]> git.llucax.com Git - software/libev.git/blob - ev.c
9686364d52d5945306a2855720d6894241c0672e
[software/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are
9  * met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *
14  *     * Redistributions in binary form must reproduce the above
15  *       copyright notice, this list of conditions and the following
16  *       disclaimer in the documentation and/or other materials provided
17  *       with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33 #endif
34
35 #include <math.h>
36 #include <stdlib.h>
37 #include <unistd.h>
38 #include <fcntl.h>
39 #include <signal.h>
40 #include <stddef.h>
41
42 #include <stdio.h>
43
44 #include <assert.h>
45 #include <errno.h>
46 #include <sys/types.h>
47 #ifndef WIN32
48 # include <sys/wait.h>
49 #endif
50 #include <sys/time.h>
51 #include <time.h>
52
53 /**/
54
55 #ifndef EV_USE_MONOTONIC
56 # define EV_USE_MONOTONIC 1
57 #endif
58
59 #ifndef EV_USE_SELECT
60 # define EV_USE_SELECT 1
61 #endif
62
63 #ifndef EV_USEV_POLL
64 # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65 #endif
66
67 #ifndef EV_USE_EPOLL
68 # define EV_USE_EPOLL 0
69 #endif
70
71 #ifndef EV_USE_KQUEUE
72 # define EV_USE_KQUEUE 0
73 #endif
74
75 #ifndef EV_USE_REALTIME
76 # define EV_USE_REALTIME 1
77 #endif
78
79 /**/
80
81 #ifndef CLOCK_MONOTONIC
82 # undef EV_USE_MONOTONIC
83 # define EV_USE_MONOTONIC 0
84 #endif
85
86 #ifndef CLOCK_REALTIME
87 # undef EV_USE_REALTIME
88 # define EV_USE_REALTIME 0
89 #endif
90
91 /**/
92
93 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
94 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 #define PID_HASHSIZE  16 /* size of pid hash table, must be power of two */
96 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97
98 #include "ev.h"
99
100 #if __GNUC__ >= 3
101 # define expect(expr,value)         __builtin_expect ((expr),(value))
102 # define inline                     inline
103 #else
104 # define expect(expr,value)         (expr)
105 # define inline                     static
106 #endif
107
108 #define expect_false(expr) expect ((expr) != 0, 0)
109 #define expect_true(expr)  expect ((expr) != 0, 1)
110
111 #define NUMPRI    (EV_MAXPRI - EV_MINPRI + 1)
112 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113
114 typedef struct ev_watcher *W;
115 typedef struct ev_watcher_list *WL;
116 typedef struct ev_watcher_time *WT;
117
118 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119
120 /*****************************************************************************/
121
122 typedef struct
123 {
124   struct ev_watcher_list *head;
125   unsigned char events;
126   unsigned char reify;
127 } ANFD;
128
129 typedef struct
130 {
131   W w;
132   int events;
133 } ANPENDING;
134
135 #if EV_MULTIPLICITY
136
137 struct ev_loop
138 {
139 # define VAR(name,decl) decl;
140 # include "ev_vars.h"
141 };
142 # undef VAR
143 # include "ev_wrap.h"
144
145 #else
146
147 # define VAR(name,decl) static decl;
148 # include "ev_vars.h"
149 # undef VAR
150
151 #endif
152
153 /*****************************************************************************/
154
155 inline ev_tstamp
156 ev_time (void)
157 {
158 #if EV_USE_REALTIME
159   struct timespec ts;
160   clock_gettime (CLOCK_REALTIME, &ts);
161   return ts.tv_sec + ts.tv_nsec * 1e-9;
162 #else
163   struct timeval tv;
164   gettimeofday (&tv, 0);
165   return tv.tv_sec + tv.tv_usec * 1e-6;
166 #endif
167 }
168
169 inline ev_tstamp
170 get_clock (void)
171 {
172 #if EV_USE_MONOTONIC
173   if (expect_true (have_monotonic))
174     {
175       struct timespec ts;
176       clock_gettime (CLOCK_MONOTONIC, &ts);
177       return ts.tv_sec + ts.tv_nsec * 1e-9;
178     }
179 #endif
180
181   return ev_time ();
182 }
183
184 ev_tstamp
185 ev_now (EV_P)
186 {
187   return rt_now;
188 }
189
190 #define array_roundsize(base,n) ((n) | 4 & ~3)
191
192 #define array_needsize(base,cur,cnt,init)               \
193   if (expect_false ((cnt) > cur))                       \
194     {                                                   \
195       int newcnt = cur;                                 \
196       do                                                \
197         {                                               \
198           newcnt = array_roundsize (base, newcnt << 1); \
199         }                                               \
200       while ((cnt) > newcnt);                           \
201                                                         \
202       base = realloc (base, sizeof (*base) * (newcnt)); \
203       init (base + cur, newcnt - cur);                  \
204       cur = newcnt;                                     \
205     }
206
207 /*****************************************************************************/
208
209 static void
210 anfds_init (ANFD *base, int count)
211 {
212   while (count--)
213     {
214       base->head   = 0;
215       base->events = EV_NONE;
216       base->reify  = 0;
217
218       ++base;
219     }
220 }
221
222 static void
223 event (EV_P_ W w, int events)
224 {
225   if (w->pending)
226     {
227       pendings [ABSPRI (w)][w->pending - 1].events |= events;
228       return;
229     }
230
231   w->pending = ++pendingcnt [ABSPRI (w)];
232   array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233   pendings [ABSPRI (w)][w->pending - 1].w      = w;
234   pendings [ABSPRI (w)][w->pending - 1].events = events;
235 }
236
237 static void
238 queue_events (EV_P_ W *events, int eventcnt, int type)
239 {
240   int i;
241
242   for (i = 0; i < eventcnt; ++i)
243     event (EV_A_ events [i], type);
244 }
245
246 static void
247 fd_event (EV_P_ int fd, int events)
248 {
249   ANFD *anfd = anfds + fd;
250   struct ev_io *w;
251
252   for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253     {
254       int ev = w->events & events;
255
256       if (ev)
257         event (EV_A_ (W)w, ev);
258     }
259 }
260
261 /*****************************************************************************/
262
263 static void
264 fd_reify (EV_P)
265 {
266   int i;
267
268   for (i = 0; i < fdchangecnt; ++i)
269     {
270       int fd = fdchanges [i];
271       ANFD *anfd = anfds + fd;
272       struct ev_io *w;
273
274       int events = 0;
275
276       for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277         events |= w->events;
278
279       anfd->reify = 0;
280
281       if (anfd->events != events)
282         {
283           method_modify (EV_A_ fd, anfd->events, events);
284           anfd->events = events;
285         }
286     }
287
288   fdchangecnt = 0;
289 }
290
291 static void
292 fd_change (EV_P_ int fd)
293 {
294   if (anfds [fd].reify || fdchangecnt < 0)
295     return;
296
297   anfds [fd].reify = 1;
298
299   ++fdchangecnt;
300   array_needsize (fdchanges, fdchangemax, fdchangecnt, );
301   fdchanges [fdchangecnt - 1] = fd;
302 }
303
304 static void
305 fd_kill (EV_P_ int fd)
306 {
307   struct ev_io *w;
308
309   while ((w = (struct ev_io *)anfds [fd].head))
310     {
311       ev_io_stop (EV_A_ w);
312       event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313     }
314 }
315
316 /* called on EBADF to verify fds */
317 static void
318 fd_ebadf (EV_P)
319 {
320   int fd;
321
322   for (fd = 0; fd < anfdmax; ++fd)
323     if (anfds [fd].events)
324       if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
325         fd_kill (EV_A_ fd);
326 }
327
328 /* called on ENOMEM in select/poll to kill some fds and retry */
329 static void
330 fd_enomem (EV_P)
331 {
332   int fd = anfdmax;
333
334   while (fd--)
335     if (anfds [fd].events)
336       {
337         close (fd);
338         fd_kill (EV_A_ fd);
339         return;
340       }
341 }
342
343 /* susually called after fork if method needs to re-arm all fds from scratch */
344 static void
345 fd_rearm_all (EV_P)
346 {
347   int fd;
348
349   /* this should be highly optimised to not do anything but set a flag */
350   for (fd = 0; fd < anfdmax; ++fd)
351     if (anfds [fd].events)
352       {
353         anfds [fd].events = 0;
354         fd_change (fd);
355       }
356 }
357
358 /*****************************************************************************/
359
360 static void
361 upheap (WT *heap, int k)
362 {
363   WT w = heap [k];
364
365   while (k && heap [k >> 1]->at > w->at)
366     {
367       heap [k] = heap [k >> 1];
368       heap [k]->active = k + 1;
369       k >>= 1;
370     }
371
372   heap [k] = w;
373   heap [k]->active = k + 1;
374
375 }
376
377 static void
378 downheap (WT *heap, int N, int k)
379 {
380   WT w = heap [k];
381
382   while (k < (N >> 1))
383     {
384       int j = k << 1;
385
386       if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
387         ++j;
388
389       if (w->at <= heap [j]->at)
390         break;
391
392       heap [k] = heap [j];
393       heap [k]->active = k + 1;
394       k = j;
395     }
396
397   heap [k] = w;
398   heap [k]->active = k + 1;
399 }
400
401 /*****************************************************************************/
402
403 typedef struct
404 {
405   struct ev_watcher_list *head;
406   sig_atomic_t volatile gotsig;
407 } ANSIG;
408
409 static ANSIG *signals;
410 static int signalmax;
411
412 static int sigpipe [2];
413 static sig_atomic_t volatile gotsig;
414
415 static void
416 signals_init (ANSIG *base, int count)
417 {
418   while (count--)
419     {
420       base->head   = 0;
421       base->gotsig = 0;
422
423       ++base;
424     }
425 }
426
427 static void
428 sighandler (int signum)
429 {
430   signals [signum - 1].gotsig = 1;
431
432   if (!gotsig)
433     {
434       int old_errno = errno;
435       gotsig = 1;
436       write (sigpipe [1], &signum, 1);
437       errno = old_errno;
438     }
439 }
440
441 static void
442 sigcb (EV_P_ struct ev_io *iow, int revents)
443 {
444   struct ev_watcher_list *w;
445   int signum;
446
447   read (sigpipe [0], &revents, 1);
448   gotsig = 0;
449
450   for (signum = signalmax; signum--; )
451     if (signals [signum].gotsig)
452       {
453         signals [signum].gotsig = 0;
454
455         for (w = signals [signum].head; w; w = w->next)
456           event (EV_A_ (W)w, EV_SIGNAL);
457       }
458 }
459
460 static void
461 siginit (EV_P)
462 {
463 #ifndef WIN32
464   fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
465   fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
466
467   /* rather than sort out wether we really need nb, set it */
468   fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
469   fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470 #endif
471
472   ev_io_set (&sigev, sigpipe [0], EV_READ);
473   ev_io_start (EV_A_ &sigev);
474   ev_unref (EV_A); /* child watcher should not keep loop alive */
475 }
476
477 /*****************************************************************************/
478
479 #ifndef WIN32
480
481 #ifndef WCONTINUED
482 # define WCONTINUED 0
483 #endif
484
485 static void
486 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
487 {
488   struct ev_child *w;
489
490   for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491     if (w->pid == pid || !w->pid)
492       {
493         w->priority = sw->priority; /* need to do it *now* */
494         w->rpid     = pid;
495         w->rstatus  = status;
496         event (EV_A_ (W)w, EV_CHILD);
497       }
498 }
499
500 static void
501 childcb (EV_P_ struct ev_signal *sw, int revents)
502 {
503   int pid, status;
504
505   if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506     {
507       /* make sure we are called again until all childs have been reaped */
508       event (EV_A_ (W)sw, EV_SIGNAL);
509
510       child_reap (EV_A_ sw, pid, pid, status);
511       child_reap (EV_A_ sw,   0, pid, status); /* this might trigger a watcher twice, but event catches that */
512     }
513 }
514
515 #endif
516
517 /*****************************************************************************/
518
519 #if EV_USE_KQUEUE
520 # include "ev_kqueue.c"
521 #endif
522 #if EV_USE_EPOLL
523 # include "ev_epoll.c"
524 #endif
525 #if EV_USEV_POLL
526 # include "ev_poll.c"
527 #endif
528 #if EV_USE_SELECT
529 # include "ev_select.c"
530 #endif
531
532 int
533 ev_version_major (void)
534 {
535   return EV_VERSION_MAJOR;
536 }
537
538 int
539 ev_version_minor (void)
540 {
541   return EV_VERSION_MINOR;
542 }
543
544 /* return true if we are running with elevated privileges and should ignore env variables */
545 static int
546 enable_secure (void)
547 {
548 #ifdef WIN32
549   return 0;
550 #else
551   return getuid () != geteuid ()
552       || getgid () != getegid ();
553 #endif
554 }
555
556 int
557 ev_method (EV_P)
558 {
559   return method;
560 }
561
562 static void
563 loop_init (EV_P_ int methods)
564 {
565   if (!method)
566     {
567 #if EV_USE_MONOTONIC
568       {
569         struct timespec ts;
570         if (!clock_gettime (CLOCK_MONOTONIC, &ts))
571           have_monotonic = 1;
572       }
573 #endif
574
575       rt_now    = ev_time ();
576       mn_now    = get_clock ();
577       now_floor = mn_now;
578       rtmn_diff = rt_now - mn_now;
579
580       if (methods == EVMETHOD_AUTO)
581         if (!enable_secure () && getenv ("LIBEV_METHODS"))
582           methods = atoi (getenv ("LIBEV_METHODS"));
583         else
584           methods = EVMETHOD_ANY;
585
586       method = 0;
587 #if EV_USE_KQUEUE
588       if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589 #endif
590 #if EV_USE_EPOLL
591       if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init  (EV_A_ methods);
592 #endif
593 #if EV_USEV_POLL
594       if (!method && (methods & EVMETHOD_POLL  )) method = poll_init   (EV_A_ methods);
595 #endif
596 #if EV_USE_SELECT
597       if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
598 #endif
599     }
600 }
601
602 void
603 loop_destroy (EV_P)
604 {
605 #if EV_USE_KQUEUE
606   if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607 #endif
608 #if EV_USE_EPOLL
609   if (method == EVMETHOD_EPOLL ) epoll_destroy  (EV_A);
610 #endif
611 #if EV_USEV_POLL
612   if (method == EVMETHOD_POLL  ) poll_destroy   (EV_A);
613 #endif
614 #if EV_USE_SELECT
615   if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616 #endif
617
618   method = 0;
619   /*TODO*/
620 }
621
622 void
623 loop_fork (EV_P)
624 {
625   /*TODO*/
626 #if EV_USE_EPOLL
627   if (method == EVMETHOD_EPOLL ) epoll_fork  (EV_A);
628 #endif
629 #if EV_USE_KQUEUE
630   if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631 #endif
632 }
633
634 #if EV_MULTIPLICITY
635 struct ev_loop *
636 ev_loop_new (int methods)
637 {
638   struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
639
640   loop_init (EV_A_ methods);
641
642   if (ev_methods (EV_A))
643     return loop;
644
645   return 0;
646 }
647
648 void
649 ev_loop_destroy (EV_P)
650 {
651   loop_destroy (EV_A);
652   free (loop);
653 }
654
655 void
656 ev_loop_fork (EV_P)
657 {
658   loop_fork (EV_A);
659 }
660
661 #endif
662
663 #if EV_MULTIPLICITY
664 struct ev_loop default_loop_struct;
665 static struct ev_loop *default_loop;
666
667 struct ev_loop *
668 #else
669 static int default_loop;
670
671 int
672 #endif
673 ev_default_loop (int methods)
674 {
675   if (sigpipe [0] == sigpipe [1])
676     if (pipe (sigpipe))
677       return 0;
678
679   if (!default_loop)
680     {
681 #if EV_MULTIPLICITY
682       struct ev_loop *loop = default_loop = &default_loop_struct;
683 #else
684       default_loop = 1;
685 #endif
686
687       loop_init (EV_A_ methods);
688
689       if (ev_method (EV_A))
690         {
691           ev_watcher_init (&sigev, sigcb);
692           ev_set_priority (&sigev, EV_MAXPRI);
693           siginit (EV_A);
694
695 #ifndef WIN32
696           ev_signal_init (&childev, childcb, SIGCHLD);
697           ev_set_priority (&childev, EV_MAXPRI);
698           ev_signal_start (EV_A_ &childev);
699           ev_unref (EV_A); /* child watcher should not keep loop alive */
700 #endif
701         }
702       else
703         default_loop = 0;
704     }
705
706   return default_loop;
707 }
708
709 void
710 ev_default_destroy (void)
711 {
712   struct ev_loop *loop = default_loop;
713
714   ev_ref (EV_A); /* child watcher */
715   ev_signal_stop (EV_A_ &childev);
716
717   ev_ref (EV_A); /* signal watcher */
718   ev_io_stop (EV_A_ &sigev);
719
720   close (sigpipe [0]); sigpipe [0] = 0;
721   close (sigpipe [1]); sigpipe [1] = 0;
722
723   loop_destroy (EV_A);
724 }
725
726 void
727 ev_default_fork (EV_P)
728 {
729   loop_fork (EV_A);
730
731   ev_io_stop (EV_A_ &sigev);
732   close (sigpipe [0]);
733   close (sigpipe [1]);
734   pipe (sigpipe);
735
736   ev_ref (EV_A); /* signal watcher */
737   siginit (EV_A);
738 }
739
740 /*****************************************************************************/
741
742 static void
743 call_pending (EV_P)
744 {
745   int pri;
746
747   for (pri = NUMPRI; pri--; )
748     while (pendingcnt [pri])
749       {
750         ANPENDING *p = pendings [pri] + --pendingcnt [pri];
751
752         if (p->w)
753           {
754             p->w->pending = 0;
755             p->w->cb (EV_A_ p->w, p->events);
756           }
757       }
758 }
759
760 static void
761 timers_reify (EV_P)
762 {
763   while (timercnt && timers [0]->at <= mn_now)
764     {
765       struct ev_timer *w = timers [0];
766
767       /* first reschedule or stop timer */
768       if (w->repeat)
769         {
770           assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
771           w->at = mn_now + w->repeat;
772           downheap ((WT *)timers, timercnt, 0);
773         }
774       else
775         ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
776
777       event (EV_A_ (W)w, EV_TIMEOUT);
778     }
779 }
780
781 static void
782 periodics_reify (EV_P)
783 {
784   while (periodiccnt && periodics [0]->at <= rt_now)
785     {
786       struct ev_periodic *w = periodics [0];
787
788       /* first reschedule or stop timer */
789       if (w->interval)
790         {
791           w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
792           assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
793           downheap ((WT *)periodics, periodiccnt, 0);
794         }
795       else
796         ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
797
798       event (EV_A_ (W)w, EV_PERIODIC);
799     }
800 }
801
802 static void
803 periodics_reschedule (EV_P)
804 {
805   int i;
806
807   /* adjust periodics after time jump */
808   for (i = 0; i < periodiccnt; ++i)
809     {
810       struct ev_periodic *w = periodics [i];
811
812       if (w->interval)
813         {
814           ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
815
816           if (fabs (diff) >= 1e-4)
817             {
818               ev_periodic_stop (EV_A_ w);
819               ev_periodic_start (EV_A_ w);
820
821               i = 0; /* restart loop, inefficient, but time jumps should be rare */
822             }
823         }
824     }
825 }
826
827 inline int
828 time_update_monotonic (EV_P)
829 {
830   mn_now = get_clock ();
831
832   if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
833     {
834       rt_now = rtmn_diff + mn_now;
835       return 0;
836     }
837   else
838     {
839       now_floor = mn_now;
840       rt_now = ev_time ();
841       return 1;
842     }
843 }
844
845 static void
846 time_update (EV_P)
847 {
848   int i;
849
850 #if EV_USE_MONOTONIC
851   if (expect_true (have_monotonic))
852     {
853       if (time_update_monotonic (EV_A))
854         {
855           ev_tstamp odiff = rtmn_diff;
856
857           for (i = 4; --i; ) /* loop a few times, before making important decisions */
858             {
859               rtmn_diff = rt_now - mn_now;
860
861               if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
862                 return; /* all is well */
863
864               rt_now    = ev_time ();
865               mn_now    = get_clock ();
866               now_floor = mn_now;
867             }
868
869           periodics_reschedule (EV_A);
870           /* no timer adjustment, as the monotonic clock doesn't jump */
871           /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
872         }
873     }
874   else
875 #endif
876     {
877       rt_now = ev_time ();
878
879       if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
880         {
881           periodics_reschedule (EV_A);
882
883           /* adjust timers. this is easy, as the offset is the same for all */
884           for (i = 0; i < timercnt; ++i)
885             timers [i]->at += rt_now - mn_now;
886         }
887
888       mn_now = rt_now;
889     }
890 }
891
892 void
893 ev_ref (EV_P)
894 {
895   ++activecnt;
896 }
897
898 void
899 ev_unref (EV_P)
900 {
901   --activecnt;
902 }
903
904 static int loop_done;
905
906 void
907 ev_loop (EV_P_ int flags)
908 {
909   double block;
910   loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
911
912   do
913     {
914       /* queue check watchers (and execute them) */
915       if (expect_false (preparecnt))
916         {
917           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
918           call_pending (EV_A);
919         }
920
921       /* update fd-related kernel structures */
922       fd_reify (EV_A);
923
924       /* calculate blocking time */
925
926       /* we only need this for !monotonic clockor timers, but as we basically
927          always have timers, we just calculate it always */
928 #if EV_USE_MONOTONIC
929       if (expect_true (have_monotonic))
930         time_update_monotonic (EV_A);
931       else
932 #endif
933         {
934           rt_now = ev_time ();
935           mn_now = rt_now;
936         }
937
938       if (flags & EVLOOP_NONBLOCK || idlecnt)
939         block = 0.;
940       else
941         {
942           block = MAX_BLOCKTIME;
943
944           if (timercnt)
945             {
946               ev_tstamp to = timers [0]->at - mn_now + method_fudge;
947               if (block > to) block = to;
948             }
949
950           if (periodiccnt)
951             {
952               ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
953               if (block > to) block = to;
954             }
955
956           if (block < 0.) block = 0.;
957         }
958
959       method_poll (EV_A_ block);
960
961       /* update rt_now, do magic */
962       time_update (EV_A);
963
964       /* queue pending timers and reschedule them */
965       timers_reify (EV_A); /* relative timers called last */
966       periodics_reify (EV_A); /* absolute timers called first */
967
968       /* queue idle watchers unless io or timers are pending */
969       if (!pendingcnt)
970         queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
971
972       /* queue check watchers, to be executed first */
973       if (checkcnt)
974         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
975
976       call_pending (EV_A);
977     }
978   while (activecnt && !loop_done);
979
980   if (loop_done != 2)
981     loop_done = 0;
982 }
983
984 void
985 ev_unloop (EV_P_ int how)
986 {
987   loop_done = how;
988 }
989
990 /*****************************************************************************/
991
992 inline void
993 wlist_add (WL *head, WL elem)
994 {
995   elem->next = *head;
996   *head = elem;
997 }
998
999 inline void
1000 wlist_del (WL *head, WL elem)
1001 {
1002   while (*head)
1003     {
1004       if (*head == elem)
1005         {
1006           *head = elem->next;
1007           return;
1008         }
1009
1010       head = &(*head)->next;
1011     }
1012 }
1013
1014 inline void
1015 ev_clear_pending (EV_P_ W w)
1016 {
1017   if (w->pending)
1018     {
1019       pendings [ABSPRI (w)][w->pending - 1].w = 0;
1020       w->pending = 0;
1021     }
1022 }
1023
1024 inline void
1025 ev_start (EV_P_ W w, int active)
1026 {
1027   if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1028   if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1029
1030   w->active = active;
1031   ev_ref (EV_A);
1032 }
1033
1034 inline void
1035 ev_stop (EV_P_ W w)
1036 {
1037   ev_unref (EV_A);
1038   w->active = 0;
1039 }
1040
1041 /*****************************************************************************/
1042
1043 void
1044 ev_io_start (EV_P_ struct ev_io *w)
1045 {
1046   int fd = w->fd;
1047
1048   if (ev_is_active (w))
1049     return;
1050
1051   assert (("ev_io_start called with negative fd", fd >= 0));
1052
1053   ev_start (EV_A_ (W)w, 1);
1054   array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1055   wlist_add ((WL *)&anfds[fd].head, (WL)w);
1056
1057   fd_change (EV_A_ fd);
1058 }
1059
1060 void
1061 ev_io_stop (EV_P_ struct ev_io *w)
1062 {
1063   ev_clear_pending (EV_A_ (W)w);
1064   if (!ev_is_active (w))
1065     return;
1066
1067   wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1068   ev_stop (EV_A_ (W)w);
1069
1070   fd_change (EV_A_ w->fd);
1071 }
1072
1073 void
1074 ev_timer_start (EV_P_ struct ev_timer *w)
1075 {
1076   if (ev_is_active (w))
1077     return;
1078
1079   w->at += mn_now;
1080
1081   assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1082
1083   ev_start (EV_A_ (W)w, ++timercnt);
1084   array_needsize (timers, timermax, timercnt, );
1085   timers [timercnt - 1] = w;
1086   upheap ((WT *)timers, timercnt - 1);
1087 }
1088
1089 void
1090 ev_timer_stop (EV_P_ struct ev_timer *w)
1091 {
1092   ev_clear_pending (EV_A_ (W)w);
1093   if (!ev_is_active (w))
1094     return;
1095
1096   if (w->active < timercnt--)
1097     {
1098       timers [w->active - 1] = timers [timercnt];
1099       downheap ((WT *)timers, timercnt, w->active - 1);
1100     }
1101
1102   w->at = w->repeat;
1103
1104   ev_stop (EV_A_ (W)w);
1105 }
1106
1107 void
1108 ev_timer_again (EV_P_ struct ev_timer *w)
1109 {
1110   if (ev_is_active (w))
1111     {
1112       if (w->repeat)
1113         {
1114           w->at = mn_now + w->repeat;
1115           downheap ((WT *)timers, timercnt, w->active - 1);
1116         }
1117       else
1118         ev_timer_stop (EV_A_ w);
1119     }
1120   else if (w->repeat)
1121     ev_timer_start (EV_A_ w);
1122 }
1123
1124 void
1125 ev_periodic_start (EV_P_ struct ev_periodic *w)
1126 {
1127   if (ev_is_active (w))
1128     return;
1129
1130   assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1131
1132   /* this formula differs from the one in periodic_reify because we do not always round up */
1133   if (w->interval)
1134     w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1135
1136   ev_start (EV_A_ (W)w, ++periodiccnt);
1137   array_needsize (periodics, periodicmax, periodiccnt, );
1138   periodics [periodiccnt - 1] = w;
1139   upheap ((WT *)periodics, periodiccnt - 1);
1140 }
1141
1142 void
1143 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1144 {
1145   ev_clear_pending (EV_A_ (W)w);
1146   if (!ev_is_active (w))
1147     return;
1148
1149   if (w->active < periodiccnt--)
1150     {
1151       periodics [w->active - 1] = periodics [periodiccnt];
1152       downheap ((WT *)periodics, periodiccnt, w->active - 1);
1153     }
1154
1155   ev_stop (EV_A_ (W)w);
1156 }
1157
1158 void
1159 ev_idle_start (EV_P_ struct ev_idle *w)
1160 {
1161   if (ev_is_active (w))
1162     return;
1163
1164   ev_start (EV_A_ (W)w, ++idlecnt);
1165   array_needsize (idles, idlemax, idlecnt, );
1166   idles [idlecnt - 1] = w;
1167 }
1168
1169 void
1170 ev_idle_stop (EV_P_ struct ev_idle *w)
1171 {
1172   ev_clear_pending (EV_A_ (W)w);
1173   if (ev_is_active (w))
1174     return;
1175
1176   idles [w->active - 1] = idles [--idlecnt];
1177   ev_stop (EV_A_ (W)w);
1178 }
1179
1180 void
1181 ev_prepare_start (EV_P_ struct ev_prepare *w)
1182 {
1183   if (ev_is_active (w))
1184     return;
1185
1186   ev_start (EV_A_ (W)w, ++preparecnt);
1187   array_needsize (prepares, preparemax, preparecnt, );
1188   prepares [preparecnt - 1] = w;
1189 }
1190
1191 void
1192 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1193 {
1194   ev_clear_pending (EV_A_ (W)w);
1195   if (ev_is_active (w))
1196     return;
1197
1198   prepares [w->active - 1] = prepares [--preparecnt];
1199   ev_stop (EV_A_ (W)w);
1200 }
1201
1202 void
1203 ev_check_start (EV_P_ struct ev_check *w)
1204 {
1205   if (ev_is_active (w))
1206     return;
1207
1208   ev_start (EV_A_ (W)w, ++checkcnt);
1209   array_needsize (checks, checkmax, checkcnt, );
1210   checks [checkcnt - 1] = w;
1211 }
1212
1213 void
1214 ev_check_stop (EV_P_ struct ev_check *w)
1215 {
1216   ev_clear_pending (EV_A_ (W)w);
1217   if (ev_is_active (w))
1218     return;
1219
1220   checks [w->active - 1] = checks [--checkcnt];
1221   ev_stop (EV_A_ (W)w);
1222 }
1223
1224 #ifndef SA_RESTART
1225 # define SA_RESTART 0
1226 #endif
1227
1228 void
1229 ev_signal_start (EV_P_ struct ev_signal *w)
1230 {
1231 #if EV_MULTIPLICITY
1232   assert (("signal watchers are only supported in the default loop", loop == default_loop));
1233 #endif
1234   if (ev_is_active (w))
1235     return;
1236
1237   assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1238
1239   ev_start (EV_A_ (W)w, 1);
1240   array_needsize (signals, signalmax, w->signum, signals_init);
1241   wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1242
1243   if (!w->next)
1244     {
1245       struct sigaction sa;
1246       sa.sa_handler = sighandler;
1247       sigfillset (&sa.sa_mask);
1248       sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1249       sigaction (w->signum, &sa, 0);
1250     }
1251 }
1252
1253 void
1254 ev_signal_stop (EV_P_ struct ev_signal *w)
1255 {
1256   ev_clear_pending (EV_A_ (W)w);
1257   if (!ev_is_active (w))
1258     return;
1259
1260   wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1261   ev_stop (EV_A_ (W)w);
1262
1263   if (!signals [w->signum - 1].head)
1264     signal (w->signum, SIG_DFL);
1265 }
1266
1267 void
1268 ev_child_start (EV_P_ struct ev_child *w)
1269 {
1270 #if EV_MULTIPLICITY
1271   assert (("child watchers are only supported in the default loop", loop == default_loop));
1272 #endif
1273   if (ev_is_active (w))
1274     return;
1275
1276   ev_start (EV_A_ (W)w, 1);
1277   wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1278 }
1279
1280 void
1281 ev_child_stop (EV_P_ struct ev_child *w)
1282 {
1283   ev_clear_pending (EV_A_ (W)w);
1284   if (ev_is_active (w))
1285     return;
1286
1287   wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1288   ev_stop (EV_A_ (W)w);
1289 }
1290
1291 /*****************************************************************************/
1292
1293 struct ev_once
1294 {
1295   struct ev_io io;
1296   struct ev_timer to;
1297   void (*cb)(int revents, void *arg);
1298   void *arg;
1299 };
1300
1301 static void
1302 once_cb (EV_P_ struct ev_once *once, int revents)
1303 {
1304   void (*cb)(int revents, void *arg) = once->cb;
1305   void *arg = once->arg;
1306
1307   ev_io_stop (EV_A_ &once->io);
1308   ev_timer_stop (EV_A_ &once->to);
1309   free (once);
1310
1311   cb (revents, arg);
1312 }
1313
1314 static void
1315 once_cb_io (EV_P_ struct ev_io *w, int revents)
1316 {
1317   once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1318 }
1319
1320 static void
1321 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1322 {
1323   once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1324 }
1325
1326 void
1327 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1328 {
1329   struct ev_once *once = malloc (sizeof (struct ev_once));
1330
1331   if (!once)
1332     cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1333   else
1334     {
1335       once->cb  = cb;
1336       once->arg = arg;
1337
1338       ev_watcher_init (&once->io, once_cb_io);
1339       if (fd >= 0)
1340         {
1341           ev_io_set (&once->io, fd, events);
1342           ev_io_start (EV_A_ &once->io);
1343         }
1344
1345       ev_watcher_init (&once->to, once_cb_to);
1346       if (timeout >= 0.)
1347         {
1348           ev_timer_set (&once->to, timeout, 0.);
1349           ev_timer_start (EV_A_ &once->to);
1350         }
1351     }
1352 }
1353