
368
369       if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
370         ++j;
371
372       if (w->at <= timers [j]->at)
373         break;
374
375       timers [k] = timers [j];
376       timers [k]->active = k + 1;
377       k = j;
378     }
379
380   timers [k] = w;
381   timers [k]->active = k + 1;
382 }
383
384 /*****************************************************************************/
385
386 typedef struct
387 {
388   struct ev_signal *head;
389   sig_atomic_t volatile gotsig;
390 } ANSIG;
391
392 static ANSIG *signals;
393 static int signalmax;
394
395 static int sigpipe [2];
396 static sig_atomic_t volatile gotsig;
397 static struct ev_io sigev;
398
399 static void
400 signals_init (ANSIG *base, int count)
401 {
402   while (count--)
403     {
404       base->head   = 0;
405       base->gotsig = 0;
406
407       ++base;
408     }
409 }
410
411 static void
412 sighandler (int signum)
413 {
414   signals [signum - 1].gotsig = 1;
415
416   if (!gotsig)
417     {
418       int old_errno = errno;
419       gotsig = 1;
420       write (sigpipe [1], &signum, 1);
421       errno = old_errno;
422     }
423 }
424
425 static void
426 sigcb (struct ev_io *iow, int revents)
427 {
428   struct ev_signal *w;
429   int signum;
430
431   read (sigpipe [0], &revents, 1);
432   gotsig = 0;
433
434   for (signum = signalmax; signum--; )
435     if (signals [signum].gotsig)
436       {
437         signals [signum].gotsig = 0;
438
439         for (w = signals [signum].head; w; w = w->next)
440           event ((W)w, EV_SIGNAL);
441       }
442 }
443
444 static void
445 siginit (void)
446 {
447 #ifndef WIN32
448   fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449   fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450
451   /* rather than sort out wether we really need nb, set it */
452   fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453   fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454 #endif
455
456   ev_io_set (&sigev, sigpipe [0], EV_READ);
457   ev_io_start (&sigev);
458 }
459
460 /*****************************************************************************/
461
462 static struct ev_idle **idles;
463 static int idlemax, idlecnt;
464
465 static struct ev_prepare **prepares;
466 static int preparemax, preparecnt;
467
468 static struct ev_check **checks;
469 static int checkmax, checkcnt;
470
471 /*****************************************************************************/
472
473 static struct ev_child *childs [PID_HASHSIZE];
474 static struct ev_signal childev;
475
476 #ifndef WIN32
477
478 #ifndef WCONTINUED
479 # define WCONTINUED 0
480 #endif
481
482 static void
483 child_reap (struct ev_signal *sw, int chain, int pid, int status)
484 {
485   struct ev_child *w;
486
487   for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next)
488     if (w->pid == pid || !w->pid)
489       {
490         w->priority = sw->priority; /* need to do it *now* */
491         w->rpid     = pid;
492         w->rstatus  = status;
493         printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494         event ((W)w, EV_CHILD);
495       }
496 }
497
498 static void
499 childcb (struct ev_signal *sw, int revents)
500 {
501   int pid, status;
502
503             printf ("chld %x\n", revents);//D
504   if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505     {
506       /* make sure we are called again until all childs have been reaped */
507       event ((W)sw, EV_SIGNAL);
508
509       child_reap (sw, pid, pid, status);
510       child_reap (sw,   0, pid, status); /* this might trigger a watcher twice, but event catches that */
511     }
512 }
513
514 #endif
515
516 /*****************************************************************************/
517
518 #if EV_USE_KQUEUE
519 # include "ev_kqueue.c"
520 #endif
521 #if EV_USE_EPOLL
522 # include "ev_epoll.c"
523 #endif
524 #if EV_USE_POLL
525 # include "ev_poll.c"
526 #endif
527 #if EV_USE_SELECT
528 # include "ev_select.c"
529 #endif
530
531 int
532 ev_version_major (void)
533 {
534   return EV_VERSION_MAJOR;
535 }
536
537 int
538 ev_version_minor (void)
539 {
540   return EV_VERSION_MINOR;
541 }
542
543 /* return true if we are running with elevated privileges and ignore env variables */
544 static int
545 enable_secure ()
546 {
547   return getuid () != geteuid ()
548       || getgid () != getegid ();
549 }
550
551 int ev_init (int methods)
552 {
553   if (!ev_method)
554     {
555 #if EV_USE_MONOTONIC
556       {
557         struct timespec ts;
558         if (!clock_gettime (CLOCK_MONOTONIC, &ts))
559           have_monotonic = 1;
560       }
561 #endif
562
563       ev_now    = ev_time ();
564       now       = get_clock ();
565       now_floor = now;
566       diff      = ev_now - now;
567
568       if (pipe (sigpipe))
569         return 0;
570
571       if (methods == EVMETHOD_AUTO)
572           if (!enable_secure () && getenv ("LIBEV_METHODS"))
573             methods = atoi (getenv ("LIBEV_METHODS"));
574           else
575             methods = EVMETHOD_ANY;
576
577       ev_method = 0;
578 #if EV_USE_KQUEUE
579       if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods);
580 #endif
581 #if EV_USE_EPOLL
582       if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init  (methods);
583 #endif
584 #if EV_USE_POLL
585       if (!ev_method && (methods & EVMETHOD_POLL  )) poll_init   (methods);
586 #endif
587 #if EV_USE_SELECT
588       if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods);
589 #endif
590
591       if (ev_method)
592         {
593           ev_watcher_init (&sigev, sigcb);
594           ev_set_priority (&sigev, EV_MAXPRI);
595           siginit ();
596
597 #ifndef WIN32
598           ev_signal_init (&childev, childcb, SIGCHLD);
599           ev_set_priority (&childev, EV_MAXPRI);
600           ev_signal_start (&childev);
601 #endif
602         }
603     }
604
605   return ev_method;
606 }
607
608 /*****************************************************************************/
609
610 void
611 ev_fork_prepare (void)
612 {
613   /* nop */
614 }
615
616 void
617 ev_fork_parent (void)
618 {
619   /* nop */
620 }
621
622 void
623 ev_fork_child (void)
624 {
625 #if EV_USE_EPOLL
626   if (ev_method == EVMETHOD_EPOLL)
627     epoll_postfork_child ();
628 #endif
629
630   ev_io_stop (&sigev);
631   close (sigpipe [0]);
632   close (sigpipe [1]);
633   pipe (sigpipe);
634   siginit ();
635 }
636
637 /*****************************************************************************/
638
639 static void
640 call_pending (void)
641 {
642   int pri;
643
644   for (pri = NUMPRI; pri--; )
645     while (pendingcnt [pri])
646       {
647         ANPENDING *p = pendings [pri] + --pendingcnt [pri];
648
649         if (p->w)
650           {
651             p->w->pending = 0;
652             p->w->cb (p->w, p->events);
653           }
654       }
655 }
656
657 static void
658 timers_reify (void)
659 {
660   while (timercnt && timers [0]->at <= now)
661     {
662       struct ev_timer *w = timers [0];
663
664       /* first reschedule or stop timer */
665       if (w->repeat)
666         {
667           assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
668           w->at = now + w->repeat;
669           downheap ((WT *)timers, timercnt, 0);
670         }
671       else
672         ev_timer_stop (w); /* nonrepeating: stop timer */
673
674       event ((W)w, EV_TIMEOUT);
675     }
676 }
677
678 static void
679 periodics_reify (void)
680 {
681   while (periodiccnt && periodics [0]->at <= ev_now)
682     {
683       struct ev_periodic *w = periodics [0];
684
685       /* first reschedule or stop timer */
686       if (w->interval)
687         {
688           w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval;
689           assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now));
690           downheap ((WT *)periodics, periodiccnt, 0);
691         }
692       else
693         ev_periodic_stop (w); /* nonrepeating: stop timer */
694
695       event ((W)w, EV_PERIODIC);
696     }
697 }
698
699 static void
700 periodics_reschedule (ev_tstamp diff)
701 {
702   int i;
703
704   /* adjust periodics after time jump */
705   for (i = 0; i < periodiccnt; ++i)
706     {
707       struct ev_periodic *w = periodics [i];
708
709       if (w->interval)
710         {
711           ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
712
713           if (fabs (diff) >= 1e-4)
714             {
715               ev_periodic_stop (w);
716               ev_periodic_start (w);
717
718               i = 0; /* restart loop, inefficient, but time jumps should be rare */
719             }
720         }
721     }
722 }
723
724 static int
725 time_update_monotonic (void)
726 {
727   now = get_clock ();
728
729   if (expect_true (now - now_floor < MIN_TIMEJUMP * .5))
730     {
731       ev_now = now + diff;
732       return 0;
733     }
734   else
735     {
736       now_floor = now;
737       ev_now = ev_time ();
738       return 1;
739     }
740 }
741
742 static void
743 time_update (void)
744 {
745   int i;
746
747 #if EV_USE_MONOTONIC
748   if (expect_true (have_monotonic))
749     {
750       if (time_update_monotonic ())
751         {
752           ev_tstamp odiff = diff;
753
754           for (i = 4; --i; ) /* loop a few times, before making important decisions */
755             {
756               diff = ev_now - now;
757
758               if (fabs (odiff - diff) < MIN_TIMEJUMP)
759                 return; /* all is well */
760
761               ev_now    = ev_time ();
762               now       = get_clock ();
763               now_floor = now;
764             }
765
766           periodics_reschedule (diff - odiff);
767           /* no timer adjustment, as the monotonic clock doesn't jump */
768         }
769     }
770   else
771 #endif
772     {
773       ev_now = ev_time ();
774
775       if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
776         {
777           periodics_reschedule (ev_now - now);
778
779           /* adjust timers. this is easy, as the offset is the same for all */
780           for (i = 0; i < timercnt; ++i)
781             timers [i]->at += diff;
782         }
783
784       now = ev_now;
785     }
786 }
787
788 int ev_loop_done;
789
790 void ev_loop (int flags)
791 {
792   double block;
793   ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
794
795   do
796     {
797       /* queue check watchers (and execute them) */
798       if (expect_false (preparecnt))
799         {
800           queue_events ((W *)prepares, preparecnt, EV_PREPARE);
801           call_pending ();
802         }
803
804       /* update fd-related kernel structures */
805       fd_reify ();
806
807       /* calculate blocking time */
808
809       /* we only need this for !monotonic clockor timers, but as we basically
810          always have timers, we just calculate it always */
811 #if EV_USE_MONOTONIC
812       if (expect_true (have_monotonic))
813         time_update_monotonic ();
814       else
815 #endif
816         {
817           ev_now = ev_time ();
818           now    = ev_now;
819         }
820
821       if (flags & EVLOOP_NONBLOCK || idlecnt)
822         block = 0.;
823       else
824         {
825           block = MAX_BLOCKTIME;
826
827           if (timercnt)
828             {
829               ev_tstamp to = timers [0]->at - now + method_fudge;
830               if (block > to) block = to;
831             }
832
833           if (periodiccnt)
834             {
835               ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
836               if (block > to) block = to;
837             }
838
839           if (block < 0.) block = 0.;
840         }
841
842       method_poll (block);
843
844       /* update ev_now, do magic */
845       time_update ();
846
847       /* queue pending timers and reschedule them */
848       timers_reify (); /* relative timers called last */
849       periodics_reify (); /* absolute timers called first */
850
851       /* queue idle watchers unless io or timers are pending */
852       if (!pendingcnt)
853         queue_events ((W *)idles, idlecnt, EV_IDLE);
854
855       /* queue check watchers, to be executed first */
856       if (checkcnt)
857         queue_events ((W *)checks, checkcnt, EV_CHECK);
858
859       call_pending ();
860     }
861   while (!ev_loop_done);
862
863   if (ev_loop_done != 2)
864     ev_loop_done = 0;
865 }
866
867 /*****************************************************************************/
868
869 static void
870 wlist_add (WL *head, WL elem)
871 {
872   elem->next = *head;
873   *head = elem;
874 }
875
876 static void
877 wlist_del (WL *head, WL elem)
878 {
879   while (*head)
880     {
881       if (*head == elem)
882         {
883           *head = elem->next;
884           return;
885         }
886
887       head = &(*head)->next;
888     }
889 }
890
891 static void
892 ev_clear_pending (W w)
893 {
894   if (w->pending)
895     {
896       pendings [ABSPRI (w)][w->pending - 1].w = 0;
897       w->pending = 0;
898     }
899 }
900
901 static void
902 ev_start (W w, int active)
903 {
904   if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
905   if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
906
907   w->active = active;
908 }
909
910 static void
911 ev_stop (W w)
912 {
913   w->active = 0;
914 }
915
916 /*****************************************************************************/
917
918 void
919 ev_io_start (struct ev_io *w)
920 {
921   int fd = w->fd;
922
923   if (ev_is_active (w))
924     return;
925
926   assert (("ev_io_start called with negative fd", fd >= 0));
927
928   ev_start ((W)w, 1);
929   array_needsize (anfds, anfdmax, fd + 1, anfds_init);
930   wlist_add ((WL *)&anfds[fd].head, (WL)w);
931
932   fd_change (fd);
933 }
934
935 void
936 ev_io_stop (struct ev_io *w)
937 {
938   ev_clear_pending ((W)w);
939   if (!ev_is_active (w))
940     return;
941
942   wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
943   ev_stop ((W)w);
944
945   fd_change (w->fd);
946 }
947
948 void
949 ev_timer_start (struct ev_timer *w)
950 {
951   if (ev_is_active (w))
952     return;
953
954   w->at += now;
955
956   assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
957
958   ev_start ((W)w, ++timercnt);
959   array_needsize (timers, timermax, timercnt, );
960   timers [timercnt - 1] = w;
961   upheap ((WT *)timers, timercnt - 1);
962 }
963
964 void
965 ev_timer_stop (struct ev_timer *w)
966 {
967   ev_clear_pending ((W)w);
968   if (!ev_is_active (w))
969     return;
970
971   if (w->active < timercnt--)
972     {
973       timers [w->active - 1] = timers [timercnt];
974       downheap ((WT *)timers, timercnt, w->active - 1);
975     }
976
977   w->at = w->repeat;
978
979   ev_stop ((W)w);
980 }
981
982 void
983 ev_timer_again (struct ev_timer *w)
984 {
985   if (ev_is_active (w))
986     {
987       if (w->repeat)
988         {
989           w->at = now + w->repeat;
990           downheap ((WT *)timers, timercnt, w->active - 1);
991         }
992       else
993         ev_timer_stop (w);
994     }
995   else if (w->repeat)
996     ev_timer_start (w);
997 }
998
999 void
1000 ev_periodic_start (struct ev_periodic *w)
1001 {
1002   if (ev_is_active (w))
1003     return;
1004
1005   assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1006
1007   /* this formula differs from the one in periodic_reify because we do not always round up */
1008   if (w->interval)
1009     w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
1010
1011   ev_start ((W)w, ++periodiccnt);
1012   array_needsize (periodics, periodicmax, periodiccnt, );
1013   periodics [periodiccnt - 1] = w;
1014   upheap ((WT *)periodics, periodiccnt - 1);
1015 }
1016
1017 void
1018 ev_periodic_stop (struct ev_periodic *w)
1019 {
1020   ev_clear_pending ((W)w);
1021   if (!ev_is_active (w))
1022     return;
1023
1024   if (w->active < periodiccnt--)
1025     {
1026       periodics [w->active - 1] = periodics [periodiccnt];
1027       downheap ((WT *)periodics, periodiccnt, w->active - 1);
1028     }
1029
1030   ev_stop ((W)w);
1031 }
1032
1033 #ifndef SA_RESTART
1034 # define SA_RESTART 0
1035 #endif
1036
1037 void
1038 ev_signal_start (struct ev_signal *w)
1039 {
1040   if (ev_is_active (w))
1041     return;
1042
1043   assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1044
1045   ev_start ((W)w, 1);
1046   array_needsize (signals, signalmax, w->signum, signals_init);
1047   wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1048
1049   if (!w->next)
1050     {
1051       struct sigaction sa;
1052       sa.sa_handler = sighandler;
1053       sigfillset (&sa.sa_mask);
1054       sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1055       sigaction (w->signum, &sa, 0);
1056     }
1057 }
1058
1059 void
1060 ev_signal_stop (struct ev_signal *w)
1061 {
1062   ev_clear_pending ((W)w);
1063   if (!ev_is_active (w))
1064     return;
1065
1066   wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1067   ev_stop ((W)w);
1068
1069   if (!signals [w->signum - 1].head)
1070     signal (w->signum, SIG_DFL);
1071 }
1072
1073 void
1074 ev_idle_start (struct ev_idle *w)
1075 {
1076   if (ev_is_active (w))
1077     return;
1078
1079   ev_start ((W)w, ++idlecnt);
1080   array_needsize (idles, idlemax, idlecnt, );
1081   idles [idlecnt - 1] = w;
1082 }
1083
1084 void
1085 ev_idle_stop (struct ev_idle *w)
1086 {
1087   ev_clear_pending ((W)w);
1088   if (ev_is_active (w))
1089     return;
1090
1091   idles [w->active - 1] = idles [--idlecnt];
1092   ev_stop ((W)w);
1093 }
1094
1095 void
1096 ev_prepare_start (struct ev_prepare *w)
1097 {
1098   if (ev_is_active (w))
1099     return;
1100
1101   ev_start ((W)w, ++preparecnt);
1102   array_needsize (prepares, preparemax, preparecnt, );
1103   prepares [preparecnt - 1] = w;
1104 }
1105
1106 void
1107 ev_prepare_stop (struct ev_prepare *w)
1108 {
1109   ev_clear_pending ((W)w);
1110   if (ev_is_active (w))
1111     return;
1112
1113   prepares [w->active - 1] = prepares [--preparecnt];
1114   ev_stop ((W)w);
1115 }
1116
1117 void
1118 ev_check_start (struct ev_check *w)
1119 {
1120   if (ev_is_active (w))
1121     return;
1122
1123   ev_start ((W)w, ++checkcnt);
1124   array_needsize (checks, checkmax, checkcnt, );
1125   checks [checkcnt - 1] = w;
1126 }
1127
1128 void
1129 ev_check_stop (struct ev_check *w)
1130 {
1131   ev_clear_pending ((W)w);
1132   if (ev_is_active (w))
1133     return;
1134
1135   checks [w->active - 1] = checks [--checkcnt];
1136   ev_stop ((W)w);
1137 }
1138
1139 void
1140 ev_child_start (struct ev_child *w)
1141 {
1142   if (ev_is_active (w))
1143     return;
1144
1145   ev_start ((W)w, 1);
1146   wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1147 }
1148
1149 void
1150 ev_child_stop (struct ev_child *w)
1151 {
1152   ev_clear_pending ((W)w);
1153   if (ev_is_active (w))
1154     return;
1155
1156   wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1157   ev_stop ((W)w);
1158 }
1159
1160 /*****************************************************************************/
1161
1162 struct ev_once
1163 {
1164   struct ev_io io;
1165   struct ev_timer to;
1166   void (*cb)(int revents, void *arg);
1167   void *arg;
1168 };
1169
1170 static void
1171 once_cb (struct ev_once *once, int revents)
1172 {
1173   void (*cb)(int revents, void *arg) = once->cb;
1174   void *arg = once->arg;
1175
1176   ev_io_stop (&once->io);
1177   ev_timer_stop (&once->to);
1178   free (once);
1179
1180   cb (revents, arg);
1181 }
1182
1183 static void
1184 once_cb_io (struct ev_io *w, int revents)
1185 {
1186   once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1187 }
1188
1189 static void
1190 once_cb_to (struct ev_timer *w, int revents)
1191 {
1192   once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1193 }
1194
1195 void
1196 ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1197 {
1198   struct ev_once *once = malloc (sizeof (struct ev_once));
1199
1200   if (!once)
1201     cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1202   else
1203     {
1204       once->cb  = cb;
1205       once->arg = arg;
1206
1207       ev_watcher_init (&once->io, once_cb_io);
1208       if (fd >= 0)
1209         {
1210           ev_io_set (&once->io, fd, events);
1211           ev_io_start (&once->io);
1212         }
1213
1214       ev_watcher_init (&once->to, once_cb_to);
1215       if (timeout >= 0.)
1216         {
1217           ev_timer_set (&once->to, timeout, 0.);
1218           ev_timer_start (&once->to);
1219         }
1220     }
1221 }
1222
1223 /*****************************************************************************/
1224
1225 #if 0
1226
1227 struct ev_io wio;
1228
1229 static void
1230 sin_cb (struct ev_io *w, int revents)
1231 {
1232   fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1233 }
1234
1235 static void
1236 ocb (struct ev_timer *w, int revents)
1237 {
1238   //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1239   ev_timer_stop (w);
1240   ev_timer_start (w);
1241 }
1242
1243 static void
1244 scb (struct ev_signal *w, int revents)
1245 {
1246   fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1247   ev_io_stop (&wio);
1248   ev_io_start (&wio);
1249 }
1250
1251 static void
1252 gcb (struct ev_signal *w, int revents)
1253 {
1254   fprintf (stderr, "generic %x\n", revents);
1255
1256 }
1257
1258 int main (void)
1259 {
1260   ev_init (0);
1261
1262   ev_io_init (&wio, sin_cb, 0, EV_READ);
1263   ev_io_start (&wio);
1264
1265   struct ev_timer t[10000];
1266
1267 #if 0
1268   int i;
1269   for (i = 0; i < 10000; ++i)
1270     {
1271       struct ev_timer *w = t + i;
1272       ev_watcher_init (w, ocb, i);
1273       ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1274       ev_timer_start (w);
1275       if (drand48 () < 0.5)
1276         ev_timer_stop (w);
1277     }
1278 #endif
1279
1280   struct ev_timer t1;
1281   ev_timer_init (&t1, ocb, 5, 10);
1282   ev_timer_start (&t1);
1283
1284   struct ev_signal sig;
1285   ev_signal_init (&sig, scb, SIGQUIT);
1286   ev_signal_start (&sig);
1287
1288   struct ev_check cw;
1289   ev_check_init (&cw, gcb);
1290   ev_check_start (&cw);
1291
1292   struct ev_idle iw;
1293   ev_idle_init (&iw, gcb);
1294   ev_idle_start (&iw);
1295
1296   ev_loop (0);
1297
1298   return 0;
1299 }
1300
1301 #endif
1302
1303
1304
1305