]> git.llucax.com Git - software/libev.git/blob - ev.c
wow the event api is broken
[software/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are
9  * met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *
14  *     * Redistributions in binary form must reproduce the above
15  *       copyright notice, this list of conditions and the following
16  *       disclaimer in the documentation and/or other materials provided
17  *       with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33 #endif
34
35 #include <math.h>
36 #include <stdlib.h>
37 #include <unistd.h>
38 #include <fcntl.h>
39 #include <signal.h>
40 #include <stddef.h>
41
42 #include <stdio.h>
43
44 #include <assert.h>
45 #include <errno.h>
46 #include <sys/types.h>
47 #ifndef WIN32
48 # include <sys/wait.h>
49 #endif
50 #include <sys/time.h>
51 #include <time.h>
52
53 /**/
54
55 #ifndef EV_USE_MONOTONIC
56 # define EV_USE_MONOTONIC 1
57 #endif
58
59 #ifndef EV_USE_SELECT
60 # define EV_USE_SELECT 1
61 #endif
62
63 #ifndef EV_USEV_POLL
64 # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65 #endif
66
67 #ifndef EV_USE_EPOLL
68 # define EV_USE_EPOLL 0
69 #endif
70
71 #ifndef EV_USE_KQUEUE
72 # define EV_USE_KQUEUE 0
73 #endif
74
75 #ifndef EV_USE_REALTIME
76 # define EV_USE_REALTIME 1
77 #endif
78
79 /**/
80
81 #ifndef CLOCK_MONOTONIC
82 # undef EV_USE_MONOTONIC
83 # define EV_USE_MONOTONIC 0
84 #endif
85
86 #ifndef CLOCK_REALTIME
87 # undef EV_USE_REALTIME
88 # define EV_USE_REALTIME 0
89 #endif
90
91 /**/
92
93 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
94 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 #define PID_HASHSIZE  16 /* size of pid hash table, must be power of two */
96 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97
98 #include "ev.h"
99
100 #if __GNUC__ >= 3
101 # define expect(expr,value)         __builtin_expect ((expr),(value))
102 # define inline                     inline
103 #else
104 # define expect(expr,value)         (expr)
105 # define inline                     static
106 #endif
107
108 #define expect_false(expr) expect ((expr) != 0, 0)
109 #define expect_true(expr)  expect ((expr) != 0, 1)
110
111 #define NUMPRI    (EV_MAXPRI - EV_MINPRI + 1)
112 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113
114 typedef struct ev_watcher *W;
115 typedef struct ev_watcher_list *WL;
116 typedef struct ev_watcher_time *WT;
117
118 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119
120 /*****************************************************************************/
121
122 typedef struct
123 {
124   struct ev_watcher_list *head;
125   unsigned char events;
126   unsigned char reify;
127 } ANFD;
128
129 typedef struct
130 {
131   W w;
132   int events;
133 } ANPENDING;
134
135 #ifdef EV_MULTIPLICITY
136
137 struct ev_loop
138 {
139 # define VAR(name,decl) decl;
140 # include "ev_vars.h"
141 };
142 # undef VAR
143 # include "ev_wrap.h"
144
145 #else
146
147 # define VAR(name,decl) static decl;
148 # include "ev_vars.h"
149 # undef VAR
150
151 #endif
152
153 /*****************************************************************************/
154
155 inline ev_tstamp
156 ev_time (void)
157 {
158 #if EV_USE_REALTIME
159   struct timespec ts;
160   clock_gettime (CLOCK_REALTIME, &ts);
161   return ts.tv_sec + ts.tv_nsec * 1e-9;
162 #else
163   struct timeval tv;
164   gettimeofday (&tv, 0);
165   return tv.tv_sec + tv.tv_usec * 1e-6;
166 #endif
167 }
168
169 inline ev_tstamp
170 get_clock (void)
171 {
172 #if EV_USE_MONOTONIC
173   if (expect_true (have_monotonic))
174     {
175       struct timespec ts;
176       clock_gettime (CLOCK_MONOTONIC, &ts);
177       return ts.tv_sec + ts.tv_nsec * 1e-9;
178     }
179 #endif
180
181   return ev_time ();
182 }
183
184 ev_tstamp
185 ev_now (EV_P)
186 {
187   return rt_now;
188 }
189
190 #define array_roundsize(base,n) ((n) | 4 & ~3)
191
192 #define array_needsize(base,cur,cnt,init)               \
193   if (expect_false ((cnt) > cur))                       \
194     {                                                   \
195       int newcnt = cur;                                 \
196       do                                                \
197         {                                               \
198           newcnt = array_roundsize (base, newcnt << 1); \
199         }                                               \
200       while ((cnt) > newcnt);                           \
201                                                         \
202       base = realloc (base, sizeof (*base) * (newcnt)); \
203       init (base + cur, newcnt - cur);                  \
204       cur = newcnt;                                     \
205     }
206
207 /*****************************************************************************/
208
209 static void
210 anfds_init (ANFD *base, int count)
211 {
212   while (count--)
213     {
214       base->head   = 0;
215       base->events = EV_NONE;
216       base->reify  = 0;
217
218       ++base;
219     }
220 }
221
222 static void
223 event (EV_P_ W w, int events)
224 {
225   if (w->pending)
226     {
227       pendings [ABSPRI (w)][w->pending - 1].events |= events;
228       return;
229     }
230
231   w->pending = ++pendingcnt [ABSPRI (w)];
232   array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233   pendings [ABSPRI (w)][w->pending - 1].w      = w;
234   pendings [ABSPRI (w)][w->pending - 1].events = events;
235 }
236
237 static void
238 queue_events (EV_P_ W *events, int eventcnt, int type)
239 {
240   int i;
241
242   for (i = 0; i < eventcnt; ++i)
243     event (EV_A_ events [i], type);
244 }
245
246 static void
247 fd_event (EV_P_ int fd, int events)
248 {
249   ANFD *anfd = anfds + fd;
250   struct ev_io *w;
251
252   for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253     {
254       int ev = w->events & events;
255
256       if (ev)
257         event (EV_A_ (W)w, ev);
258     }
259 }
260
261 /*****************************************************************************/
262
263 static void
264 fd_reify (EV_P)
265 {
266   int i;
267
268   for (i = 0; i < fdchangecnt; ++i)
269     {
270       int fd = fdchanges [i];
271       ANFD *anfd = anfds + fd;
272       struct ev_io *w;
273
274       int events = 0;
275
276       for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277         events |= w->events;
278
279       anfd->reify = 0;
280
281       if (anfd->events != events)
282         {
283           method_modify (EV_A_ fd, anfd->events, events);
284           anfd->events = events;
285         }
286     }
287
288   fdchangecnt = 0;
289 }
290
291 static void
292 fd_change (EV_P_ int fd)
293 {
294   if (anfds [fd].reify || fdchangecnt < 0)
295     return;
296
297   anfds [fd].reify = 1;
298
299   ++fdchangecnt;
300   array_needsize (fdchanges, fdchangemax, fdchangecnt, );
301   fdchanges [fdchangecnt - 1] = fd;
302 }
303
304 static void
305 fd_kill (EV_P_ int fd)
306 {
307   struct ev_io *w;
308
309   while ((w = (struct ev_io *)anfds [fd].head))
310     {
311       ev_io_stop (EV_A_ w);
312       event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313     }
314 }
315
316 /* called on EBADF to verify fds */
317 static void
318 fd_ebadf (EV_P)
319 {
320   int fd;
321
322   for (fd = 0; fd < anfdmax; ++fd)
323     if (anfds [fd].events)
324       if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
325         fd_kill (EV_A_ fd);
326 }
327
328 /* called on ENOMEM in select/poll to kill some fds and retry */
329 static void
330 fd_enomem (EV_P)
331 {
332   int fd = anfdmax;
333
334   while (fd--)
335     if (anfds [fd].events)
336       {
337         close (fd);
338         fd_kill (EV_A_ fd);
339         return;
340       }
341 }
342
343 /*****************************************************************************/
344
345 static void
346 upheap (WT *heap, int k)
347 {
348   WT w = heap [k];
349
350   while (k && heap [k >> 1]->at > w->at)
351     {
352       heap [k] = heap [k >> 1];
353       heap [k]->active = k + 1;
354       k >>= 1;
355     }
356
357   heap [k] = w;
358   heap [k]->active = k + 1;
359
360 }
361
362 static void
363 downheap (WT *heap, int N, int k)
364 {
365   WT w = heap [k];
366
367   while (k < (N >> 1))
368     {
369       int j = k << 1;
370
371       if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
372         ++j;
373
374       if (w->at <= heap [j]->at)
375         break;
376
377       heap [k] = heap [j];
378       heap [k]->active = k + 1;
379       k = j;
380     }
381
382   heap [k] = w;
383   heap [k]->active = k + 1;
384 }
385
386 /*****************************************************************************/
387
388 typedef struct
389 {
390   struct ev_watcher_list *head;
391   sig_atomic_t volatile gotsig;
392 } ANSIG;
393
394 static ANSIG *signals;
395 static int signalmax;
396
397 static int sigpipe [2];
398 static sig_atomic_t volatile gotsig;
399
400 static void
401 signals_init (ANSIG *base, int count)
402 {
403   while (count--)
404     {
405       base->head   = 0;
406       base->gotsig = 0;
407
408       ++base;
409     }
410 }
411
412 static void
413 sighandler (int signum)
414 {
415   signals [signum - 1].gotsig = 1;
416
417   if (!gotsig)
418     {
419       int old_errno = errno;
420       gotsig = 1;
421       write (sigpipe [1], &signum, 1);
422       errno = old_errno;
423     }
424 }
425
426 static void
427 sigcb (EV_P_ struct ev_io *iow, int revents)
428 {
429   struct ev_watcher_list *w;
430   int signum;
431
432   read (sigpipe [0], &revents, 1);
433   gotsig = 0;
434
435   for (signum = signalmax; signum--; )
436     if (signals [signum].gotsig)
437       {
438         signals [signum].gotsig = 0;
439
440         for (w = signals [signum].head; w; w = w->next)
441           event (EV_A_ (W)w, EV_SIGNAL);
442       }
443 }
444
445 static void
446 siginit (EV_P)
447 {
448 #ifndef WIN32
449   fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
450   fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
451
452   /* rather than sort out wether we really need nb, set it */
453   fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
454   fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
455 #endif
456
457   ev_io_set (&sigev, sigpipe [0], EV_READ);
458   ev_io_start (EV_A_ &sigev);
459   ev_unref (EV_A); /* child watcher should not keep loop alive */
460 }
461
462 /*****************************************************************************/
463
464 #ifndef WIN32
465
466 #ifndef WCONTINUED
467 # define WCONTINUED 0
468 #endif
469
470 static void
471 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
472 {
473   struct ev_child *w;
474
475   for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
476     if (w->pid == pid || !w->pid)
477       {
478         w->priority = sw->priority; /* need to do it *now* */
479         w->rpid     = pid;
480         w->rstatus  = status;
481         event (EV_A_ (W)w, EV_CHILD);
482       }
483 }
484
485 static void
486 childcb (EV_P_ struct ev_signal *sw, int revents)
487 {
488   int pid, status;
489
490   if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
491     {
492       /* make sure we are called again until all childs have been reaped */
493       event (EV_A_ (W)sw, EV_SIGNAL);
494
495       child_reap (EV_A_ sw, pid, pid, status);
496       child_reap (EV_A_ sw,   0, pid, status); /* this might trigger a watcher twice, but event catches that */
497     }
498 }
499
500 #endif
501
502 /*****************************************************************************/
503
504 #if EV_USE_KQUEUE
505 # include "ev_kqueue.c"
506 #endif
507 #if EV_USE_EPOLL
508 # include "ev_epoll.c"
509 #endif
510 #if EV_USEV_POLL
511 # include "ev_poll.c"
512 #endif
513 #if EV_USE_SELECT
514 # include "ev_select.c"
515 #endif
516
517 int
518 ev_version_major (void)
519 {
520   return EV_VERSION_MAJOR;
521 }
522
523 int
524 ev_version_minor (void)
525 {
526   return EV_VERSION_MINOR;
527 }
528
529 /* return true if we are running with elevated privileges and should ignore env variables */
530 static int
531 enable_secure (void)
532 {
533 #ifdef WIN32
534   return 0;
535 #else
536   return getuid () != geteuid ()
537       || getgid () != getegid ();
538 #endif
539 }
540
541 int
542 ev_method (EV_P)
543 {
544   return method;
545 }
546
547 static void
548 loop_init (EV_P_ int methods)
549 {
550   if (!method)
551     {
552 #if EV_USE_MONOTONIC
553       {
554         struct timespec ts;
555         if (!clock_gettime (CLOCK_MONOTONIC, &ts))
556           have_monotonic = 1;
557       }
558 #endif
559
560       rt_now    = ev_time ();
561       mn_now    = get_clock ();
562       now_floor = mn_now;
563       rtmn_diff = rt_now - mn_now;
564
565       if (pipe (sigpipe))
566         return 0;
567
568       if (methods == EVMETHOD_AUTO)
569         if (!enable_secure () && getenv ("LIBmethodS"))
570           methods = atoi (getenv ("LIBmethodS"));
571         else
572           methods = EVMETHOD_ANY;
573
574       method = 0;
575 #if EV_USE_KQUEUE
576       if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
577 #endif
578 #if EV_USE_EPOLL
579       if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init  (EV_A_ methods);
580 #endif
581 #if EV_USEV_POLL
582       if (!method && (methods & EVMETHOD_POLL  )) method = poll_init   (EV_A_ methods);
583 #endif
584 #if EV_USE_SELECT
585       if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
586 #endif
587
588       if (method)
589         {
590           ev_watcher_init (&sigev, sigcb);
591           ev_set_priority (&sigev, EV_MAXPRI);
592           siginit (EV_A);
593
594 #ifndef WIN32
595           ev_signal_init (&childev, childcb, SIGCHLD);
596           ev_set_priority (&childev, EV_MAXPRI);
597           ev_signal_start (EV_A_ &childev);
598           ev_unref (EV_A); /* child watcher should not keep loop alive */
599 #endif
600         }
601     }
602
603   return method;
604 }
605
606 #ifdef EV_MULTIPLICITY
607
608 struct ev_loop *
609 ev_loop_new (int methods)
610 {
611   struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
612
613   loop_init (EV_A_ methods);
614
615   return loop;
616 }
617
618 void
619 ev_loop_delete (EV_P)
620 {
621   /*TODO*/
622   free (loop);
623 }
624
625 #else
626
627 int
628 ev_init (int methods)
629 {
630   loop_init ();
631 }
632
633 #endif
634
635 /*****************************************************************************/
636
637 void
638 ev_fork_prepare (void)
639 {
640   /* nop */
641 }
642
643 void
644 ev_fork_parent (void)
645 {
646   /* nop */
647 }
648
649 void
650 ev_fork_child (void)
651 {
652   /*TODO*/
653 #if !EV_MULTIPLICITY
654 #if EV_USE_EPOLL
655   if (method == EVMETHOD_EPOLL)
656     epoll_postfork_child (EV_A);
657 #endif
658
659   ev_io_stop (EV_A_ &sigev);
660   close (sigpipe [0]);
661   close (sigpipe [1]);
662   pipe (sigpipe);
663   siginit (EV_A);
664 #endif
665 }
666
667 /*****************************************************************************/
668
669 static void
670 call_pending (EV_P)
671 {
672   int pri;
673
674   for (pri = NUMPRI; pri--; )
675     while (pendingcnt [pri])
676       {
677         ANPENDING *p = pendings [pri] + --pendingcnt [pri];
678
679         if (p->w)
680           {
681             p->w->pending = 0;
682             p->w->cb (EV_A_ p->w, p->events);
683           }
684       }
685 }
686
687 static void
688 timers_reify (EV_P)
689 {
690   while (timercnt && timers [0]->at <= mn_now)
691     {
692       struct ev_timer *w = timers [0];
693
694       /* first reschedule or stop timer */
695       if (w->repeat)
696         {
697           assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
698           w->at = mn_now + w->repeat;
699           downheap ((WT *)timers, timercnt, 0);
700         }
701       else
702         ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
703
704       event (EV_A_ (W)w, EV_TIMEOUT);
705     }
706 }
707
708 static void
709 periodics_reify (EV_P)
710 {
711   while (periodiccnt && periodics [0]->at <= rt_now)
712     {
713       struct ev_periodic *w = periodics [0];
714
715       /* first reschedule or stop timer */
716       if (w->interval)
717         {
718           w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
719           assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
720           downheap ((WT *)periodics, periodiccnt, 0);
721         }
722       else
723         ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
724
725       event (EV_A_ (W)w, EV_PERIODIC);
726     }
727 }
728
729 static void
730 periodics_reschedule (EV_P)
731 {
732   int i;
733
734   /* adjust periodics after time jump */
735   for (i = 0; i < periodiccnt; ++i)
736     {
737       struct ev_periodic *w = periodics [i];
738
739       if (w->interval)
740         {
741           ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
742
743           if (fabs (diff) >= 1e-4)
744             {
745               ev_periodic_stop (EV_A_ w);
746               ev_periodic_start (EV_A_ w);
747
748               i = 0; /* restart loop, inefficient, but time jumps should be rare */
749             }
750         }
751     }
752 }
753
754 inline int
755 time_update_monotonic (EV_P)
756 {
757   mn_now = get_clock ();
758
759   if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
760     {
761       rt_now = rtmn_diff + mn_now;
762       return 0;
763     }
764   else
765     {
766       now_floor = mn_now;
767       rt_now = ev_time ();
768       return 1;
769     }
770 }
771
772 static void
773 time_update (EV_P)
774 {
775   int i;
776
777 #if EV_USE_MONOTONIC
778   if (expect_true (have_monotonic))
779     {
780       if (time_update_monotonic (EV_A))
781         {
782           ev_tstamp odiff = rtmn_diff;
783
784           for (i = 4; --i; ) /* loop a few times, before making important decisions */
785             {
786               rtmn_diff = rt_now - mn_now;
787
788               if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
789                 return; /* all is well */
790
791               rt_now    = ev_time ();
792               mn_now    = get_clock ();
793               now_floor = mn_now;
794             }
795
796           periodics_reschedule (EV_A);
797           /* no timer adjustment, as the monotonic clock doesn't jump */
798           /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
799         }
800     }
801   else
802 #endif
803     {
804       rt_now = ev_time ();
805
806       if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
807         {
808           periodics_reschedule (EV_A);
809
810           /* adjust timers. this is easy, as the offset is the same for all */
811           for (i = 0; i < timercnt; ++i)
812             timers [i]->at += rt_now - mn_now;
813         }
814
815       mn_now = rt_now;
816     }
817 }
818
819 void
820 ev_ref (EV_P)
821 {
822   ++activecnt;
823 }
824
825 void
826 ev_unref (EV_P)
827 {
828   --activecnt;
829 }
830
831 static int loop_done;
832
833 void
834 ev_loop (EV_P_ int flags)
835 {
836   double block;
837   loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
838
839   do
840     {
841       /* queue check watchers (and execute them) */
842       if (expect_false (preparecnt))
843         {
844           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
845           call_pending (EV_A);
846         }
847
848       /* update fd-related kernel structures */
849       fd_reify (EV_A);
850
851       /* calculate blocking time */
852
853       /* we only need this for !monotonic clockor timers, but as we basically
854          always have timers, we just calculate it always */
855 #if EV_USE_MONOTONIC
856       if (expect_true (have_monotonic))
857         time_update_monotonic (EV_A);
858       else
859 #endif
860         {
861           rt_now = ev_time ();
862           mn_now = rt_now;
863         }
864
865       if (flags & EVLOOP_NONBLOCK || idlecnt)
866         block = 0.;
867       else
868         {
869           block = MAX_BLOCKTIME;
870
871           if (timercnt)
872             {
873               ev_tstamp to = timers [0]->at - mn_now + method_fudge;
874               if (block > to) block = to;
875             }
876
877           if (periodiccnt)
878             {
879               ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
880               if (block > to) block = to;
881             }
882
883           if (block < 0.) block = 0.;
884         }
885
886       method_poll (EV_A_ block);
887
888       /* update rt_now, do magic */
889       time_update (EV_A);
890
891       /* queue pending timers and reschedule them */
892       timers_reify (EV_A); /* relative timers called last */
893       periodics_reify (EV_A); /* absolute timers called first */
894
895       /* queue idle watchers unless io or timers are pending */
896       if (!pendingcnt)
897         queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
898
899       /* queue check watchers, to be executed first */
900       if (checkcnt)
901         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
902
903       call_pending (EV_A);
904     }
905   while (activecnt && !loop_done);
906
907   if (loop_done != 2)
908     loop_done = 0;
909 }
910
911 void
912 ev_unloop (EV_P_ int how)
913 {
914   loop_done = how;
915 }
916
917 /*****************************************************************************/
918
919 inline void
920 wlist_add (WL *head, WL elem)
921 {
922   elem->next = *head;
923   *head = elem;
924 }
925
926 inline void
927 wlist_del (WL *head, WL elem)
928 {
929   while (*head)
930     {
931       if (*head == elem)
932         {
933           *head = elem->next;
934           return;
935         }
936
937       head = &(*head)->next;
938     }
939 }
940
941 inline void
942 ev_clear_pending (EV_P_ W w)
943 {
944   if (w->pending)
945     {
946       pendings [ABSPRI (w)][w->pending - 1].w = 0;
947       w->pending = 0;
948     }
949 }
950
951 inline void
952 ev_start (EV_P_ W w, int active)
953 {
954   if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
955   if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
956
957   w->active = active;
958   ev_ref (EV_A);
959 }
960
961 inline void
962 ev_stop (EV_P_ W w)
963 {
964   ev_unref (EV_A);
965   w->active = 0;
966 }
967
968 /*****************************************************************************/
969
970 void
971 ev_io_start (EV_P_ struct ev_io *w)
972 {
973   int fd = w->fd;
974
975   if (ev_is_active (w))
976     return;
977
978   assert (("ev_io_start called with negative fd", fd >= 0));
979
980   ev_start (EV_A_ (W)w, 1);
981   array_needsize (anfds, anfdmax, fd + 1, anfds_init);
982   wlist_add ((WL *)&anfds[fd].head, (WL)w);
983
984   fd_change (EV_A_ fd);
985 }
986
987 void
988 ev_io_stop (EV_P_ struct ev_io *w)
989 {
990   ev_clear_pending (EV_A_ (W)w);
991   if (!ev_is_active (w))
992     return;
993
994   wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
995   ev_stop (EV_A_ (W)w);
996
997   fd_change (EV_A_ w->fd);
998 }
999
1000 void
1001 ev_timer_start (EV_P_ struct ev_timer *w)
1002 {
1003   if (ev_is_active (w))
1004     return;
1005
1006   w->at += mn_now;
1007
1008   assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1009
1010   ev_start (EV_A_ (W)w, ++timercnt);
1011   array_needsize (timers, timermax, timercnt, );
1012   timers [timercnt - 1] = w;
1013   upheap ((WT *)timers, timercnt - 1);
1014 }
1015
1016 void
1017 ev_timer_stop (EV_P_ struct ev_timer *w)
1018 {
1019   ev_clear_pending (EV_A_ (W)w);
1020   if (!ev_is_active (w))
1021     return;
1022
1023   if (w->active < timercnt--)
1024     {
1025       timers [w->active - 1] = timers [timercnt];
1026       downheap ((WT *)timers, timercnt, w->active - 1);
1027     }
1028
1029   w->at = w->repeat;
1030
1031   ev_stop (EV_A_ (W)w);
1032 }
1033
1034 void
1035 ev_timer_again (EV_P_ struct ev_timer *w)
1036 {
1037   if (ev_is_active (w))
1038     {
1039       if (w->repeat)
1040         {
1041           w->at = mn_now + w->repeat;
1042           downheap ((WT *)timers, timercnt, w->active - 1);
1043         }
1044       else
1045         ev_timer_stop (EV_A_ w);
1046     }
1047   else if (w->repeat)
1048     ev_timer_start (EV_A_ w);
1049 }
1050
1051 void
1052 ev_periodic_start (EV_P_ struct ev_periodic *w)
1053 {
1054   if (ev_is_active (w))
1055     return;
1056
1057   assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1058
1059   /* this formula differs from the one in periodic_reify because we do not always round up */
1060   if (w->interval)
1061     w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1062
1063   ev_start (EV_A_ (W)w, ++periodiccnt);
1064   array_needsize (periodics, periodicmax, periodiccnt, );
1065   periodics [periodiccnt - 1] = w;
1066   upheap ((WT *)periodics, periodiccnt - 1);
1067 }
1068
1069 void
1070 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1071 {
1072   ev_clear_pending (EV_A_ (W)w);
1073   if (!ev_is_active (w))
1074     return;
1075
1076   if (w->active < periodiccnt--)
1077     {
1078       periodics [w->active - 1] = periodics [periodiccnt];
1079       downheap ((WT *)periodics, periodiccnt, w->active - 1);
1080     }
1081
1082   ev_stop (EV_A_ (W)w);
1083 }
1084
1085 #ifndef SA_RESTART
1086 # define SA_RESTART 0
1087 #endif
1088
1089 void
1090 ev_signal_start (EV_P_ struct ev_signal *w)
1091 {
1092   if (ev_is_active (w))
1093     return;
1094
1095   assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1096
1097   ev_start (EV_A_ (W)w, 1);
1098   array_needsize (signals, signalmax, w->signum, signals_init);
1099   wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1100
1101   if (!w->next)
1102     {
1103       struct sigaction sa;
1104       sa.sa_handler = sighandler;
1105       sigfillset (&sa.sa_mask);
1106       sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1107       sigaction (w->signum, &sa, 0);
1108     }
1109 }
1110
1111 void
1112 ev_signal_stop (EV_P_ struct ev_signal *w)
1113 {
1114   ev_clear_pending (EV_A_ (W)w);
1115   if (!ev_is_active (w))
1116     return;
1117
1118   wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1119   ev_stop (EV_A_ (W)w);
1120
1121   if (!signals [w->signum - 1].head)
1122     signal (w->signum, SIG_DFL);
1123 }
1124
1125 void
1126 ev_idle_start (EV_P_ struct ev_idle *w)
1127 {
1128   if (ev_is_active (w))
1129     return;
1130
1131   ev_start (EV_A_ (W)w, ++idlecnt);
1132   array_needsize (idles, idlemax, idlecnt, );
1133   idles [idlecnt - 1] = w;
1134 }
1135
1136 void
1137 ev_idle_stop (EV_P_ struct ev_idle *w)
1138 {
1139   ev_clear_pending (EV_A_ (W)w);
1140   if (ev_is_active (w))
1141     return;
1142
1143   idles [w->active - 1] = idles [--idlecnt];
1144   ev_stop (EV_A_ (W)w);
1145 }
1146
1147 void
1148 ev_prepare_start (EV_P_ struct ev_prepare *w)
1149 {
1150   if (ev_is_active (w))
1151     return;
1152
1153   ev_start (EV_A_ (W)w, ++preparecnt);
1154   array_needsize (prepares, preparemax, preparecnt, );
1155   prepares [preparecnt - 1] = w;
1156 }
1157
1158 void
1159 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1160 {
1161   ev_clear_pending (EV_A_ (W)w);
1162   if (ev_is_active (w))
1163     return;
1164
1165   prepares [w->active - 1] = prepares [--preparecnt];
1166   ev_stop (EV_A_ (W)w);
1167 }
1168
1169 void
1170 ev_check_start (EV_P_ struct ev_check *w)
1171 {
1172   if (ev_is_active (w))
1173     return;
1174
1175   ev_start (EV_A_ (W)w, ++checkcnt);
1176   array_needsize (checks, checkmax, checkcnt, );
1177   checks [checkcnt - 1] = w;
1178 }
1179
1180 void
1181 ev_check_stop (EV_P_ struct ev_check *w)
1182 {
1183   ev_clear_pending (EV_A_ (W)w);
1184   if (ev_is_active (w))
1185     return;
1186
1187   checks [w->active - 1] = checks [--checkcnt];
1188   ev_stop (EV_A_ (W)w);
1189 }
1190
1191 void
1192 ev_child_start (EV_P_ struct ev_child *w)
1193 {
1194   if (ev_is_active (w))
1195     return;
1196
1197   ev_start (EV_A_ (W)w, 1);
1198   wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1199 }
1200
1201 void
1202 ev_child_stop (EV_P_ struct ev_child *w)
1203 {
1204   ev_clear_pending (EV_A_ (W)w);
1205   if (ev_is_active (w))
1206     return;
1207
1208   wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1209   ev_stop (EV_A_ (W)w);
1210 }
1211
1212 /*****************************************************************************/
1213
1214 struct ev_once
1215 {
1216   struct ev_io io;
1217   struct ev_timer to;
1218   void (*cb)(int revents, void *arg);
1219   void *arg;
1220 };
1221
1222 static void
1223 once_cb (EV_P_ struct ev_once *once, int revents)
1224 {
1225   void (*cb)(int revents, void *arg) = once->cb;
1226   void *arg = once->arg;
1227
1228   ev_io_stop (EV_A_ &once->io);
1229   ev_timer_stop (EV_A_ &once->to);
1230   free (once);
1231
1232   cb (revents, arg);
1233 }
1234
1235 static void
1236 once_cb_io (EV_P_ struct ev_io *w, int revents)
1237 {
1238   once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1239 }
1240
1241 static void
1242 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1243 {
1244   once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1245 }
1246
1247 void
1248 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1249 {
1250   struct ev_once *once = malloc (sizeof (struct ev_once));
1251
1252   if (!once)
1253     cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1254   else
1255     {
1256       once->cb  = cb;
1257       once->arg = arg;
1258
1259       ev_watcher_init (&once->io, once_cb_io);
1260       if (fd >= 0)
1261         {
1262           ev_io_set (&once->io, fd, events);
1263           ev_io_start (EV_A_ &once->io);
1264         }
1265
1266       ev_watcher_init (&once->to, once_cb_to);
1267       if (timeout >= 0.)
1268         {
1269           ev_timer_set (&once->to, timeout, 0.);
1270           ev_timer_start (EV_A_ &once->to);
1271         }
1272     }
1273 }
1274
1275 /*****************************************************************************/
1276
1277 #if 0
1278
1279 struct ev_io wio;
1280
1281 static void
1282 sin_cb (struct ev_io *w, int revents)
1283 {
1284   fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1285 }
1286
1287 static void
1288 ocb (struct ev_timer *w, int revents)
1289 {
1290   //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1291   ev_timer_stop (w);
1292   ev_timer_start (w);
1293 }
1294
1295 static void
1296 scb (struct ev_signal *w, int revents)
1297 {
1298   fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1299   ev_io_stop (&wio);
1300   ev_io_start (&wio);
1301 }
1302
1303 static void
1304 gcb (struct ev_signal *w, int revents)
1305 {
1306   fprintf (stderr, "generic %x\n", revents);
1307
1308 }
1309
1310 int main (void)
1311 {
1312   ev_init (0);
1313
1314   ev_io_init (&wio, sin_cb, 0, EV_READ);
1315   ev_io_start (&wio);
1316
1317   struct ev_timer t[10000];
1318
1319 #if 0
1320   int i;
1321   for (i = 0; i < 10000; ++i)
1322     {
1323       struct ev_timer *w = t + i;
1324       ev_watcher_init (w, ocb, i);
1325       ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1326       ev_timer_start (w);
1327       if (drand48 () < 0.5)
1328         ev_timer_stop (w);
1329     }
1330 #endif
1331
1332   struct ev_timer t1;
1333   ev_timer_init (&t1, ocb, 5, 10);
1334   ev_timer_start (&t1);
1335
1336   struct ev_signal sig;
1337   ev_signal_init (&sig, scb, SIGQUIT);
1338   ev_signal_start (&sig);
1339
1340   struct ev_check cw;
1341   ev_check_init (&cw, gcb);
1342   ev_check_start (&cw);
1343
1344   struct ev_idle iw;
1345   ev_idle_init (&iw, gcb);
1346   ev_idle_start (&iw);
1347
1348   ev_loop (0);
1349
1350   return 0;
1351 }
1352
1353 #endif
1354
1355
1356
1357