]> git.llucax.com Git - software/libev.git/blob - ev.c
*** empty log message ***
[software/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are
9  * met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *
14  *     * Redistributions in binary form must reproduce the above
15  *       copyright notice, this list of conditions and the following
16  *       disclaimer in the documentation and/or other materials provided
17  *       with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33
34 # if HAVE_CLOCK_GETTIME
35 #  define EV_USE_MONOTONIC 1
36 #  define EV_USE_REALTIME  1
37 # endif
38
39 # if HAVE_SELECT && HAVE_SYS_SELECT_H
40 #  define EV_USE_SELECT 1
41 # endif
42
43 # if HAVE_POLL && HAVE_POLL_H
44 #  define EV_USE_POLL 1
45 # endif
46
47 # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48 #  define EV_USE_EPOLL 1
49 # endif
50
51 # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52 #  define EV_USE_KQUEUE 1
53 # endif
54
55 #endif
56
57 #include <math.h>
58 #include <stdlib.h>
59 #include <fcntl.h>
60 #include <stddef.h>
61
62 #include <stdio.h>
63
64 #include <assert.h>
65 #include <errno.h>
66 #include <sys/types.h>
67 #include <time.h>
68
69 #include <signal.h>
70
71 #ifndef WIN32
72 # include <unistd.h>
73 # include <sys/time.h>
74 # include <sys/wait.h>
75 #endif
76 /**/
77
78 #ifndef EV_USE_MONOTONIC
79 # define EV_USE_MONOTONIC 1
80 #endif
81
82 #ifndef EV_USE_SELECT
83 # define EV_USE_SELECT 1
84 #endif
85
86 #ifndef EV_USE_POLL
87 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88 #endif
89
90 #ifndef EV_USE_EPOLL
91 # define EV_USE_EPOLL 0
92 #endif
93
94 #ifndef EV_USE_KQUEUE
95 # define EV_USE_KQUEUE 0
96 #endif
97
98 #ifndef EV_USE_WIN32
99 # ifdef WIN32
100 #  define EV_USE_WIN32 0 /* it does not exist, use select */
101 #  undef EV_USE_SELECT
102 #  define EV_USE_SELECT 1
103 # else
104 #  define EV_USE_WIN32 0
105 # endif
106 #endif
107
108 #ifndef EV_USE_REALTIME
109 # define EV_USE_REALTIME 1
110 #endif
111
112 /**/
113
114 #ifndef CLOCK_MONOTONIC
115 # undef EV_USE_MONOTONIC
116 # define EV_USE_MONOTONIC 0
117 #endif
118
119 #ifndef CLOCK_REALTIME
120 # undef EV_USE_REALTIME
121 # define EV_USE_REALTIME 0
122 #endif
123
124 /**/
125
126 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
127 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128 #define PID_HASHSIZE  16 /* size of pid hash table, must be power of two */
129 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130
131 #ifdef EV_H
132 # include EV_H
133 #else
134 # include "ev.h"
135 #endif
136
137 #if __GNUC__ >= 3
138 # define expect(expr,value)         __builtin_expect ((expr),(value))
139 # define inline                     inline
140 #else
141 # define expect(expr,value)         (expr)
142 # define inline                     static
143 #endif
144
145 #define expect_false(expr) expect ((expr) != 0, 0)
146 #define expect_true(expr)  expect ((expr) != 0, 1)
147
148 #define NUMPRI    (EV_MAXPRI - EV_MINPRI + 1)
149 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
150
151 typedef struct ev_watcher *W;
152 typedef struct ev_watcher_list *WL;
153 typedef struct ev_watcher_time *WT;
154
155 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
156
157 #include "ev_win32.c"
158
159 /*****************************************************************************/
160
161 static void (*syserr_cb)(const char *msg);
162
163 void ev_set_syserr_cb (void (*cb)(const char *msg))
164 {
165   syserr_cb = cb;
166 }
167
168 static void
169 syserr (const char *msg)
170 {
171   if (!msg)
172     msg = "(libev) system error";
173
174   if (syserr_cb)
175     syserr_cb (msg);
176   else
177     {
178       perror (msg);
179       abort ();
180     }
181 }
182
183 static void *(*alloc)(void *ptr, long size);
184
185 void ev_set_allocator (void *(*cb)(void *ptr, long size))
186 {
187   alloc = cb;
188 }
189
190 static void *
191 ev_realloc (void *ptr, long size)
192 {
193   ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195   if (!ptr && size)
196     {
197       fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198       abort ();
199     }
200
201   return ptr;
202 }
203
204 #define ev_malloc(size) ev_realloc (0, (size))
205 #define ev_free(ptr)    ev_realloc ((ptr), 0)
206
207 /*****************************************************************************/
208
209 typedef struct
210 {
211   WL head;
212   unsigned char events;
213   unsigned char reify;
214 } ANFD;
215
216 typedef struct
217 {
218   W w;
219   int events;
220 } ANPENDING;
221
222 #if EV_MULTIPLICITY
223
224   struct ev_loop
225   {
226     #define VAR(name,decl) decl;
227       #include "ev_vars.h"
228     #undef VAR
229   };
230   #include "ev_wrap.h"
231
232   struct ev_loop default_loop_struct;
233   static struct ev_loop *default_loop;
234
235 #else
236
237   #define VAR(name,decl) static decl;
238     #include "ev_vars.h"
239   #undef VAR
240
241   static int default_loop;
242
243 #endif
244
245 /*****************************************************************************/
246
247 inline ev_tstamp
248 ev_time (void)
249 {
250 #if EV_USE_REALTIME
251   struct timespec ts;
252   clock_gettime (CLOCK_REALTIME, &ts);
253   return ts.tv_sec + ts.tv_nsec * 1e-9;
254 #else
255   struct timeval tv;
256   gettimeofday (&tv, 0);
257   return tv.tv_sec + tv.tv_usec * 1e-6;
258 #endif
259 }
260
261 inline ev_tstamp
262 get_clock (void)
263 {
264 #if EV_USE_MONOTONIC
265   if (expect_true (have_monotonic))
266     {
267       struct timespec ts;
268       clock_gettime (CLOCK_MONOTONIC, &ts);
269       return ts.tv_sec + ts.tv_nsec * 1e-9;
270     }
271 #endif
272
273   return ev_time ();
274 }
275
276 ev_tstamp
277 ev_now (EV_P)
278 {
279   return rt_now;
280 }
281
282 #define array_roundsize(type,n) ((n) | 4 & ~3)
283
284 #define array_needsize(type,base,cur,cnt,init)                  \
285   if (expect_false ((cnt) > cur))                               \
286     {                                                           \
287       int newcnt = cur;                                         \
288       do                                                        \
289         {                                                       \
290           newcnt = array_roundsize (type, newcnt << 1);         \
291         }                                                       \
292       while ((cnt) > newcnt);                                   \
293                                                                 \
294       base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
295       init (base + cur, newcnt - cur);                          \
296       cur = newcnt;                                             \
297     }
298
299 #define array_slim(type,stem)                                   \
300   if (stem ## max < array_roundsize (stem ## cnt >> 2))         \
301     {                                                           \
302       stem ## max = array_roundsize (stem ## cnt >> 1);         \
303       base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304       fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305     }
306
307 /* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308 /* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309 #define array_free_microshit(stem) \
310   ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312 #define array_free(stem, idx) \
313   ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
314
315 /*****************************************************************************/
316
317 static void
318 anfds_init (ANFD *base, int count)
319 {
320   while (count--)
321     {
322       base->head   = 0;
323       base->events = EV_NONE;
324       base->reify  = 0;
325
326       ++base;
327     }
328 }
329
330 void
331 ev_feed_event (EV_P_ void *w, int revents)
332 {
333   W w_ = (W)w;
334
335   if (w_->pending)
336     {
337       pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
338       return;
339     }
340
341   w_->pending = ++pendingcnt [ABSPRI (w_)];
342   array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
343   pendings [ABSPRI (w_)][w_->pending - 1].w      = w_;
344   pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345 }
346
347 static void
348 queue_events (EV_P_ W *events, int eventcnt, int type)
349 {
350   int i;
351
352   for (i = 0; i < eventcnt; ++i)
353     ev_feed_event (EV_A_ events [i], type);
354 }
355
356 inline void
357 fd_event (EV_P_ int fd, int revents)
358 {
359   ANFD *anfd = anfds + fd;
360   struct ev_io *w;
361
362   for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
363     {
364       int ev = w->events & revents;
365
366       if (ev)
367         ev_feed_event (EV_A_ (W)w, ev);
368     }
369 }
370
371 void
372 ev_feed_fd_event (EV_P_ int fd, int revents)
373 {
374   fd_event (EV_A_ fd, revents);
375 }
376
377 /*****************************************************************************/
378
379 static void
380 fd_reify (EV_P)
381 {
382   int i;
383
384   for (i = 0; i < fdchangecnt; ++i)
385     {
386       int fd = fdchanges [i];
387       ANFD *anfd = anfds + fd;
388       struct ev_io *w;
389
390       int events = 0;
391
392       for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
393         events |= w->events;
394
395       anfd->reify = 0;
396
397       method_modify (EV_A_ fd, anfd->events, events);
398       anfd->events = events;
399     }
400
401   fdchangecnt = 0;
402 }
403
404 static void
405 fd_change (EV_P_ int fd)
406 {
407   if (anfds [fd].reify)
408     return;
409
410   anfds [fd].reify = 1;
411
412   ++fdchangecnt;
413   array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
414   fdchanges [fdchangecnt - 1] = fd;
415 }
416
417 static void
418 fd_kill (EV_P_ int fd)
419 {
420   struct ev_io *w;
421
422   while ((w = (struct ev_io *)anfds [fd].head))
423     {
424       ev_io_stop (EV_A_ w);
425       ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426     }
427 }
428
429 static int
430 fd_valid (int fd)
431 {
432 #ifdef WIN32
433   return !!win32_get_osfhandle (fd);
434 #else
435   return fcntl (fd, F_GETFD) != -1;
436 #endif
437 }
438
439 /* called on EBADF to verify fds */
440 static void
441 fd_ebadf (EV_P)
442 {
443   int fd;
444
445   for (fd = 0; fd < anfdmax; ++fd)
446     if (anfds [fd].events)
447       if (!fd_valid (fd) == -1 && errno == EBADF)
448         fd_kill (EV_A_ fd);
449 }
450
451 /* called on ENOMEM in select/poll to kill some fds and retry */
452 static void
453 fd_enomem (EV_P)
454 {
455   int fd;
456
457   for (fd = anfdmax; fd--; )
458     if (anfds [fd].events)
459       {
460         fd_kill (EV_A_ fd);
461         return;
462       }
463 }
464
465 /* usually called after fork if method needs to re-arm all fds from scratch */
466 static void
467 fd_rearm_all (EV_P)
468 {
469   int fd;
470
471   /* this should be highly optimised to not do anything but set a flag */
472   for (fd = 0; fd < anfdmax; ++fd)
473     if (anfds [fd].events)
474       {
475         anfds [fd].events = 0;
476         fd_change (EV_A_ fd);
477       }
478 }
479
480 /*****************************************************************************/
481
482 static void
483 upheap (WT *heap, int k)
484 {
485   WT w = heap [k];
486
487   while (k && heap [k >> 1]->at > w->at)
488     {
489       heap [k] = heap [k >> 1];
490       ((W)heap [k])->active = k + 1;
491       k >>= 1;
492     }
493
494   heap [k] = w;
495   ((W)heap [k])->active = k + 1;
496
497 }
498
499 static void
500 downheap (WT *heap, int N, int k)
501 {
502   WT w = heap [k];
503
504   while (k < (N >> 1))
505     {
506       int j = k << 1;
507
508       if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
509         ++j;
510
511       if (w->at <= heap [j]->at)
512         break;
513
514       heap [k] = heap [j];
515       ((W)heap [k])->active = k + 1;
516       k = j;
517     }
518
519   heap [k] = w;
520   ((W)heap [k])->active = k + 1;
521 }
522
523 /*****************************************************************************/
524
525 typedef struct
526 {
527   WL head;
528   sig_atomic_t volatile gotsig;
529 } ANSIG;
530
531 static ANSIG *signals;
532 static int signalmax;
533
534 static int sigpipe [2];
535 static sig_atomic_t volatile gotsig;
536 static struct ev_io sigev;
537
538 static void
539 signals_init (ANSIG *base, int count)
540 {
541   while (count--)
542     {
543       base->head   = 0;
544       base->gotsig = 0;
545
546       ++base;
547     }
548 }
549
550 static void
551 sighandler (int signum)
552 {
553 #if WIN32
554   signal (signum, sighandler);
555 #endif
556
557   signals [signum - 1].gotsig = 1;
558
559   if (!gotsig)
560     {
561       int old_errno = errno;
562       gotsig = 1;
563 #ifdef WIN32
564       send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
565 #else
566       write (sigpipe [1], &signum, 1);
567 #endif
568       errno = old_errno;
569     }
570 }
571
572 void
573 ev_feed_signal_event (EV_P_ int signum)
574 {
575   WL w;
576
577 #if EV_MULTIPLICITY
578   assert (("feeding signal events is only supported in the default loop", loop == default_loop));
579 #endif
580
581   --signum;
582
583   if (signum < 0 || signum >= signalmax)
584     return;
585
586   signals [signum].gotsig = 0;
587
588   for (w = signals [signum].head; w; w = w->next)
589     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590 }
591
592 static void
593 sigcb (EV_P_ struct ev_io *iow, int revents)
594 {
595   int signum;
596
597 #ifdef WIN32
598   recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
599 #else
600   read (sigpipe [0], &revents, 1);
601 #endif
602   gotsig = 0;
603
604   for (signum = signalmax; signum--; )
605     if (signals [signum].gotsig)
606       ev_feed_signal_event (EV_A_ signum + 1);
607 }
608
609 static void
610 siginit (EV_P)
611 {
612 #ifndef WIN32
613   fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
614   fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
615
616   /* rather than sort out wether we really need nb, set it */
617   fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
618   fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
619 #endif
620
621   ev_io_set (&sigev, sigpipe [0], EV_READ);
622   ev_io_start (EV_A_ &sigev);
623   ev_unref (EV_A); /* child watcher should not keep loop alive */
624 }
625
626 /*****************************************************************************/
627
628 static struct ev_child *childs [PID_HASHSIZE];
629
630 #ifndef WIN32
631
632 static struct ev_signal childev;
633
634 #ifndef WCONTINUED
635 # define WCONTINUED 0
636 #endif
637
638 static void
639 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
640 {
641   struct ev_child *w;
642
643   for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
644     if (w->pid == pid || !w->pid)
645       {
646         ev_priority (w) = ev_priority (sw); /* need to do it *now* */
647         w->rpid         = pid;
648         w->rstatus      = status;
649         ev_feed_event (EV_A_ (W)w, EV_CHILD);
650       }
651 }
652
653 static void
654 childcb (EV_P_ struct ev_signal *sw, int revents)
655 {
656   int pid, status;
657
658   if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
659     {
660       /* make sure we are called again until all childs have been reaped */
661       ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
662
663       child_reap (EV_A_ sw, pid, pid, status);
664       child_reap (EV_A_ sw,   0, pid, status); /* this might trigger a watcher twice, but event catches that */
665     }
666 }
667
668 #endif
669
670 /*****************************************************************************/
671
672 #if EV_USE_KQUEUE
673 # include "ev_kqueue.c"
674 #endif
675 #if EV_USE_EPOLL
676 # include "ev_epoll.c"
677 #endif
678 #if EV_USE_POLL
679 # include "ev_poll.c"
680 #endif
681 #if EV_USE_SELECT
682 # include "ev_select.c"
683 #endif
684
685 int
686 ev_version_major (void)
687 {
688   return EV_VERSION_MAJOR;
689 }
690
691 int
692 ev_version_minor (void)
693 {
694   return EV_VERSION_MINOR;
695 }
696
697 /* return true if we are running with elevated privileges and should ignore env variables */
698 static int
699 enable_secure (void)
700 {
701 #ifdef WIN32
702   return 0;
703 #else
704   return getuid () != geteuid ()
705       || getgid () != getegid ();
706 #endif
707 }
708
709 int
710 ev_method (EV_P)
711 {
712   return method;
713 }
714
715 static void
716 loop_init (EV_P_ int methods)
717 {
718   if (!method)
719     {
720 #if EV_USE_MONOTONIC
721       {
722         struct timespec ts;
723         if (!clock_gettime (CLOCK_MONOTONIC, &ts))
724           have_monotonic = 1;
725       }
726 #endif
727
728       rt_now    = ev_time ();
729       mn_now    = get_clock ();
730       now_floor = mn_now;
731       rtmn_diff = rt_now - mn_now;
732
733       if (methods == EVMETHOD_AUTO)
734         if (!enable_secure () && getenv ("LIBEV_METHODS"))
735           methods = atoi (getenv ("LIBEV_METHODS"));
736         else
737           methods = EVMETHOD_ANY;
738
739       method = 0;
740 #if EV_USE_WIN32
741       if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init  (EV_A_ methods);
742 #endif
743 #if EV_USE_KQUEUE
744       if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
745 #endif
746 #if EV_USE_EPOLL
747       if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init  (EV_A_ methods);
748 #endif
749 #if EV_USE_POLL
750       if (!method && (methods & EVMETHOD_POLL  )) method = poll_init   (EV_A_ methods);
751 #endif
752 #if EV_USE_SELECT
753       if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
754 #endif
755
756       ev_watcher_init (&sigev, sigcb);
757       ev_set_priority (&sigev, EV_MAXPRI);
758     }
759 }
760
761 void
762 loop_destroy (EV_P)
763 {
764   int i;
765
766 #if EV_USE_WIN32
767   if (method == EVMETHOD_WIN32 ) win32_destroy  (EV_A);
768 #endif
769 #if EV_USE_KQUEUE
770   if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
771 #endif
772 #if EV_USE_EPOLL
773   if (method == EVMETHOD_EPOLL ) epoll_destroy  (EV_A);
774 #endif
775 #if EV_USE_POLL
776   if (method == EVMETHOD_POLL  ) poll_destroy   (EV_A);
777 #endif
778 #if EV_USE_SELECT
779   if (method == EVMETHOD_SELECT) select_destroy (EV_A);
780 #endif
781
782   for (i = NUMPRI; i--; )
783     array_free (pending, [i]);
784
785   /* have to use the microsoft-never-gets-it-right macro */
786   array_free_microshit (fdchange);
787   array_free_microshit (timer);
788   array_free_microshit (periodic);
789   array_free_microshit (idle);
790   array_free_microshit (prepare);
791   array_free_microshit (check);
792
793   method = 0;
794 }
795
796 static void
797 loop_fork (EV_P)
798 {
799 #if EV_USE_EPOLL
800   if (method == EVMETHOD_EPOLL ) epoll_fork  (EV_A);
801 #endif
802 #if EV_USE_KQUEUE
803   if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
804 #endif
805
806   if (ev_is_active (&sigev))
807     {
808       /* default loop */
809
810       ev_ref (EV_A);
811       ev_io_stop (EV_A_ &sigev);
812       close (sigpipe [0]);
813       close (sigpipe [1]);
814
815       while (pipe (sigpipe))
816         syserr ("(libev) error creating pipe");
817
818       siginit (EV_A);
819     }
820
821   postfork = 0;
822 }
823
824 #if EV_MULTIPLICITY
825 struct ev_loop *
826 ev_loop_new (int methods)
827 {
828   struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829
830   memset (loop, 0, sizeof (struct ev_loop));
831
832   loop_init (EV_A_ methods);
833
834   if (ev_method (EV_A))
835     return loop;
836
837   return 0;
838 }
839
840 void
841 ev_loop_destroy (EV_P)
842 {
843   loop_destroy (EV_A);
844   ev_free (loop);
845 }
846
847 void
848 ev_loop_fork (EV_P)
849 {
850   postfork = 1;
851 }
852
853 #endif
854
855 #if EV_MULTIPLICITY
856 struct ev_loop *
857 #else
858 int
859 #endif
860 ev_default_loop (int methods)
861 {
862   if (sigpipe [0] == sigpipe [1])
863     if (pipe (sigpipe))
864       return 0;
865
866   if (!default_loop)
867     {
868 #if EV_MULTIPLICITY
869       struct ev_loop *loop = default_loop = &default_loop_struct;
870 #else
871       default_loop = 1;
872 #endif
873
874       loop_init (EV_A_ methods);
875
876       if (ev_method (EV_A))
877         {
878           siginit (EV_A);
879
880 #ifndef WIN32
881           ev_signal_init (&childev, childcb, SIGCHLD);
882           ev_set_priority (&childev, EV_MAXPRI);
883           ev_signal_start (EV_A_ &childev);
884           ev_unref (EV_A); /* child watcher should not keep loop alive */
885 #endif
886         }
887       else
888         default_loop = 0;
889     }
890
891   return default_loop;
892 }
893
894 void
895 ev_default_destroy (void)
896 {
897 #if EV_MULTIPLICITY
898   struct ev_loop *loop = default_loop;
899 #endif
900
901 #ifndef WIN32
902   ev_ref (EV_A); /* child watcher */
903   ev_signal_stop (EV_A_ &childev);
904 #endif
905
906   ev_ref (EV_A); /* signal watcher */
907   ev_io_stop (EV_A_ &sigev);
908
909   close (sigpipe [0]); sigpipe [0] = 0;
910   close (sigpipe [1]); sigpipe [1] = 0;
911
912   loop_destroy (EV_A);
913 }
914
915 void
916 ev_default_fork (void)
917 {
918 #if EV_MULTIPLICITY
919   struct ev_loop *loop = default_loop;
920 #endif
921
922   if (method)
923     postfork = 1;
924 }
925
926 /*****************************************************************************/
927
928 static int
929 any_pending (EV_P)
930 {
931   int pri;
932
933   for (pri = NUMPRI; pri--; )
934     if (pendingcnt [pri])
935       return 1;
936
937   return 0;
938 }
939
940 static void
941 call_pending (EV_P)
942 {
943   int pri;
944
945   for (pri = NUMPRI; pri--; )
946     while (pendingcnt [pri])
947       {
948         ANPENDING *p = pendings [pri] + --pendingcnt [pri];
949
950         if (p->w)
951           {
952             p->w->pending = 0;
953             p->w->cb (EV_A_ p->w, p->events);
954           }
955       }
956 }
957
958 static void
959 timers_reify (EV_P)
960 {
961   while (timercnt && ((WT)timers [0])->at <= mn_now)
962     {
963       struct ev_timer *w = timers [0];
964
965       assert (("inactive timer on timer heap detected", ev_is_active (w)));
966
967       /* first reschedule or stop timer */
968       if (w->repeat)
969         {
970           assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
971           ((WT)w)->at = mn_now + w->repeat;
972           downheap ((WT *)timers, timercnt, 0);
973         }
974       else
975         ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
976
977       ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
978     }
979 }
980
981 static void
982 periodics_reify (EV_P)
983 {
984   while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
985     {
986       struct ev_periodic *w = periodics [0];
987
988       assert (("inactive timer on periodic heap detected", ev_is_active (w)));
989
990       /* first reschedule or stop timer */
991       if (w->reschedule_cb)
992         {
993           ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
994
995           assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
996           downheap ((WT *)periodics, periodiccnt, 0);
997         }
998       else if (w->interval)
999         {
1000           ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1001           assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
1002           downheap ((WT *)periodics, periodiccnt, 0);
1003         }
1004       else
1005         ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1006
1007       ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1008     }
1009 }
1010
1011 static void
1012 periodics_reschedule (EV_P)
1013 {
1014   int i;
1015
1016   /* adjust periodics after time jump */
1017   for (i = 0; i < periodiccnt; ++i)
1018     {
1019       struct ev_periodic *w = periodics [i];
1020
1021       if (w->reschedule_cb)
1022         ((WT)w)->at = w->reschedule_cb (w, rt_now);
1023       else if (w->interval)
1024         ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1025     }
1026
1027   /* now rebuild the heap */
1028   for (i = periodiccnt >> 1; i--; )
1029     downheap ((WT *)periodics, periodiccnt, i);
1030 }
1031
1032 inline int
1033 time_update_monotonic (EV_P)
1034 {
1035   mn_now = get_clock ();
1036
1037   if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1038     {
1039       rt_now = rtmn_diff + mn_now;
1040       return 0;
1041     }
1042   else
1043     {
1044       now_floor = mn_now;
1045       rt_now = ev_time ();
1046       return 1;
1047     }
1048 }
1049
1050 static void
1051 time_update (EV_P)
1052 {
1053   int i;
1054
1055 #if EV_USE_MONOTONIC
1056   if (expect_true (have_monotonic))
1057     {
1058       if (time_update_monotonic (EV_A))
1059         {
1060           ev_tstamp odiff = rtmn_diff;
1061
1062           for (i = 4; --i; ) /* loop a few times, before making important decisions */
1063             {
1064               rtmn_diff = rt_now - mn_now;
1065
1066               if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1067                 return; /* all is well */
1068
1069               rt_now    = ev_time ();
1070               mn_now    = get_clock ();
1071               now_floor = mn_now;
1072             }
1073
1074           periodics_reschedule (EV_A);
1075           /* no timer adjustment, as the monotonic clock doesn't jump */
1076           /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1077         }
1078     }
1079   else
1080 #endif
1081     {
1082       rt_now = ev_time ();
1083
1084       if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1085         {
1086           periodics_reschedule (EV_A);
1087
1088           /* adjust timers. this is easy, as the offset is the same for all */
1089           for (i = 0; i < timercnt; ++i)
1090             ((WT)timers [i])->at += rt_now - mn_now;
1091         }
1092
1093       mn_now = rt_now;
1094     }
1095 }
1096
1097 void
1098 ev_ref (EV_P)
1099 {
1100   ++activecnt;
1101 }
1102
1103 void
1104 ev_unref (EV_P)
1105 {
1106   --activecnt;
1107 }
1108
1109 static int loop_done;
1110
1111 void
1112 ev_loop (EV_P_ int flags)
1113 {
1114   double block;
1115   loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1116
1117   do
1118     {
1119       /* queue check watchers (and execute them) */
1120       if (expect_false (preparecnt))
1121         {
1122           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1123           call_pending (EV_A);
1124         }
1125
1126       /* we might have forked, so reify kernel state if necessary */
1127       if (expect_false (postfork))
1128         loop_fork (EV_A);
1129
1130       /* update fd-related kernel structures */
1131       fd_reify (EV_A);
1132
1133       /* calculate blocking time */
1134
1135       /* we only need this for !monotonic clock or timers, but as we basically
1136          always have timers, we just calculate it always */
1137 #if EV_USE_MONOTONIC
1138       if (expect_true (have_monotonic))
1139         time_update_monotonic (EV_A);
1140       else
1141 #endif
1142         {
1143           rt_now = ev_time ();
1144           mn_now = rt_now;
1145         }
1146
1147       if (flags & EVLOOP_NONBLOCK || idlecnt)
1148         block = 0.;
1149       else
1150         {
1151           block = MAX_BLOCKTIME;
1152
1153           if (timercnt)
1154             {
1155               ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1156               if (block > to) block = to;
1157             }
1158
1159           if (periodiccnt)
1160             {
1161               ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1162               if (block > to) block = to;
1163             }
1164
1165           if (block < 0.) block = 0.;
1166         }
1167
1168       method_poll (EV_A_ block);
1169
1170       /* update rt_now, do magic */
1171       time_update (EV_A);
1172
1173       /* queue pending timers and reschedule them */
1174       timers_reify (EV_A); /* relative timers called last */
1175       periodics_reify (EV_A); /* absolute timers called first */
1176
1177       /* queue idle watchers unless io or timers are pending */
1178       if (idlecnt && !any_pending (EV_A))
1179         queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1180
1181       /* queue check watchers, to be executed first */
1182       if (checkcnt)
1183         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1184
1185       call_pending (EV_A);
1186     }
1187   while (activecnt && !loop_done);
1188
1189   if (loop_done != 2)
1190     loop_done = 0;
1191 }
1192
1193 void
1194 ev_unloop (EV_P_ int how)
1195 {
1196   loop_done = how;
1197 }
1198
1199 /*****************************************************************************/
1200
1201 inline void
1202 wlist_add (WL *head, WL elem)
1203 {
1204   elem->next = *head;
1205   *head = elem;
1206 }
1207
1208 inline void
1209 wlist_del (WL *head, WL elem)
1210 {
1211   while (*head)
1212     {
1213       if (*head == elem)
1214         {
1215           *head = elem->next;
1216           return;
1217         }
1218
1219       head = &(*head)->next;
1220     }
1221 }
1222
1223 inline void
1224 ev_clear_pending (EV_P_ W w)
1225 {
1226   if (w->pending)
1227     {
1228       pendings [ABSPRI (w)][w->pending - 1].w = 0;
1229       w->pending = 0;
1230     }
1231 }
1232
1233 inline void
1234 ev_start (EV_P_ W w, int active)
1235 {
1236   if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1237   if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1238
1239   w->active = active;
1240   ev_ref (EV_A);
1241 }
1242
1243 inline void
1244 ev_stop (EV_P_ W w)
1245 {
1246   ev_unref (EV_A);
1247   w->active = 0;
1248 }
1249
1250 /*****************************************************************************/
1251
1252 void
1253 ev_io_start (EV_P_ struct ev_io *w)
1254 {
1255   int fd = w->fd;
1256
1257   if (ev_is_active (w))
1258     return;
1259
1260   assert (("ev_io_start called with negative fd", fd >= 0));
1261
1262   ev_start (EV_A_ (W)w, 1);
1263   array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1264   wlist_add ((WL *)&anfds[fd].head, (WL)w);
1265
1266   fd_change (EV_A_ fd);
1267 }
1268
1269 void
1270 ev_io_stop (EV_P_ struct ev_io *w)
1271 {
1272   ev_clear_pending (EV_A_ (W)w);
1273   if (!ev_is_active (w))
1274     return;
1275
1276   wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1277   ev_stop (EV_A_ (W)w);
1278
1279   fd_change (EV_A_ w->fd);
1280 }
1281
1282 void
1283 ev_timer_start (EV_P_ struct ev_timer *w)
1284 {
1285   if (ev_is_active (w))
1286     return;
1287
1288   ((WT)w)->at += mn_now;
1289
1290   assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1291
1292   ev_start (EV_A_ (W)w, ++timercnt);
1293   array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1294   timers [timercnt - 1] = w;
1295   upheap ((WT *)timers, timercnt - 1);
1296
1297   assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1298 }
1299
1300 void
1301 ev_timer_stop (EV_P_ struct ev_timer *w)
1302 {
1303   ev_clear_pending (EV_A_ (W)w);
1304   if (!ev_is_active (w))
1305     return;
1306
1307   assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1308
1309   if (((W)w)->active < timercnt--)
1310     {
1311       timers [((W)w)->active - 1] = timers [timercnt];
1312       downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1313     }
1314
1315   ((WT)w)->at = w->repeat;
1316
1317   ev_stop (EV_A_ (W)w);
1318 }
1319
1320 void
1321 ev_timer_again (EV_P_ struct ev_timer *w)
1322 {
1323   if (ev_is_active (w))
1324     {
1325       if (w->repeat)
1326         {
1327           ((WT)w)->at = mn_now + w->repeat;
1328           downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1329         }
1330       else
1331         ev_timer_stop (EV_A_ w);
1332     }
1333   else if (w->repeat)
1334     ev_timer_start (EV_A_ w);
1335 }
1336
1337 void
1338 ev_periodic_start (EV_P_ struct ev_periodic *w)
1339 {
1340   if (ev_is_active (w))
1341     return;
1342
1343   if (w->reschedule_cb)
1344     ((WT)w)->at = w->reschedule_cb (w, rt_now);
1345   else if (w->interval)
1346     {
1347       assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1348       /* this formula differs from the one in periodic_reify because we do not always round up */
1349       ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1350     }
1351
1352   ev_start (EV_A_ (W)w, ++periodiccnt);
1353   array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1354   periodics [periodiccnt - 1] = w;
1355   upheap ((WT *)periodics, periodiccnt - 1);
1356
1357   assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1358 }
1359
1360 void
1361 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1362 {
1363   ev_clear_pending (EV_A_ (W)w);
1364   if (!ev_is_active (w))
1365     return;
1366
1367   assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1368
1369   if (((W)w)->active < periodiccnt--)
1370     {
1371       periodics [((W)w)->active - 1] = periodics [periodiccnt];
1372       downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1373     }
1374
1375   ev_stop (EV_A_ (W)w);
1376 }
1377
1378 void
1379 ev_periodic_again (EV_P_ struct ev_periodic *w)
1380 {
1381   ev_periodic_stop (EV_A_ w);
1382   ev_periodic_start (EV_A_ w);
1383 }
1384
1385 void
1386 ev_idle_start (EV_P_ struct ev_idle *w)
1387 {
1388   if (ev_is_active (w))
1389     return;
1390
1391   ev_start (EV_A_ (W)w, ++idlecnt);
1392   array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1393   idles [idlecnt - 1] = w;
1394 }
1395
1396 void
1397 ev_idle_stop (EV_P_ struct ev_idle *w)
1398 {
1399   ev_clear_pending (EV_A_ (W)w);
1400   if (ev_is_active (w))
1401     return;
1402
1403   idles [((W)w)->active - 1] = idles [--idlecnt];
1404   ev_stop (EV_A_ (W)w);
1405 }
1406
1407 void
1408 ev_prepare_start (EV_P_ struct ev_prepare *w)
1409 {
1410   if (ev_is_active (w))
1411     return;
1412
1413   ev_start (EV_A_ (W)w, ++preparecnt);
1414   array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1415   prepares [preparecnt - 1] = w;
1416 }
1417
1418 void
1419 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1420 {
1421   ev_clear_pending (EV_A_ (W)w);
1422   if (ev_is_active (w))
1423     return;
1424
1425   prepares [((W)w)->active - 1] = prepares [--preparecnt];
1426   ev_stop (EV_A_ (W)w);
1427 }
1428
1429 void
1430 ev_check_start (EV_P_ struct ev_check *w)
1431 {
1432   if (ev_is_active (w))
1433     return;
1434
1435   ev_start (EV_A_ (W)w, ++checkcnt);
1436   array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1437   checks [checkcnt - 1] = w;
1438 }
1439
1440 void
1441 ev_check_stop (EV_P_ struct ev_check *w)
1442 {
1443   ev_clear_pending (EV_A_ (W)w);
1444   if (ev_is_active (w))
1445     return;
1446
1447   checks [((W)w)->active - 1] = checks [--checkcnt];
1448   ev_stop (EV_A_ (W)w);
1449 }
1450
1451 #ifndef SA_RESTART
1452 # define SA_RESTART 0
1453 #endif
1454
1455 void
1456 ev_signal_start (EV_P_ struct ev_signal *w)
1457 {
1458 #if EV_MULTIPLICITY
1459   assert (("signal watchers are only supported in the default loop", loop == default_loop));
1460 #endif
1461   if (ev_is_active (w))
1462     return;
1463
1464   assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1465
1466   ev_start (EV_A_ (W)w, 1);
1467   array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1468   wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1469
1470   if (!((WL)w)->next)
1471     {
1472 #if WIN32
1473       signal (w->signum, sighandler);
1474 #else
1475       struct sigaction sa;
1476       sa.sa_handler = sighandler;
1477       sigfillset (&sa.sa_mask);
1478       sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1479       sigaction (w->signum, &sa, 0);
1480 #endif
1481     }
1482 }
1483
1484 void
1485 ev_signal_stop (EV_P_ struct ev_signal *w)
1486 {
1487   ev_clear_pending (EV_A_ (W)w);
1488   if (!ev_is_active (w))
1489     return;
1490
1491   wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1492   ev_stop (EV_A_ (W)w);
1493
1494   if (!signals [w->signum - 1].head)
1495     signal (w->signum, SIG_DFL);
1496 }
1497
1498 void
1499 ev_child_start (EV_P_ struct ev_child *w)
1500 {
1501 #if EV_MULTIPLICITY
1502   assert (("child watchers are only supported in the default loop", loop == default_loop));
1503 #endif
1504   if (ev_is_active (w))
1505     return;
1506
1507   ev_start (EV_A_ (W)w, 1);
1508   wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1509 }
1510
1511 void
1512 ev_child_stop (EV_P_ struct ev_child *w)
1513 {
1514   ev_clear_pending (EV_A_ (W)w);
1515   if (ev_is_active (w))
1516     return;
1517
1518   wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1519   ev_stop (EV_A_ (W)w);
1520 }
1521
1522 /*****************************************************************************/
1523
1524 struct ev_once
1525 {
1526   struct ev_io io;
1527   struct ev_timer to;
1528   void (*cb)(int revents, void *arg);
1529   void *arg;
1530 };
1531
1532 static void
1533 once_cb (EV_P_ struct ev_once *once, int revents)
1534 {
1535   void (*cb)(int revents, void *arg) = once->cb;
1536   void *arg = once->arg;
1537
1538   ev_io_stop (EV_A_ &once->io);
1539   ev_timer_stop (EV_A_ &once->to);
1540   ev_free (once);
1541
1542   cb (revents, arg);
1543 }
1544
1545 static void
1546 once_cb_io (EV_P_ struct ev_io *w, int revents)
1547 {
1548   once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1549 }
1550
1551 static void
1552 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1553 {
1554   once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1555 }
1556
1557 void
1558 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1559 {
1560   struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1561
1562   if (!once)
1563     cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1564   else
1565     {
1566       once->cb  = cb;
1567       once->arg = arg;
1568
1569       ev_watcher_init (&once->io, once_cb_io);
1570       if (fd >= 0)
1571         {
1572           ev_io_set (&once->io, fd, events);
1573           ev_io_start (EV_A_ &once->io);
1574         }
1575
1576       ev_watcher_init (&once->to, once_cb_to);
1577       if (timeout >= 0.)
1578         {
1579           ev_timer_set (&once->to, timeout, 0.);
1580           ev_timer_start (EV_A_ &once->to);
1581         }
1582     }
1583 }
1584