--- /dev/null
+// vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+//
+// Trabajo Práctico II de Análisis Numérico I
+// Este programa resuelve un sistema de ecuaciones diferenciales
+// resultante de un problema físico de oscilación de líquidos.
+// Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+//
+// Este programa es Software Libre; usted puede redistribuirlo
+// y/o modificarlo bajo los términos de la "GNU General Public
+// License" como lo publica la "FSF Free Software Foundation",
+// o (a su elección) de cualquier versión posterior.
+//
+// Este programa es distribuido con la esperanza de que le será
+// útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+// implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+// particular. Vea la "GNU General Public License" para más
+// detalles.
+//
+// Usted debe haber recibido una copia de la "GNU General Public
+// License" junto con este programa, si no, escriba a la "FSF
+// Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+// Boston, MA 02111-1307, USA.
+//
+// $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/77891.cpp $
+// $Date: 2002-11-24 02:48:38 -0300 (dom, 24 nov 2002) $
+// $Rev: 27 $
+// $Author: luca $
+//
+
+#include <iostream.h>
+#include <stdlib.h>
+#include <math.h>
+
+// Tipos de datos.
+typedef unsigned int Indice;
+typedef float Numero;
+struct Datos;
+typedef Numero (*Friccion)( Datos&, Numero, Numero );
+typedef Numero (*Funcion)( Datos&, Numero, Numero, Numero );
+typedef void (*Metodo)( Datos& );
+struct Datos {
+ Numero to; // Tiempo inicial
+ Numero tf; // Tiempo final
+ Numero k; // Paso
+ Numero xo; // X inicial = X(to) = Z(to)
+ Numero yo; // Y inicial = Y(to) = X'(to) = Z'(to)
+ Numero D; // Diametro del tubo
+ Numero n; // Viscosidad cinemática del líquido
+ Numero g; // Aceleración de la gravedad
+ Numero f; // Factor de fricción
+ Numero L; // Longitud del tubo
+ Numero Le; // Factor de pérdida de carga
+ Numero G; // Factor geométrico
+ Funcion fx; // Función asociada a la derivada de x
+ Funcion fy; // Función asociada a la derivada de y
+ Friccion fi; // Factor asociado a pérdidas por fricción
+};
+
+// Factor de fricción nulo.
+Numero friccionNula( Datos&, Numero, Numero );
+
+// Factor de fricción laminar.
+Numero friccionLaminar( Datos&, Numero, Numero );
+
+// Factor de fricción turbulenta.
+Numero friccionTurbulenta( Datos&, Numero, Numero );
+
+// Factor de fricción turbulenta (con depósitos).
+Numero friccionTurbulentaConDepositos( Datos&, Numero, Numero );
+
+// Función asociada a la primera derivada (x'=z').
+Numero funcionX( Datos&, Numero, Numero, Numero );
+
+// Función asociada a la segunda derivada (y'=x''=z'').
+Numero funcionY( Datos&, Numero, Numero, Numero );
+
+// Calcula la ecuación diferencial por el método de Euler.
+void euler( Datos& );
+
+// Calcula la ecuación diferencial por el método de Runge-Kutta de órden 4.
+void rk4( Datos& );
+
+// Calcula la ecuación diferencial por el método de Nystrom.
+void nystrom( Datos& );
+
+// Constantes.
+const Numero DEFAULT_N = 1000, // Cantidad de pasos por defecto
+ DEFAULT_to = 0.0,
+ DEFAULT_tf = 440.0,
+ DEFAULT_xo = 2.9866369,
+ DEFAULT_yo = 0.0,
+ DEFAULT_D = 0.5,
+ DEFAULT_n = 1e-6,
+ DEFAULT_g = 9.8,
+ DEFAULT_f = 0.03,
+ DEFAULT_L = 892.0,
+ DEFAULT_Le = 1070.4,
+ DEFAULT_G = 2.0;
+const Funcion DEFAULT_fx = &funcionX,
+ DEFAULT_fy = &funcionY;
+const Friccion DEFAULT_fi = &friccionNula;
+
+int main( int argc, char* argv[] ) {
+
+ // Se fija que tenga los argumentos necesarios para correr.
+ if ( argc < 2 ) {
+ cerr << "Faltan argumentos. Modo de uso:" << endl;
+ cerr << "\t" << argv[0] << " método fi G tf N to xo yo D n g f L Le" << endl;
+ cerr << "Desde fi en adelante son opcionales. Los valores por defecto son:" << endl;
+ cerr << "\tfi = n" << endl;
+ cerr << "\tG = " << DEFAULT_G << endl;
+ cerr << "\ttf = " << DEFAULT_tf << endl;
+ cerr << "\tN = " << DEFAULT_N << endl;
+ cerr << "\tto = " << DEFAULT_to << endl;
+ cerr << "\txo = " << DEFAULT_xo << endl;
+ cerr << "\tyo = " << DEFAULT_yo << endl;
+ cerr << "\tD = " << DEFAULT_D << endl;
+ cerr << "\tn = " << DEFAULT_n << endl;
+ cerr << "\tg = " << DEFAULT_g << endl;
+ cerr << "\tf = " << DEFAULT_f << endl;
+ cerr << "\tL = " << DEFAULT_L << endl;
+ cerr << "\tLe = " << DEFAULT_Le << endl;
+ return EXIT_FAILURE;
+ }
+
+ // Selecciona el método deseado.
+ Metodo metodo = NULL;
+ switch ( char( argv[1][0] ) ) {
+ case 'e':
+ metodo = &euler;
+ break;
+ case 'r':
+ metodo = &rk4;
+ break;
+ case 'n':
+ metodo = &nystrom;
+ break;
+ default:
+ cerr << "Debe especificar un método válido:" << endl;
+ cerr << "\te: Euler" << endl;
+ cerr << "\tr: Runge-Kutta 4" << endl;
+ cerr << "\tn: Nystrom" << endl;
+ return EXIT_FAILURE;
+ }
+
+ // Se inicializan los datos.
+ Numero N = DEFAULT_N;
+ Datos D;
+ D.to = DEFAULT_to;
+ D.tf = DEFAULT_tf;
+ D.k = ( D.tf - D.to ) / N;
+ D.xo = DEFAULT_xo;
+ D.yo = DEFAULT_yo;
+ D.D = DEFAULT_D;
+ D.n = DEFAULT_n;
+ D.g = DEFAULT_g;
+ D.f = DEFAULT_f;
+ D.L = DEFAULT_L;
+ D.Le = DEFAULT_Le;
+ D.G = DEFAULT_G;
+ D.fx = DEFAULT_fx;
+ D.fy = DEFAULT_fy;
+ D.fi = DEFAULT_fi;
+
+ // Si se pasaron datos como argumento, se los va agregando.
+ switch ( argc ) {
+ case 15: D.Le = Numero( atof( argv[14] ) );
+ case 14: D.L = Numero( atof( argv[13] ) );
+ case 13: D.f = Numero( atof( argv[12] ) );
+ case 12: D.g = Numero( atof( argv[11] ) );
+ case 11: D.n = Numero( atof( argv[10] ) );
+ case 10: D.D = Numero( atof( argv[9] ) );
+ case 9: D.yo = Numero( atof( argv[8] ) );
+ case 8: D.xo = Numero( atof( argv[7] ) );
+ case 7: D.to = Numero( atof( argv[6] ) );
+ case 6: N = Numero( atof( argv[5] ) );
+ case 5: D.tf = Numero( atof( argv[4] ) );
+ // Se recalcula el paso (k) si se cambio to, N o tf.
+ D.k = ( D.tf - D.to ) / N;
+ case 4: D.G = Numero( atof( argv[3] ) );
+ case 3: switch ( char( argv[2][0] ) ) { // Tipo de fricción
+ case 'n':
+ D.fi = &friccionNula;
+ break;
+ case 'l':
+ D.fi = &friccionLaminar;
+ break;
+ case 't':
+ D.fi = &friccionTurbulenta;
+ break;
+ case 'd':
+ D.fi = &friccionTurbulentaConDepositos;
+ break;
+ default:
+ cerr << "Debe especificar un tipo de fricción válido:" << endl;
+ cerr << "\tn: Nula" << endl;
+ cerr << "\tl: Laminar" << endl;
+ cerr << "\tt: Turbulenta" << endl;
+ cerr << "\td: Turbulenta (con depósitos)" << endl;
+ return EXIT_FAILURE;
+ }
+ }
+
+ // Imprime el paso utilizado.
+ cerr << "Paso k = " << D.k << endl;
+
+ // Ejecuta el método correspondiente con los datos correspondientes.
+ metodo( D );
+
+ return EXIT_SUCCESS;
+
+}
+
+Numero friccionNula( Datos& D, Numero x, Numero y ) {
+
+ return 0.0;
+
+}
+
+Numero friccionLaminar( Datos& D, Numero x, Numero y ) {
+
+ return 32 * D.n / ( D.D * D.D );
+
+}
+
+Numero friccionTurbulenta( Datos& D, Numero x, Numero y ) {
+
+ return D.f * fabs( y ) / ( 2 * D.D );
+
+}
+
+Numero friccionTurbulentaConDepositos( Datos& D, Numero x, Numero y ) {
+
+ return D.f * fabs( y ) * D.Le / ( 2 * D.D * D.L);
+
+}
+
+Numero funcionX( Datos& D, Numero t, Numero x, Numero y ) {
+
+ return y;
+
+}
+
+Numero funcionY( Datos& D, Numero t, Numero x, Numero y ) {
+
+ return - D.fi( D, x, y ) * y - D.g * D.G * x / D.L;
+
+}
+
+void euler( Datos& D ) {
+
+ Numero xo = D.xo,
+ yo = D.yo,
+ x = 0.0,
+ y = 0.0,
+ t = D.to;
+
+ while ( t < D.tf ) {
+
+ // Calculo los datos para este punto.
+ x = xo + D.k * D.fx( D, t, xo, yo );
+ y = yo + D.k * D.fy( D, t, xo, yo );
+
+ // Imprimo resultados.
+ cout << t << " " << x << " " << y << endl;
+
+ // Reemplazo valores iniciales.
+ xo = x;
+ yo = y;
+ t += D.k;
+
+ }
+
+}
+
+void rk4( Datos& D ) {
+
+ Numero x = D.xo,
+ y = D.yo,
+ t = D.to,
+ qx1 = 0.0,
+ qx2 = 0.0,
+ qx3 = 0.0,
+ qx4 = 0.0,
+ qy1 = 0.0,
+ qy2 = 0.0,
+ qy3 = 0.0,
+ qy4 = 0.0,
+ unSexto = 1.0 / 6.0;
+
+ // Imprimo datos iniciales.
+ cout << t << " " << x << " " << y << endl;
+
+ while ( t < D.tf ) {
+
+ // Calculo los datos para este punto.
+ qx1 = D.k * D.fx( D, t, x, y );
+ qy1 = D.k * D.fy( D, t, x, y );
+
+ qx2 = D.k * D.fx( D, t + D.k / 2.0, x + qx1 / 2.0, y + qy1 / 2.0 );
+ qy2 = D.k * D.fy( D, t + D.k / 2.0, x + qx1 / 2.0, y + qy1 / 2.0 );
+
+ qx3 = D.k * D.fx( D, t + D.k / 2.0, x + qx2 / 2.0, y + qy2 / 2.0 );
+ qy3 = D.k * D.fy( D, t + D.k / 2.0, x + qx2 / 2.0, y + qy2 / 2.0 );
+
+ qx4 = D.k * D.fx( D, t + D.k, x + qx3, y + qy3 );
+ qy4 = D.k * D.fy( D, t + D.k, x + qx3, y + qy3 );
+
+ x += unSexto * ( qx1 + 2 * qx2 + 2 * qx3 + qx4 );
+ y += unSexto * ( qy1 + 2 * qy2 + 2 * qy3 + qy4 );
+ t += D.k;
+
+ // Imprimo resultados.
+ cout << t << " " << x << " " << y << endl;
+
+ }
+
+}
+
+void nystrom( Datos& D ) {
+
+ Numero gGk2_L = D.g * D.G * D.k * D.k / D.L,
+ xo = D.xo,
+ x1 = ( 1 - gGk2_L * 0.5 ) * D.xo,
+ x2 = 0.0,
+ y = 0.0,
+ fi = 0.0,
+ t = D.to;
+
+ // Imprimo valores iniciales.
+ cout << t << " " << xo << " " << y << endl;
+ y = ( x1 - xo ) / D.k;
+ cout << t << " " << x1 << " " << y << endl;
+
+ while ( t < D.tf ) {
+
+ // Calculo los datos para este punto.
+ fi = D.fi( D, x1, y );
+ x2 = ( ( fi - 1 ) * xo + ( 2 - gGk2_L ) * x1 ) / ( fi + 1 );
+
+ // Prepara para próxima iteración
+ t += D.k;
+ xo = x1;
+ x1 = x2;
+ y = ( x1 - xo ) / D.k;
+
+ // Imprimo resultados.
+ cout << t << " " << x2 << " " << y << endl;
+
+ }
+
+}
--- /dev/null
+ GNU Free Documentation License
+ Version 1.1, March 2000
+
+ Copyright (C) 2000 Free Software Foundation, Inc.
+ 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+
+0. PREAMBLE
+
+The purpose of this License is to make a manual, textbook, or other
+written document "free" in the sense of freedom: to assure everyone
+the effective freedom to copy and redistribute it, with or without
+modifying it, either commercially or noncommercially. Secondarily,
+this License preserves for the author and publisher a way to get
+credit for their work, while not being considered responsible for
+modifications made by others.
+
+This License is a kind of "copyleft", which means that derivative
+works of the document must themselves be free in the same sense. It
+complements the GNU General Public License, which is a copyleft
+license designed for free software.
+
+We have designed this License in order to use it for manuals for free
+software, because free software needs free documentation: a free
+program should come with manuals providing the same freedoms that the
+software does. But this License is not limited to software manuals;
+it can be used for any textual work, regardless of subject matter or
+whether it is published as a printed book. We recommend this License
+principally for works whose purpose is instruction or reference.
+
+
+1. APPLICABILITY AND DEFINITIONS
+
+This License applies to any manual or other work that contains a
+notice placed by the copyright holder saying it can be distributed
+under the terms of this License. The "Document", below, refers to any
+such manual or work. Any member of the public is a licensee, and is
+addressed as "you".
+
+A "Modified Version" of the Document means any work containing the
+Document or a portion of it, either copied verbatim, or with
+modifications and/or translated into another language.
+
+A "Secondary Section" is a named appendix or a front-matter section of
+the Document that deals exclusively with the relationship of the
+publishers or authors of the Document to the Document's overall subject
+(or to related matters) and contains nothing that could fall directly
+within that overall subject. (For example, if the Document is in part a
+textbook of mathematics, a Secondary Section may not explain any
+mathematics.) The relationship could be a matter of historical
+connection with the subject or with related matters, or of legal,
+commercial, philosophical, ethical or political position regarding
+them.
+
+The "Invariant Sections" are certain Secondary Sections whose titles
+are designated, as being those of Invariant Sections, in the notice
+that says that the Document is released under this License.
+
+The "Cover Texts" are certain short passages of text that are listed,
+as Front-Cover Texts or Back-Cover Texts, in the notice that says that
+the Document is released under this License.
+
+A "Transparent" copy of the Document means a machine-readable copy,
+represented in a format whose specification is available to the
+general public, whose contents can be viewed and edited directly and
+straightforwardly with generic text editors or (for images composed of
+pixels) generic paint programs or (for drawings) some widely available
+drawing editor, and that is suitable for input to text formatters or
+for automatic translation to a variety of formats suitable for input
+to text formatters. A copy made in an otherwise Transparent file
+format whose markup has been designed to thwart or discourage
+subsequent modification by readers is not Transparent. A copy that is
+not "Transparent" is called "Opaque".
+
+Examples of suitable formats for Transparent copies include plain
+ASCII without markup, Texinfo input format, LaTeX input format, SGML
+or XML using a publicly available DTD, and standard-conforming simple
+HTML designed for human modification. Opaque formats include
+PostScript, PDF, proprietary formats that can be read and edited only
+by proprietary word processors, SGML or XML for which the DTD and/or
+processing tools are not generally available, and the
+machine-generated HTML produced by some word processors for output
+purposes only.
+
+The "Title Page" means, for a printed book, the title page itself,
+plus such following pages as are needed to hold, legibly, the material
+this License requires to appear in the title page. For works in
+formats which do not have any title page as such, "Title Page" means
+the text near the most prominent appearance of the work's title,
+preceding the beginning of the body of the text.
+
+
+2. VERBATIM COPYING
+
+You may copy and distribute the Document in any medium, either
+commercially or noncommercially, provided that this License, the
+copyright notices, and the license notice saying this License applies
+to the Document are reproduced in all copies, and that you add no other
+conditions whatsoever to those of this License. You may not use
+technical measures to obstruct or control the reading or further
+copying of the copies you make or distribute. However, you may accept
+compensation in exchange for copies. If you distribute a large enough
+number of copies you must also follow the conditions in section 3.
+
+You may also lend copies, under the same conditions stated above, and
+you may publicly display copies.
+
+
+3. COPYING IN QUANTITY
+
+If you publish printed copies of the Document numbering more than 100,
+and the Document's license notice requires Cover Texts, you must enclose
+the copies in covers that carry, clearly and legibly, all these Cover
+Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
+the back cover. Both covers must also clearly and legibly identify
+you as the publisher of these copies. The front cover must present
+the full title with all words of the title equally prominent and
+visible. You may add other material on the covers in addition.
+Copying with changes limited to the covers, as long as they preserve
+the title of the Document and satisfy these conditions, can be treated
+as verbatim copying in other respects.
+
+If the required texts for either cover are too voluminous to fit
+legibly, you should put the first ones listed (as many as fit
+reasonably) on the actual cover, and continue the rest onto adjacent
+pages.
+
+If you publish or distribute Opaque copies of the Document numbering
+more than 100, you must either include a machine-readable Transparent
+copy along with each Opaque copy, or state in or with each Opaque copy
+a publicly-accessible computer-network location containing a complete
+Transparent copy of the Document, free of added material, which the
+general network-using public has access to download anonymously at no
+charge using public-standard network protocols. If you use the latter
+option, you must take reasonably prudent steps, when you begin
+distribution of Opaque copies in quantity, to ensure that this
+Transparent copy will remain thus accessible at the stated location
+until at least one year after the last time you distribute an Opaque
+copy (directly or through your agents or retailers) of that edition to
+the public.
+
+It is requested, but not required, that you contact the authors of the
+Document well before redistributing any large number of copies, to give
+them a chance to provide you with an updated version of the Document.
+
+
+4. MODIFICATIONS
+
+You may copy and distribute a Modified Version of the Document under
+the conditions of sections 2 and 3 above, provided that you release
+the Modified Version under precisely this License, with the Modified
+Version filling the role of the Document, thus licensing distribution
+and modification of the Modified Version to whoever possesses a copy
+of it. In addition, you must do these things in the Modified Version:
+
+A. Use in the Title Page (and on the covers, if any) a title distinct
+ from that of the Document, and from those of previous versions
+ (which should, if there were any, be listed in the History section
+ of the Document). You may use the same title as a previous version
+ if the original publisher of that version gives permission.
+B. List on the Title Page, as authors, one or more persons or entities
+ responsible for authorship of the modifications in the Modified
+ Version, together with at least five of the principal authors of the
+ Document (all of its principal authors, if it has less than five).
+C. State on the Title page the name of the publisher of the
+ Modified Version, as the publisher.
+D. Preserve all the copyright notices of the Document.
+E. Add an appropriate copyright notice for your modifications
+ adjacent to the other copyright notices.
+F. Include, immediately after the copyright notices, a license notice
+ giving the public permission to use the Modified Version under the
+ terms of this License, in the form shown in the Addendum below.
+G. Preserve in that license notice the full lists of Invariant Sections
+ and required Cover Texts given in the Document's license notice.
+H. Include an unaltered copy of this License.
+I. Preserve the section entitled "History", and its title, and add to
+ it an item stating at least the title, year, new authors, and
+ publisher of the Modified Version as given on the Title Page. If
+ there is no section entitled "History" in the Document, create one
+ stating the title, year, authors, and publisher of the Document as
+ given on its Title Page, then add an item describing the Modified
+ Version as stated in the previous sentence.
+J. Preserve the network location, if any, given in the Document for
+ public access to a Transparent copy of the Document, and likewise
+ the network locations given in the Document for previous versions
+ it was based on. These may be placed in the "History" section.
+ You may omit a network location for a work that was published at
+ least four years before the Document itself, or if the original
+ publisher of the version it refers to gives permission.
+K. In any section entitled "Acknowledgements" or "Dedications",
+ preserve the section's title, and preserve in the section all the
+ substance and tone of each of the contributor acknowledgements
+ and/or dedications given therein.
+L. Preserve all the Invariant Sections of the Document,
+ unaltered in their text and in their titles. Section numbers
+ or the equivalent are not considered part of the section titles.
+M. Delete any section entitled "Endorsements". Such a section
+ may not be included in the Modified Version.
+N. Do not retitle any existing section as "Endorsements"
+ or to conflict in title with any Invariant Section.
+
+If the Modified Version includes new front-matter sections or
+appendices that qualify as Secondary Sections and contain no material
+copied from the Document, you may at your option designate some or all
+of these sections as invariant. To do this, add their titles to the
+list of Invariant Sections in the Modified Version's license notice.
+These titles must be distinct from any other section titles.
+
+You may add a section entitled "Endorsements", provided it contains
+nothing but endorsements of your Modified Version by various
+parties--for example, statements of peer review or that the text has
+been approved by an organization as the authoritative definition of a
+standard.
+
+You may add a passage of up to five words as a Front-Cover Text, and a
+passage of up to 25 words as a Back-Cover Text, to the end of the list
+of Cover Texts in the Modified Version. Only one passage of
+Front-Cover Text and one of Back-Cover Text may be added by (or
+through arrangements made by) any one entity. If the Document already
+includes a cover text for the same cover, previously added by you or
+by arrangement made by the same entity you are acting on behalf of,
+you may not add another; but you may replace the old one, on explicit
+permission from the previous publisher that added the old one.
+
+The author(s) and publisher(s) of the Document do not by this License
+give permission to use their names for publicity for or to assert or
+imply endorsement of any Modified Version.
+
+
+5. COMBINING DOCUMENTS
+
+You may combine the Document with other documents released under this
+License, under the terms defined in section 4 above for modified
+versions, provided that you include in the combination all of the
+Invariant Sections of all of the original documents, unmodified, and
+list them all as Invariant Sections of your combined work in its
+license notice.
+
+The combined work need only contain one copy of this License, and
+multiple identical Invariant Sections may be replaced with a single
+copy. If there are multiple Invariant Sections with the same name but
+different contents, make the title of each such section unique by
+adding at the end of it, in parentheses, the name of the original
+author or publisher of that section if known, or else a unique number.
+Make the same adjustment to the section titles in the list of
+Invariant Sections in the license notice of the combined work.
+
+In the combination, you must combine any sections entitled "History"
+in the various original documents, forming one section entitled
+"History"; likewise combine any sections entitled "Acknowledgements",
+and any sections entitled "Dedications". You must delete all sections
+entitled "Endorsements."
+
+
+6. COLLECTIONS OF DOCUMENTS
+
+You may make a collection consisting of the Document and other documents
+released under this License, and replace the individual copies of this
+License in the various documents with a single copy that is included in
+the collection, provided that you follow the rules of this License for
+verbatim copying of each of the documents in all other respects.
+
+You may extract a single document from such a collection, and distribute
+it individually under this License, provided you insert a copy of this
+License into the extracted document, and follow this License in all
+other respects regarding verbatim copying of that document.
+
+
+7. AGGREGATION WITH INDEPENDENT WORKS
+
+A compilation of the Document or its derivatives with other separate
+and independent documents or works, in or on a volume of a storage or
+distribution medium, does not as a whole count as a Modified Version
+of the Document, provided no compilation copyright is claimed for the
+compilation. Such a compilation is called an "aggregate", and this
+License does not apply to the other self-contained works thus compiled
+with the Document, on account of their being thus compiled, if they
+are not themselves derivative works of the Document.
+
+If the Cover Text requirement of section 3 is applicable to these
+copies of the Document, then if the Document is less than one quarter
+of the entire aggregate, the Document's Cover Texts may be placed on
+covers that surround only the Document within the aggregate.
+Otherwise they must appear on covers around the whole aggregate.
+
+
+8. TRANSLATION
+
+Translation is considered a kind of modification, so you may
+distribute translations of the Document under the terms of section 4.
+Replacing Invariant Sections with translations requires special
+permission from their copyright holders, but you may include
+translations of some or all Invariant Sections in addition to the
+original versions of these Invariant Sections. You may include a
+translation of this License provided that you also include the
+original English version of this License. In case of a disagreement
+between the translation and the original English version of this
+License, the original English version will prevail.
+
+
+9. TERMINATION
+
+You may not copy, modify, sublicense, or distribute the Document except
+as expressly provided for under this License. Any other attempt to
+copy, modify, sublicense or distribute the Document is void, and will
+automatically terminate your rights under this License. However,
+parties who have received copies, or rights, from you under this
+License will not have their licenses terminated so long as such
+parties remain in full compliance.
+
+
+10. FUTURE REVISIONS OF THIS LICENSE
+
+The Free Software Foundation may publish new, revised versions
+of the GNU Free Documentation License from time to time. Such new
+versions will be similar in spirit to the present version, but may
+differ in detail to address new problems or concerns. See
+http://www.gnu.org/copyleft/.
+
+Each version of the License is given a distinguishing version number.
+If the Document specifies that a particular numbered version of this
+License "or any later version" applies to it, you have the option of
+following the terms and conditions either of that specified version or
+of any later version that has been published (not as a draft) by the
+Free Software Foundation. If the Document does not specify a version
+number of this License, you may choose any version ever published (not
+as a draft) by the Free Software Foundation.
+
+
+ADDENDUM: How to use this License for your documents
+
+To use this License in a document you have written, include a copy of
+the License in the document and put the following copyright and
+license notices just after the title page:
+
+ Copyright (c) YEAR YOUR NAME.
+ Permission is granted to copy, distribute and/or modify this document
+ under the terms of the GNU Free Documentation License, Version 1.1
+ or any later version published by the Free Software Foundation;
+ with the Invariant Sections being LIST THEIR TITLES, with the
+ Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
+ A copy of the license is included in the section entitled "GNU
+ Free Documentation License".
+
+If you have no Invariant Sections, write "with no Invariant Sections"
+instead of saying which ones are invariant. If you have no
+Front-Cover Texts, write "no Front-Cover Texts" instead of
+"Front-Cover Texts being LIST"; likewise for Back-Cover Texts.
+
+If your document contains nontrivial examples of program code, we
+recommend releasing these examples in parallel under your choice of
+free software license, such as the GNU General Public License,
+to permit their use in free software.
--- /dev/null
+ GNU GENERAL PUBLIC LICENSE
+ Version 2, June 1991
+
+ Copyright (C) 1989, 1991 Free Software Foundation, Inc.
+ 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The licenses for most software are designed to take away your
+freedom to share and change it. By contrast, the GNU General Public
+License is intended to guarantee your freedom to share and change free
+software--to make sure the software is free for all its users. This
+General Public License applies to most of the Free Software
+Foundation's software and to any other program whose authors commit to
+using it. (Some other Free Software Foundation software is covered by
+the GNU Library General Public License instead.) You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+this service if you wish), that you receive source code or can get it
+if you want it, that you can change the software or use pieces of it
+in new free programs; and that you know you can do these things.
+
+ To protect your rights, we need to make restrictions that forbid
+anyone to deny you these rights or to ask you to surrender the rights.
+These restrictions translate to certain responsibilities for you if you
+distribute copies of the software, or if you modify it.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must give the recipients all the rights that
+you have. You must make sure that they, too, receive or can get the
+source code. And you must show them these terms so they know their
+rights.
+
+ We protect your rights with two steps: (1) copyright the software, and
+(2) offer you this license which gives you legal permission to copy,
+distribute and/or modify the software.
+
+ Also, for each author's protection and ours, we want to make certain
+that everyone understands that there is no warranty for this free
+software. If the software is modified by someone else and passed on, we
+want its recipients to know that what they have is not the original, so
+that any problems introduced by others will not reflect on the original
+authors' reputations.
+
+ Finally, any free program is threatened constantly by software
+patents. We wish to avoid the danger that redistributors of a free
+program will individually obtain patent licenses, in effect making the
+program proprietary. To prevent this, we have made it clear that any
+patent must be licensed for everyone's free use or not licensed at all.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+\f
+ GNU GENERAL PUBLIC LICENSE
+ TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
+
+ 0. This License applies to any program or other work which contains
+a notice placed by the copyright holder saying it may be distributed
+under the terms of this General Public License. The "Program", below,
+refers to any such program or work, and a "work based on the Program"
+means either the Program or any derivative work under copyright law:
+that is to say, a work containing the Program or a portion of it,
+either verbatim or with modifications and/or translated into another
+language. (Hereinafter, translation is included without limitation in
+the term "modification".) Each licensee is addressed as "you".
+
+Activities other than copying, distribution and modification are not
+covered by this License; they are outside its scope. The act of
+running the Program is not restricted, and the output from the Program
+is covered only if its contents constitute a work based on the
+Program (independent of having been made by running the Program).
+Whether that is true depends on what the Program does.
+
+ 1. You may copy and distribute verbatim copies of the Program's
+source code as you receive it, in any medium, provided that you
+conspicuously and appropriately publish on each copy an appropriate
+copyright notice and disclaimer of warranty; keep intact all the
+notices that refer to this License and to the absence of any warranty;
+and give any other recipients of the Program a copy of this License
+along with the Program.
+
+You may charge a fee for the physical act of transferring a copy, and
+you may at your option offer warranty protection in exchange for a fee.
+
+ 2. You may modify your copy or copies of the Program or any portion
+of it, thus forming a work based on the Program, and copy and
+distribute such modifications or work under the terms of Section 1
+above, provided that you also meet all of these conditions:
+
+ a) You must cause the modified files to carry prominent notices
+ stating that you changed the files and the date of any change.
+
+ b) You must cause any work that you distribute or publish, that in
+ whole or in part contains or is derived from the Program or any
+ part thereof, to be licensed as a whole at no charge to all third
+ parties under the terms of this License.
+
+ c) If the modified program normally reads commands interactively
+ when run, you must cause it, when started running for such
+ interactive use in the most ordinary way, to print or display an
+ announcement including an appropriate copyright notice and a
+ notice that there is no warranty (or else, saying that you provide
+ a warranty) and that users may redistribute the program under
+ these conditions, and telling the user how to view a copy of this
+ License. (Exception: if the Program itself is interactive but
+ does not normally print such an announcement, your work based on
+ the Program is not required to print an announcement.)
+\f
+These requirements apply to the modified work as a whole. If
+identifiable sections of that work are not derived from the Program,
+and can be reasonably considered independent and separate works in
+themselves, then this License, and its terms, do not apply to those
+sections when you distribute them as separate works. But when you
+distribute the same sections as part of a whole which is a work based
+on the Program, the distribution of the whole must be on the terms of
+this License, whose permissions for other licensees extend to the
+entire whole, and thus to each and every part regardless of who wrote it.
+
+Thus, it is not the intent of this section to claim rights or contest
+your rights to work written entirely by you; rather, the intent is to
+exercise the right to control the distribution of derivative or
+collective works based on the Program.
+
+In addition, mere aggregation of another work not based on the Program
+with the Program (or with a work based on the Program) on a volume of
+a storage or distribution medium does not bring the other work under
+the scope of this License.
+
+ 3. You may copy and distribute the Program (or a work based on it,
+under Section 2) in object code or executable form under the terms of
+Sections 1 and 2 above provided that you also do one of the following:
+
+ a) Accompany it with the complete corresponding machine-readable
+ source code, which must be distributed under the terms of Sections
+ 1 and 2 above on a medium customarily used for software interchange; or,
+
+ b) Accompany it with a written offer, valid for at least three
+ years, to give any third party, for a charge no more than your
+ cost of physically performing source distribution, a complete
+ machine-readable copy of the corresponding source code, to be
+ distributed under the terms of Sections 1 and 2 above on a medium
+ customarily used for software interchange; or,
+
+ c) Accompany it with the information you received as to the offer
+ to distribute corresponding source code. (This alternative is
+ allowed only for noncommercial distribution and only if you
+ received the program in object code or executable form with such
+ an offer, in accord with Subsection b above.)
+
+The source code for a work means the preferred form of the work for
+making modifications to it. For an executable work, complete source
+code means all the source code for all modules it contains, plus any
+associated interface definition files, plus the scripts used to
+control compilation and installation of the executable. However, as a
+special exception, the source code distributed need not include
+anything that is normally distributed (in either source or binary
+form) with the major components (compiler, kernel, and so on) of the
+operating system on which the executable runs, unless that component
+itself accompanies the executable.
+
+If distribution of executable or object code is made by offering
+access to copy from a designated place, then offering equivalent
+access to copy the source code from the same place counts as
+distribution of the source code, even though third parties are not
+compelled to copy the source along with the object code.
+\f
+ 4. You may not copy, modify, sublicense, or distribute the Program
+except as expressly provided under this License. Any attempt
+otherwise to copy, modify, sublicense or distribute the Program is
+void, and will automatically terminate your rights under this License.
+However, parties who have received copies, or rights, from you under
+this License will not have their licenses terminated so long as such
+parties remain in full compliance.
+
+ 5. You are not required to accept this License, since you have not
+signed it. However, nothing else grants you permission to modify or
+distribute the Program or its derivative works. These actions are
+prohibited by law if you do not accept this License. Therefore, by
+modifying or distributing the Program (or any work based on the
+Program), you indicate your acceptance of this License to do so, and
+all its terms and conditions for copying, distributing or modifying
+the Program or works based on it.
+
+ 6. Each time you redistribute the Program (or any work based on the
+Program), the recipient automatically receives a license from the
+original licensor to copy, distribute or modify the Program subject to
+these terms and conditions. You may not impose any further
+restrictions on the recipients' exercise of the rights granted herein.
+You are not responsible for enforcing compliance by third parties to
+this License.
+
+ 7. If, as a consequence of a court judgment or allegation of patent
+infringement or for any other reason (not limited to patent issues),
+conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot
+distribute so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you
+may not distribute the Program at all. For example, if a patent
+license would not permit royalty-free redistribution of the Program by
+all those who receive copies directly or indirectly through you, then
+the only way you could satisfy both it and this License would be to
+refrain entirely from distribution of the Program.
+
+If any portion of this section is held invalid or unenforceable under
+any particular circumstance, the balance of the section is intended to
+apply and the section as a whole is intended to apply in other
+circumstances.
+
+It is not the purpose of this section to induce you to infringe any
+patents or other property right claims or to contest validity of any
+such claims; this section has the sole purpose of protecting the
+integrity of the free software distribution system, which is
+implemented by public license practices. Many people have made
+generous contributions to the wide range of software distributed
+through that system in reliance on consistent application of that
+system; it is up to the author/donor to decide if he or she is willing
+to distribute software through any other system and a licensee cannot
+impose that choice.
+
+This section is intended to make thoroughly clear what is believed to
+be a consequence of the rest of this License.
+\f
+ 8. If the distribution and/or use of the Program is restricted in
+certain countries either by patents or by copyrighted interfaces, the
+original copyright holder who places the Program under this License
+may add an explicit geographical distribution limitation excluding
+those countries, so that distribution is permitted only in or among
+countries not thus excluded. In such case, this License incorporates
+the limitation as if written in the body of this License.
+
+ 9. The Free Software Foundation may publish revised and/or new versions
+of the General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+Each version is given a distinguishing version number. If the Program
+specifies a version number of this License which applies to it and "any
+later version", you have the option of following the terms and conditions
+either of that version or of any later version published by the Free
+Software Foundation. If the Program does not specify a version number of
+this License, you may choose any version ever published by the Free Software
+Foundation.
+
+ 10. If you wish to incorporate parts of the Program into other free
+programs whose distribution conditions are different, write to the author
+to ask for permission. For software which is copyrighted by the Free
+Software Foundation, write to the Free Software Foundation; we sometimes
+make exceptions for this. Our decision will be guided by the two goals
+of preserving the free status of all derivatives of our free software and
+of promoting the sharing and reuse of software generally.
+
+ NO WARRANTY
+
+ 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
+FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
+OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
+PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
+OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
+TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
+PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
+REPAIR OR CORRECTION.
+
+ 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
+REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
+INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
+OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
+TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
+YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
+PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGES.
+
+ END OF TERMS AND CONDITIONS
+\f
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+convey the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+ <one line to give the program's name and a brief idea of what it does.>
+ Copyright (C) <year> <name of author>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+
+
+Also add information on how to contact you by electronic and paper mail.
+
+If the program is interactive, make it output a short notice like this
+when it starts in an interactive mode:
+
+ Gnomovision version 69, Copyright (C) year name of author
+ Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, the commands you use may
+be called something other than `show w' and `show c'; they could even be
+mouse-clicks or menu items--whatever suits your program.
+
+You should also get your employer (if you work as a programmer) or your
+school, if any, to sign a "copyright disclaimer" for the program, if
+necessary. Here is a sample; alter the names:
+
+ Yoyodyne, Inc., hereby disclaims all copyright interest in the program
+ `Gnomovision' (which makes passes at compilers) written by James Hacker.
+
+ <signature of Ty Coon>, 1 April 1989
+ Ty Coon, President of Vice
+
+This General Public License does not permit incorporating your program into
+proprietary programs. If your program is a subroutine library, you may
+consider it more useful to permit linking proprietary applications with the
+library. If this is what you want to do, use the GNU Library General
+Public License instead of this License.
--- /dev/null
+# Trabajo Práctico II de Análisis Numérico I
+# Este programa resuelve un sistema de ecuaciones diferenciales
+# resultante de un problema físico de oscilación de líquidos.
+# Copyright (C) 2002 Leandro Lucarella
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/Makefile $
+# $Date: 2002-12-02 18:03:21 -0300 (lun, 02 dic 2002) $
+# $Rev: 35 $
+# $Author: luca $
+#
+
+#### VARIABLES ####
+CPP_OPTS=-O3 -Wall
+CPP_OPTS_DBG=-g3 -Wall
+LIBS=-lm
+
+
+#### GENERAL ####
+all: tp informe
+tp: c d e f
+clean: clean-c clean-d clean-e clean-f clean-informe clean-77891
+
+
+#### PROGRAMA ####
+77891: 77891.cpp
+ c++ $(CPP_OPTS) $(LIBS) -o 77891 77891.cpp
+77891dbg: 77891.cpp
+ c++ $(CPP_OPTS_DBG) $(LIBS) -o 77891dbg 77891.cpp
+clean-77891:
+ rm -f *.o 77891 77891dbg
+
+
+#### PUNTO C ####
+c: c1 c2 c3
+clean-c: clean-c1 clean-c2 clean-c3
+# C.1
+c1e_k0.44.txt: 77891
+ ./77891 e n 2 440 1000 > c1e_k0.44.txt
+c1e_k0.0044.txt: 77891
+ ./77891 e n 2 440 100000 > c1e_k0.0044.txt
+c1e.eps: c1e_k0.44.txt c1e_k0.0044.txt c1e.gnuplot
+ ./c1e.gnuplot
+c1r.txt: 77891
+ ./77891 r n 2 440 1000 > c1r.txt
+c1r.eps: c1r.txt c1r.gnuplot
+ ./c1r.gnuplot
+c1n.txt: 77891
+ ./77891 n n 2 440 1000 > c1n.txt
+c1n.eps: c1n.txt c1n.gnuplot
+ ./c1n.gnuplot
+c1: c1e.eps c1r.eps c1n.eps
+clean-c1:
+ rm -f c1*.txt c1*.eps
+# C.2
+c2e.txt: 77891 calcula_periodo
+ ./77891 e n 2 5000 100000 | ./calcula_periodo /dev/stdin > c2e.txt
+c2r.txt: 77891 calcula_periodo
+ ./77891 r n 2 5000 100000 | ./calcula_periodo /dev/stdin > c2r.txt
+c2n.txt: 77891 calcula_periodo
+ ./77891 n n 2 5000 100000 | ./calcula_periodo /dev/stdin > c2n.txt
+c2.eps: c2e.txt c2r.txt c2n.txt periodo.gnuplot
+ sed "s/<P>/c/g" periodo.gnuplot | sed "s/<PUNTO_DEP>/sin/g" | \
+ sed "s/<PUNTO_FRIC>/sin/g" | sed "s/<PUNTO_FRIC_TIPO>//g" | \
+ gnuplot
+c2: c2.eps
+clean-c2:
+ rm -f c2*.txt c2.eps
+# C.3
+c3c.eps: c3c.gnuplot
+ ./c3c.gnuplot
+c3o.eps: c3o.gnuplot
+ ./c3o.gnuplot
+c3: c3c.eps c3o.eps
+clean-c3:
+ rm -f c3*.eps
+
+
+#### PUNTO D ####
+d: d1 d2 d3 d4
+clean-d: clean-d1 clean-d2 clean-d3 clean-d4
+# D.1
+d1e.txt: 77891
+ ./77891 e l 2 2500 1000000 > d1e.txt
+d1e.eps: d1e.txt d1e.gnuplot
+ ./d1e.gnuplot
+d1r.txt: 77891
+ ./77891 r l 2 2500 1000 > d1r.txt
+d1r.eps: d1r.txt d1r.gnuplot
+ ./d1r.gnuplot
+d1n_k2.0.txt: 77891
+ ./77891 n l 2 2500 1250 > d1n_k2.0.txt
+d1n_k0.0625.txt: 77891
+ ./77891 n l 2 2500 40000 > d1n_k0.0625.txt
+d1n.eps: d1n_k2.0.txt d1n_k0.0625.txt d1n.gnuplot
+ ./d1n.gnuplot
+d1: d1e.eps d1r.eps d1n.eps
+clean-d1:
+ rm -f d1*.txt d1*.eps
+# D.2
+d2e.txt: 77891 calcula_periodo
+ ./77891 e l 2 5000 100000 | ./calcula_periodo /dev/stdin > d2e.txt
+d2r.txt: 77891 calcula_periodo
+ ./77891 r l 2 5000 100000 | ./calcula_periodo /dev/stdin > d2r.txt
+d2n.txt: 77891 calcula_periodo
+ ./77891 n l 2 5000 100000 | ./calcula_periodo /dev/stdin > d2n.txt
+d2.eps: d2e.txt d2r.txt d2n.txt periodo.gnuplot
+ sed "s/<P>/d/g" periodo.gnuplot | sed "s/<PUNTO_DEP>/sin/g" | \
+ sed "s/<PUNTO_FRIC>/con/g" | sed "s/<PUNTO_FRIC_TIPO>/ laminar/g" | \
+ gnuplot
+d2: d2.eps
+clean-d2:
+ rm -f d2*.txt d2.eps
+# D.3
+d3e.txt: 77891
+ ./77891 e l 2 405 100000 > d3e.txt
+d3e.max.txt: d3e.txt calcula_maxmin
+ ./calcula_maxmin max d3e.txt > d3e.max.txt
+d3e.min.txt: d3e.txt calcula_maxmin
+ ./calcula_maxmin min d3e.txt > d3e.min.txt
+d3r.txt: 77891
+ ./77891 r l 2 405 1000 > d3r.txt
+d3r.max.txt: d3r.txt calcula_maxmin
+ ./calcula_maxmin max d3r.txt > d3r.max.txt
+d3r.min.txt: d3r.txt calcula_maxmin
+ ./calcula_maxmin min d3r.txt > d3r.min.txt
+d3n.txt: 77891
+ ./77891 n l 2 405 190 > d3n.txt
+d3n.max.txt: d3n.txt calcula_maxmin
+ ./calcula_maxmin max d3n.txt > d3n.max.txt
+d3n.min.txt: d3n.txt calcula_maxmin
+ ./calcula_maxmin min d3n.txt > d3n.min.txt
+d3: d3e.max.txt d3e.min.txt d3r.max.txt d3r.min.txt d3n.max.txt d3n.min.txt
+clean-d3:
+ rm -f d3*.txt
+# D.4
+d4e.eps: d3e.max.txt d3e.min.txt d4e.gnuplot
+ ./d4e.gnuplot
+d4r.eps: d3r.max.txt d3r.min.txt d4r.gnuplot
+ ./d4r.gnuplot
+d4n.eps: d3n.max.txt d3n.min.txt d4n.gnuplot
+ ./d4n.gnuplot
+d4: d4e.eps d4r.eps d4n.eps
+clean-d4:
+ rm -f d4*.eps fit.log
+
+
+#### PUNTO E ####
+e: e1 e2 e3 e4
+clean-e: clean-e1 clean-e2 clean-e3 clean-e4
+# E.1
+e1e.txt: 77891
+ ./77891 e t 2 1250 100000 > e1e.txt
+e1e.eps: e1e.txt e1e.gnuplot
+ ./e1e.gnuplot
+e1r.txt: 77891
+ ./77891 r t 2 1250 400 > e1r.txt
+e1r.eps: e1r.txt e1r.gnuplot
+ ./e1r.gnuplot
+e1n.txt: 77891
+ ./77891 n t 2 1250 625 > e1n.txt
+e1n.eps: e1n.txt e1n.gnuplot
+ ./e1n.gnuplot
+e1: e1e.eps e1r.eps e1n.eps
+clean-e1:
+ rm -f e1*.txt e1*.eps
+# E.2
+e2e.txt: 77891 calcula_periodo
+ ./77891 e t 2 5000 100000 | ./calcula_periodo /dev/stdin > e2e.txt
+e2r.txt: 77891 calcula_periodo
+ ./77891 r t 2 5000 100000 | ./calcula_periodo /dev/stdin > e2r.txt
+e2n.txt: 77891 calcula_periodo
+ ./77891 n t 2 5000 100000 | ./calcula_periodo /dev/stdin > e2n.txt
+e2.eps: e2e.txt e2r.txt e2n.txt periodo.gnuplot
+ sed "s/<P>/e/g" periodo.gnuplot | sed "s/<PUNTO_DEP>/sin/g" | \
+ sed "s/<PUNTO_FRIC>/con/g" | sed "s/<PUNTO_FRIC_TIPO>/ turbulenta/g" | \
+ gnuplot
+e2: e2.eps
+clean-e2:
+ rm -f e2*.txt e2.eps
+# E.3
+e3e.txt: 77891
+ ./77891 e t 2 405 100000 > e3e.txt
+e3e.max.txt: e3e.txt calcula_maxmin
+ ./calcula_maxmin max e3e.txt > e3e.max.txt
+e3e.min.txt: e3e.txt calcula_maxmin
+ ./calcula_maxmin min e3e.txt > e3e.min.txt
+e3r.txt: 77891
+ ./77891 r t 2 405 1000 > e3r.txt
+e3r.max.txt: e3r.txt calcula_maxmin
+ ./calcula_maxmin max e3r.txt > e3r.max.txt
+e3r.min.txt: e3r.txt calcula_maxmin
+ ./calcula_maxmin min e3r.txt > e3r.min.txt
+e3n.txt: 77891
+ ./77891 n t 2 405 190 > e3n.txt
+e3n.max.txt: e3n.txt calcula_maxmin
+ ./calcula_maxmin max e3n.txt > e3n.max.txt
+e3n.min.txt: e3n.txt calcula_maxmin
+ ./calcula_maxmin min e3n.txt > e3n.min.txt
+e3: e3e.max.txt e3e.min.txt e3r.max.txt e3r.min.txt e3n.max.txt e3n.min.txt
+clean-e3:
+ rm -f e3*.txt
+# E.4
+e4r.txt: 77891
+ ./77891 r t 2 50000 100000 > e4r.txt
+e4r.max.txt: e4r.txt calcula_maxmin
+ ./calcula_maxmin max e4r.txt > e4r.max.txt
+e4r.min.txt: e4r.txt calcula_maxmin
+ ./calcula_maxmin min e4r.txt > e4r.min.txt
+e4r.eps: e4r.max.txt e4r.min.txt e4r.gnuplot
+ ./e4r.gnuplot
+e4n.txt: 77891
+ ./77891 n t 2 50000 25000 > e4n.txt
+e4n.max.txt: e4n.txt calcula_maxmin
+ ./calcula_maxmin max e4n.txt > e4n.max.txt
+e4n.min.txt: e4n.txt calcula_maxmin
+ ./calcula_maxmin min e4n.txt > e4n.min.txt
+e4n.eps: e4n.max.txt e4n.min.txt e4n.gnuplot
+ ./e4n.gnuplot
+e4: e4r.eps e4n.eps
+clean-e4:
+ rm -f e4*.txt e4*.eps
+
+
+#### PUNTO F ####
+f: f1 f2 f3 f4
+clean-f: clean-f1 clean-f2 clean-f3 clean-f4
+# E.1
+f1e.txt: 77891
+ ./77891 e d 0.03 5000 100000 > f1e.txt
+f1e.eps: f1e.txt f1e.gnuplot
+ ./f1e.gnuplot
+f1r.txt: 77891
+ ./77891 r d 0.03 5000 1000 > f1r.txt
+f1r.eps: f1r.txt f1r.gnuplot
+ ./f1r.gnuplot
+f1n.txt: 77891
+ ./77891 n d 0.03 5000 2500 > f1n.txt
+f1n.eps: f1n.txt f1n.gnuplot
+ ./f1n.gnuplot
+f1: f1e.eps f1r.eps f1n.eps
+clean-f1:
+ rm -f f1*.txt f1*.eps
+# E.2
+f2e.txt: 77891 calcula_periodo
+ ./77891 e d 0.03 40000 100000 | ./calcula_periodo /dev/stdin > f2e.txt
+f2r.txt: 77891 calcula_periodo
+ ./77891 r d 0.03 40000 100000 | ./calcula_periodo /dev/stdin > f2r.txt
+f2n.txt: 77891 calcula_periodo
+ ./77891 n d 0.03 40000 100000 | ./calcula_periodo /dev/stdin > f2n.txt
+f2.eps: f2e.txt f2r.txt f2n.txt periodo.gnuplot
+ sed "s/<P>/f/g" periodo.gnuplot | sed "s/<PUNTO_DEP>/con/g" | \
+ sed "s/<PUNTO_FRIC>/con/g" | sed "s/<PUNTO_FRIC_TIPO>/ turbulenta/g" | \
+ gnuplot
+f2: f2.eps
+clean-f2:
+ rm -f f2*.txt f2.eps
+# E.3
+f3e.txt: 77891
+ ./77891 e d 0.03 3400 340000 > f3e.txt
+f3e.max.txt: f3e.txt calcula_maxmin
+ ./calcula_maxmin max f3e.txt > f3e.max.txt
+f3e.min.txt: f3e.txt calcula_maxmin
+ ./calcula_maxmin min f3e.txt > f3e.min.txt
+f3r.txt: 77891
+ ./77891 r d 0.03 3400 3400 > f3r.txt
+f3r.max.txt: f3r.txt calcula_maxmin
+ ./calcula_maxmin max f3r.txt > f3r.max.txt
+f3r.min.txt: f3r.txt calcula_maxmin
+ ./calcula_maxmin min f3r.txt > f3r.min.txt
+f3n.txt: 77891
+ ./77891 n d 0.03 3400 1700 > f3n.txt
+f3n.max.txt: f3n.txt calcula_maxmin
+ ./calcula_maxmin max f3n.txt > f3n.max.txt
+f3n.min.txt: f3n.txt calcula_maxmin
+ ./calcula_maxmin min f3n.txt > f3n.min.txt
+f3: f3e.max.txt f3e.min.txt f3r.max.txt f3r.min.txt f3n.max.txt f3n.min.txt
+clean-f3:
+ rm -f f3*.txt
+# E.4
+f4r.txt: 77891
+ ./77891 r d 0.03 350000 100000 > f4r.txt
+f4r.max.txt: f4r.txt calcula_maxmin
+ ./calcula_maxmin max f4r.txt > f4r.max.txt
+f4r.min.txt: f4r.txt calcula_maxmin
+ ./calcula_maxmin min f4r.txt > f4r.min.txt
+f4r.eps: f4r.max.txt f4r.min.txt f4r.gnuplot
+ ./f4r.gnuplot
+f4n.txt: 77891
+ ./77891 n d 0.03 350000 175000 > f4n.txt
+f4n.max.txt: f4n.txt calcula_maxmin
+ ./calcula_maxmin max f4n.txt > f4n.max.txt
+f4n.min.txt: f4n.txt calcula_maxmin
+ ./calcula_maxmin min f4n.txt > f4n.min.txt
+f4n.eps: f4n.max.txt f4n.min.txt f4n.gnuplot
+ ./f4n.gnuplot
+f4: f4r.eps f4n.eps
+clean-f4:
+ rm -f f4*.txt f4*.eps
+
+
+#### Informe ####
+informe.ps: informe.lyx c1 c2 c3 d1 d2 d4 e1 e2 e4 f1 f2 f4
+ lyx -e ps informe.lyx
+
+informe.pdf: informe.lyx c1 c2 c3 d1 d2 d4 e1 e2 e4 f1 f2 f4
+ lyx -e pdf informe.lyx
+
+informe.tex: informe.lyx c1 c2 c3 d1 d2 d4 e1 e2 e4 f1 f2 f4
+ lyx -e latex informe.lyx
+informe: informe.ps informe.pdf informe.tex
+clean-informe:
+ rm -f informe.ps informe.tex informe.pdf
--- /dev/null
+vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+
+Trabajo Práctico I de Análisis Numérico II
+
+$URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/README $
+$Date: 2002-12-01 03:16:07 -0300 (dom, 01 dic 2002) $
+$Rev: 34 $
+$Author: luca $
+
+Para generar el Informe del trabajo práctico basta con hacer:
+
+ make all
+
+(ver Makefile para otras opciones)
+
+Para que esto funcione debe tener instalados los siguientes programas:
+* GNU make - http://www.gnu.org/software/make/ (o compatible)
+* GNU GCC - http://gcc.gnu.org/ (o compilador de C++ compatible)
+* gnuplot - http://www.gnuplot.info/
+* LyX - http://www.lyx.org/
+* OpenOffice - http://www.openoffice.org/
+* PHP4 - http://www.php.net/ (compilado como cgi)
+
+El gnuplot es necesario para generar los gráficos, el LyX es
+necesario para generar el informe (y es probable que necesite otras
+herramientas para generar el informe en distintos formatos).
+El OpenOffice es opcional ya que se incluye en el paquete el gráfico
+resultante en formato Postscript. El PHP4 es necesario para calcular
+los máximos y mínimos y el período.
+
+Todos los programas de este paquete se encuentran bajo licencia GPL y
+los documentos bajo licencia GFDL. Ambas se incluyen en el paquete.
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/c1e.gnuplot $
+# $Date: 2002-11-24 19:55:46 -0300 (dom, 24 nov 2002) $
+# $Rev: 29 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "c1e.eps"
+
+# Seteos generales.
+set title "Solución por Euler para el caso sin depósitos y sin fricción"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:440]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z) para k = 0.0044"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Eje Y secundario.
+set y2label "Altura (z) para k = 0.44"
+set y2range [-25:25]
+set y2tics -25, 5
+set my2tics 5
+
+# Plotea
+plot 'c1e_k0.0044.txt' using 1:2 title "k = 0.0044" with lines linetype 3, \
+ 'c1e_k0.44.txt' using 1:2 axes x1y2 title "k = 0.44" with lines linetype 1
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/c1n.gnuplot $
+# $Date: 2002-11-24 19:55:46 -0300 (dom, 24 nov 2002) $
+# $Rev: 29 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "c1n.eps"
+
+# Seteos generales.
+set title "Solución por Nystrom para el caso sin depósitos y sin fricción"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:440]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Eje Y secundario.
+set y2label "Velocidad (z')"
+set y2range [-0.5:0.5]
+set y2tics -0.5, 0.1
+set my2tics 5
+
+# Plotea
+plot 'c1n.txt' using 1:2 title "z" with lines linetype 1, \
+ 'c1n.txt' using 1:3 axes x1y2 title "z'" with lines linetype 7
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/c1r.gnuplot $
+# $Date: 2002-11-24 19:55:46 -0300 (dom, 24 nov 2002) $
+# $Rev: 29 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "c1r.eps"
+
+# Seteos generales.
+set title "Solución por RK4 para el caso sin depósitos y sin fricción"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:440]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Eje Y secundario.
+set y2label "Velocidad (z')"
+set y2range [-0.5:0.5]
+set y2tics -0.5, 0.1
+set my2tics 5
+
+# Plotea
+plot 'c1r.txt' using 1:2 title "z" with lines linetype 1, \
+ 'c1r.txt' using 1:3 axes x1y2 title "z'" with lines linetype 7
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/c3c.gnuplot $
+# $Date: 2002-12-02 18:03:21 -0300 (lun, 02 dic 2002) $
+# $Rev: 35 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "c3c.eps"
+
+# Seteos generales.
+set title "Resolución gráfica del análisis de conservación para RK4."
+set key right top
+
+# Eje X.
+set xlabel "Paso k"
+set xrange [0:10]
+set mxtics 5
+
+# Plotea
+plot x**4 * .02**2 / 4 - x**8 * .02**4 / 2304 - 2 - x**6 * .02**2 / 48 - \
+ x**2 * .02 + x**4 * .02**2 / 24 + abs( x**8 * .02**4 / 2304 + \
+ x**5 * .02**3 / 32 - x**3 * .02**2 / 6 - 3 * x**2 * .02 / 2 ) notitle
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/c3o.gnuplot $
+# $Date: 2002-12-02 18:03:21 -0300 (lun, 02 dic 2002) $
+# $Rev: 35 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "c3o.eps"
+
+# Seteos generales.
+set title "Resolución gráfica del análisis de oscilación para RK4."
+set key right top
+
+# Eje X.
+set xlabel "Paso k"
+set xrange [0:51]
+set mxtics 5
+
+# Plotea
+plot x**4 * .02**3 / 576 + x**3 * .02**2 / 8 - x * .04 / 3 - 6 notitle
--- /dev/null
+#!/usr/bin/php4 -qC
+<?
+// vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+//
+// Trabajo Práctico II de Análisis Numérico I
+// Este programa resuelve un sistema de ecuaciones diferenciales
+// resultante de un problema físico de oscilación de líquidos.
+// Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+//
+// Este programa es Software Libre; usted puede redistribuirlo
+// y/o modificarlo bajo los términos de la "GNU General Public
+// License" como lo publica la "FSF Free Software Foundation",
+// o (a su elección) de cualquier versión posterior.
+//
+// Este programa es distribuido con la esperanza de que le será
+// útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+// implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+// particular. Vea la "GNU General Public License" para más
+// detalles.
+//
+// Usted debe haber recibido una copia de la "GNU General Public
+// License" junto con este programa, si no, escriba a la "FSF
+// Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+// Boston, MA 02111-1307, USA.
+//
+// $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/calcula_maxmin $
+// $Date: 2002-12-01 02:26:18 -0300 (dom, 01 dic 2002) $
+// $Rev: 33 $
+// $Author: luca $
+//
+
+// Muestra ayuda.
+if ( $argc < 3 ) {
+ echo "Modo de uso:\n";
+ echo "$argv[0] modo archivo\n";
+ echo "Donde modo es 'max' para calcular los máximos o 'min' para calcular los mínimos.\n";
+ exit;
+}
+
+// Abre archivos y obtiene datos iniciales.
+$f = fopen( $argv[2], 'r' )
+ or die( "Error al abrir $argv[2] para lectura.\n" );
+$s = fgets( $f, 4096 )
+ or die( "El archivo $argv[2] está vacío.\n" );
+list( $t0, $z0, $dz0 ) = preg_split( '/\s/', $s );
+
+// El primer valor siempre es un máximo.
+if ( $argv[1] == 'max' )
+ echo "$t0 $z0\n";
+
+// Procesa archivo calculando máximos y mínimos.
+while ( ( $s = fgets( $f, 4096 ) ) !== false ) {
+ // Obtiene datos.
+ list( $t, $z, $dz ) = preg_split( '/\s/', $s );
+ // Se fija si la derivada es un "cero decreciente" (si es un máximo).
+ if ( $argv[1] == 'max' and $dz0 > 0 and ( $dz < 0 or $dz == 0 ) )
+ if ( $z0 > $z )
+ echo "$t0 $z0\n";
+ else
+ echo "$t $z\n";
+ // Se fija si la derivada es un "cero creciente" (si es un mínimo).
+ if ( $argv[1] == 'min' and $dz0 < 0 and ( $dz > 0 or $dz == 0 ) )
+ if ( $z0 < $z )
+ echo "$t0 $z0\n";
+ else
+ echo "$t $z\n";
+ // Actualiza valores anteriores.
+ $t0 = $t;
+ $z0 = $z;
+ $dz0 = $dz;
+}
+
+fclose( $f );
+
+?>
--- /dev/null
+#!/usr/bin/php4 -qC
+<?
+// vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+//
+// Trabajo Práctico II de Análisis Numérico I
+// Este programa resuelve un sistema de ecuaciones diferenciales
+// resultante de un problema físico de oscilación de líquidos.
+// Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+//
+// Este programa es Software Libre; usted puede redistribuirlo
+// y/o modificarlo bajo los términos de la "GNU General Public
+// License" como lo publica la "FSF Free Software Foundation",
+// o (a su elección) de cualquier versión posterior.
+//
+// Este programa es distribuido con la esperanza de que le será
+// útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+// implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+// particular. Vea la "GNU General Public License" para más
+// detalles.
+//
+// Usted debe haber recibido una copia de la "GNU General Public
+// License" junto con este programa, si no, escriba a la "FSF
+// Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+// Boston, MA 02111-1307, USA.
+//
+// $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/calcula_periodo $
+// $Date: 2002-12-01 02:26:18 -0300 (dom, 01 dic 2002) $
+// $Rev: 33 $
+// $Author: luca $
+//
+
+// Muestra ayuda.
+if ( $argc < 2 ) {
+ echo "Modo de uso:\n";
+ echo "$argv[0] archivo\n";
+ exit;
+}
+
+// Abre archivo y obtiene datos iniciales.
+$f = fopen( $argv[1], 'r' );
+$s = fgets( $f, 4096 )
+ or die( "El archivo está vacío o no se pudo abrir.\n" );
+list( $t0, $z0 ) = preg_split( '/\s/', $s );
+
+// Procesa archivo calculando período.
+$t_ant = 0;
+$c = 0;
+$t_sum = 0;
+$t_max = 0;
+$tt_max = 0;
+$t_min = 5000;
+$tt_min = 0;
+while ( ( $s = fgets( $f, 4096 ) ) !== false ) {
+ // Obtiene datos.
+ list( $t, $z ) = preg_split( '/\s/', $s );
+ // Se fija si es un "cero decreciente".
+ if ( $z0 > 0 and ( $z < 0 or $z == 0 ) ) {
+ if ( $t_ant ) {
+ $t_actual = $t - $t_ant;
+ if ( $t_actual > $t_max ) {
+ $t_max = $t_actual;
+ $tt_max = $t;
+ }
+ if ( $t_actual < $t_min ) {
+ $t_min = $t_actual;
+ $tt_min = $t;
+ }
+ echo "$t_actual\n";
+ $t_sum += $t_actual;
+ $t_ant = $t;
+ $c++;
+ } else {
+ $t_ant = $t;
+ }
+ }
+ // Actualiza valores anteriores.
+ $t0 = $t;
+ $z0 = $z;
+}
+
+fclose( $f );
+
+// Imprime período.
+echo "Períodos promedio: " . $t_sum / $c . " ($c períodos promediados)\n";
+echo "Período máximo: $t_max (en t = $tt_max)\n";
+echo "Período mínimo: $t_min (en t = $tt_min)\n";
+
+?>
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/d1e.gnuplot $
+# $Date: 2002-11-24 19:55:46 -0300 (dom, 24 nov 2002) $
+# $Rev: 29 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "d1e.eps"
+
+# Seteos generales.
+set title "Solución por Euler para el caso sin depósitos y con fricción laminar"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:2500]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Plotea
+plot 'd1e.txt' using 1:2 title "z" with lines linetype 1
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/d1n.gnuplot $
+# $Date: 2002-11-30 18:54:58 -0300 (sáb, 30 nov 2002) $
+# $Rev: 32 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "d1n.eps"
+
+# Seteos generales.
+set title "Solución por Nystrom para el caso sin depósitos y con fricción laminar"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:2500]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Plotea
+plot 'd1n_k2.0.txt' using 1:2 title "k = 2.0" with lines linetype 1, \
+ 'd1n_k0.0625.txt' using 1:2 title "k = 0.0625" with lines linetype 3
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/d1r.gnuplot $
+# $Date: 2002-11-24 19:55:46 -0300 (dom, 24 nov 2002) $
+# $Rev: 29 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "d1r.eps"
+
+# Seteos generales.
+set title "Solución por RK4 para el caso sin depósitos y con fricción laminar"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:2500]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Plotea
+plot 'd1r.txt' using 1:2 title "z" with lines linetype 1
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/d4e.gnuplot $
+# $Date: 2002-11-25 03:26:50 -0300 (lun, 25 nov 2002) $
+# $Rev: 30 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "d4e.eps"
+
+# Seteos generales.
+set title "Estimación del tiempo de reposo para Euler en el caso sin depósitos y con fricción laminar"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:300000]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set mytics 5
+
+# Primero aproximo por una recta para hallar valores aproximados de los parámetros.
+M(x) = a - b * x
+m(x) = -c - d * x
+fit M(x) 'd3e.max.txt' using 1:2 via a, b
+fit m(x) 'd3e.min.txt' using 1:2 via c, d
+
+# Ahora ahora la verdadera aproximación con una exponencial.
+M(x) = a * exp( -b * x )
+m(x) = -c * exp( -d * x )
+fit M(x) 'd3e.max.txt' using 1:2 via a, b
+fit m(x) 'd3e.min.txt' using 1:2 via c, d
+
+# Plotea
+plot M(x) title "Función aproximante de máximos" with lines linetype 1, \
+ m(x) title "Función aproximante de mínimos" with lines linetype 8
+
+# Se muestran las funciones aproximantes utilizadas.
+print "Funciones aproximantes:"
+print "M(x) = ", a, " * exp( -", b, " * x )"
+print "m(x) = -", c, " * exp( -", d, " * x )"
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/d4n.gnuplot $
+# $Date: 2002-11-25 03:26:50 -0300 (lun, 25 nov 2002) $
+# $Rev: 30 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "d4n.eps"
+
+# Seteos generales.
+set title "Estimación del tiempo de reposo para Nystrom en el caso sin depósitos y con fricción laminar"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:90000]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set mytics 5
+
+# Primero aproximo por una recta para hallar valores aproximados de los parámetros.
+M(x) = a - b * x
+m(x) = -c - d * x
+fit M(x) 'd3n.max.txt' using 1:2 via a, b
+fit m(x) 'd3n.min.txt' using 1:2 via c, d
+
+# Ahora ahora la verdadera aproximación con una exponencial.
+M(x) = a * exp( -b * x )
+m(x) = -c * exp( -d * x )
+fit M(x) 'd3n.max.txt' using 1:2 via a, b
+fit m(x) 'd3n.min.txt' using 1:2 via c, d
+
+# Plotea
+plot M(x) title "Función aproximante de máximos" with lines linetype 1, \
+ m(x) title "Función aproximante de mínimos" with lines linetype 8
+
+# Se muestran las funciones aproximantes utilizadas.
+print "Funciones aproximantes:"
+print "M(x) = ", a, " * exp( -", b, " * x )"
+print "m(x) = -", c, " * exp( -", d, " * x )"
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/d4r.gnuplot $
+# $Date: 2002-11-25 03:26:50 -0300 (lun, 25 nov 2002) $
+# $Rev: 30 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "d4r.eps"
+
+# Seteos generales.
+set title "Estimación del tiempo de reposo para RK4 en el caso sin depósitos y con fricción laminar"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:90000]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set mytics 5
+
+# Primero aproximo por una recta para hallar valores aproximados de los parámetros.
+M(x) = a - b * x
+m(x) = -c - d * x
+fit M(x) 'd3r.max.txt' using 1:2 via a, b
+fit m(x) 'd3r.min.txt' using 1:2 via c, d
+
+# Ahora ahora la verdadera aproximación con una exponencial.
+M(x) = a * exp( -b * x )
+m(x) = -c * exp( -d * x )
+fit M(x) 'd3r.max.txt' using 1:2 via a, b
+fit m(x) 'd3r.min.txt' using 1:2 via c, d
+
+# Plotea
+plot M(x) title "Función aproximante de máximos" with lines linetype 1, \
+ m(x) title "Función aproximante de mínimos" with lines linetype 8
+
+# Se muestran las funciones aproximantes utilizadas.
+print "Funciones aproximantes:"
+print "M(x) = ", a, " * exp( -", b, " * x )"
+print "m(x) = -", c, " * exp( -", d, " * x )"
--- /dev/null
+%!PS-Adobe-3.0 EPSF-3.0
+%%BoundingBox: 0 0 397 340
+%%Pages: 0
+%%Creator: Sun Microsystems, Inc.
+%%Title: none
+%%CreationDate: none
+%%LanguageLevel: 2
+%%EndComments
+%%BeginProlog
+%%BeginResource: SDRes
+/b4_inc_state save def
+/dict_count countdictstack def
+/op_count count 1 sub def
+userdict begin
+0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit[] 0 setdash newpath
+/languagelevel where {pop languagelevel 1 ne {false setstrokeadjust false setoverprint} if} if
+/bdef {bind def} bind def
+/c {setrgbcolor} bdef
+/l {neg lineto} bdef
+/rl {neg rlineto} bdef
+/cl {currentlinewidth currentdash currentlinecap 2 setlinecap} bdef
+/lc {setlinecap} bdef
+/lw {setlinewidth} bdef
+/ld {setdash} bdef
+/m {neg moveto} bdef
+/ct {6 2 roll neg 6 2 roll neg 6 2 roll neg curveto} bdef
+/r {rotate} bdef
+/t {neg translate} bdef
+/s {scale} bdef
+/gs {gsave} bdef
+/gr {grestore} bdef
+/f {findfont dup length dict begin
+{1 index /FID ne {def} {pop pop} ifelse} forall /Encoding ISOLatin1Encoding def
+currentdict end /NFont exch definefont pop /NFont findfont} bdef
+/p {closepath} bdef
+/sf {scalefont setfont} bdef
+/ef {eofill}bdef
+/pc {closepath stroke}bdef
+/ps {stroke}bdef
+/pum {matrix currentmatrix}bdef
+/pom {setmatrix}bdef
+/bs {/aString exch def /nXOfs exch def /nWidth exch def currentpoint nXOfs 0 rmoveto pum nWidth aString stringwidth pop div 1 scale aString show pom moveto} bdef
+%%EndResource
+%%EndProlog
+%%BeginSetup
+%%EndSetup
+%%Page: 1 1
+%%BeginPageSetup
+%%EndPageSetup
+pum
+0.28357 0.28333 s
+0 -1200 t
+gs
+0 0 m 1399.9 0 l 1399.9 1199.9 l 0 1199.9 l 0 0 l eoclip newpath
+0.003 0.722 1.000 c 680.9 461.9 m 750.9 461.9 l 750.9 984.2 l
+680.9 984.2 l 680.9 461.9 l p ef
+145.09999 323.8 m 750.9 323.8 l 750.9 462.6 l
+145.09999 462.6 l 145.09999 323.8 l p ef
+882.5 61.7 m 1254.2 61.7 l 1254.2 462.7 l
+882.5 462.7 l 882.5 61.7 l p ef
+0.003 0.003 0.003 c 1020.2 980.5 m 1014.8 1027.1 l ps
+1014.8 1027.1 m 1013.4 1030.7 l ps
+994.5 1077.6 m 975.4 1107.79999 l ps
+975.4 1107.79999 m 964.6 1118.5 l ps
+925.8 1150.7 m 906.1 1163.29999 l ps
+906.1 1163.29999 m 880.3 1172.5 l ps
+830.7 1182.4 m 816.6 1184.1 l ps
+816.6 1184.1 m 780.3 1179.9 l ps
+731.9 1165 m 727 1163.29999 l ps
+727 1163.29999 m 689.2 1139.29999 l ps
+689.2 1139.29999 m 688.6 1138.7 l ps
+653.9 1101.79999 m 633.7 1070 l ps
+633.7 1070 m 629.2 1057.7 l ps
+616.2 1008.9 m 613 980.5 l ps
+0.003 0.722 1.000 c 952 977.1 m 947.1 1013.3 l 933.4 1045.79999 l
+912.2 1073.4 l 884.8 1094.7 l 852.4 1108.4 l
+816.4 1113.29999 l 780.3 1108.4 l 748 1094.7 l
+720.5 1073.4 l 699.3 1045.79999 l 685.6 1013.3 l
+680.8 977.1 l p ef
+1.000 1.000 1.000 c 882.1 981.2 m 882 977.9 l 881.8 974.6 l
+881.3 971.4 l 880.8 968.1 l 880 964.9 l 879.1 961.7 l
+878 958.6 l 876.8 955.6 l 875.4 952.6 l 873.9 949.7 l
+872.2 946.8 l 870.4 944.1 l 868.4 941.4 l
+866.3 938.9 l 864.1 936.4 l 861.8 934.1 l
+859.3 931.9 l 856.7 929.8 l 854.1 927.9 l
+851.3 926 l 848.4 924.4 l 845.5 922.8 l 842.5 921.5 l
+839.4 920.2 l 836.3 919.2 l 833.1 918.3 l
+829.9 917.5 l 826.6 916.9 l 823.3 916.5 l
+820 916.3 l 816.7 916.2 l 816.7 916.2 l 813.4 916.3 l
+810.1 916.5 l 806.8 916.9 l 803.5 917.5 l
+800.3 918.3 l 797.1 919.2 l 794 920.2 l 790.9 921.5 l
+787.9 922.8 l 785 924.4 l 782.1 926 l 779.3 927.9 l
+776.7 929.8 l 774.1 931.9 l 771.6 934.1 l
+769.3 936.4 l 767.1 938.9 l 765 941.4 l 763 944.1 l
+761.2 946.8 l 759.5 949.7 l 758 952.6 l 756.6 955.6 l
+755.4 958.6 l 754.3 961.7 l 753.4 964.9 l
+752.6 968.1 l 752.1 971.4 l 751.6 974.6 l
+751.4 977.9 l 751.3 981.2 l 751.3 981.2 l
+751.4 984.5 l 751.6 987.8 l 752.1 991 l 752.6 994.3 l
+753.4 997.5 l 754.3 1000.7 l 755.4 1003.8 l
+756.6 1006.8 l 758 1009.8 l 759.5 1012.7 l
+761.2 1015.6 l 763 1018.3 l 765 1021 l 767.1 1023.5 l
+769.3 1026 l 771.6 1028.29999 l 774.1 1030.5 l
+776.7 1032.6 l 779.3 1034.5 l 782.1 1036.4 l
+785 1038 l 787.9 1039.6 l 790.9 1040.9 l 794 1042.2 l
+797.1 1043.2 l 800.3 1044.1 l 803.5 1044.9 l
+806.8 1045.5 l 810.1 1045.9 l 813.4 1046.1 l
+816.7 1046.2 l 816.7 1046.2 l 820 1046.1 l
+823.3 1045.9 l 826.6 1045.5 l 829.9 1044.9 l
+833.1 1044.1 l 836.3 1043.2 l 839.4 1042.2 l
+842.5 1040.9 l 845.5 1039.6 l 848.4 1038 l
+851.3 1036.4 l 854.1 1034.5 l 856.7 1032.6 l
+859.3 1030.5 l 861.8 1028.29999 l 864.1 1026 l
+866.3 1023.5 l 868.4 1021 l 870.4 1018.3 l
+872.2 1015.6 l 873.9 1012.7 l 875.4 1009.8 l
+876.8 1006.8 l 878 1003.8 l 879.1 1000.7 l
+880 997.5 l 880.8 994.3 l 881.3 991 l 881.8 987.8 l
+882 984.5 l 882.1 981.2 l p ef
+0.003 0.003 0.003 c 952.4 977.1 m 947.5 1013.2 l 933.8 1045.6 l
+912.6 1073.1 l 885.1 1094.29999 l 852.7 1108 l
+816.6 1112.9 l 780.4 1108 l 748 1094.29999 l 720.5 1073.1 l
+699.3 1045.6 l 685.6 1013.2 l 680.8 977.1 l
+ps
+882.6 980.4 m 879.2 1001.3 l 869.8 1019.4 l
+855.5 1033.79999 l 837.3 1043.2 l 816.5 1046.6 l
+795.6 1043.2 l 777.4 1033.79999 l 763.1 1019.4 l
+753.7 1001.3 l 750.4 980.4 l ps
+597.7 519.5 m 597.7 520 l 597.7 520.39999 l 598.1 521.5 l
+598.89999 522.5 l 599.89999 523 l 601 523.1 l 601.8 522.89999 l
+602.6 522.3 l 603.3 521.7 l 603.6 520.7 l
+612.8 479.8 l 621.9 520.39999 l 622.2 521.5 l
+623 522.5 l 624 523 l 625.2 523.1 l 626.3 522.8 l
+627.2 522 l 627.7 520.89999 l 627.7 519.8 l 627.7 519.5 l
+627.6 519.6 l 615.9 466.2 l 615.6 465.1 l
+615 464 l 614 463.4 l 612.8 463.2 l 611.7 463.4 l
+610.7 464 l 610 465.1 l 609.8 466.2 l 597.7 519.5 l
+p ef
+612.89999 981.1 m 612.89999 930.3 l ps
+612.89999 879.5 m 612.89999 828.7 l ps
+612.89999 777.9 m 612.89999 727.1 l ps
+612.89999 676.3 m 612.89999 625.5 l ps
+612.89999 574.7 m 612.89999 523.89999 l ps
+1005 519.5 m 1005 520 l 1005 520.39999 l 1005.4 521.5 l
+1006.2 522.5 l 1007.2 523 l 1008.3 523.1 l
+1009.1 522.89999 l 1009.9 522.3 l 1010.6 521.7 l
+1010.9 520.7 l 1020.1 479.8 l 1029.2 520.39999 l
+1029.5 521.5 l 1030.29999 522.5 l 1031.29999 523 l
+1032.5 523.1 l 1033.6 522.8 l 1034.5 522 l
+1035 520.89999 l 1035 519.8 l 1035 519.5 l 1034.9 519.6 l
+1023.2 466.2 l 1022.9 465.1 l 1022.3 464 l
+1021.3 463.4 l 1020.1 463.2 l 1019 463.4 l
+1018 464 l 1017.3 465.1 l 1017.1 466.2 l 1005 519.5 l
+p ef
+1020.2 981.1 m 1020.2 930.3 l ps
+1020.2 879.5 m 1020.2 828.7 l ps
+1020.2 777.9 m 1020.2 727.1 l ps
+1020.2 676.3 m 1020.2 625.5 l ps
+1020.2 574.7 m 1020.2 523.89999 l ps
+0.003 0.722 1.000 c 882.4 461.9 m 952.4 461.9 l 952.4 979.1 l
+882.4 979.1 l 882.4 461.9 l p ef
+0.003 0.003 0.003 c 680.8 981.1 m 680.8 463.2 l ps
+952.6 978.2 m 952.6 462.2 l ps
+882.4 981.1 m 882.4 16 l ps
+750.8 981.1 m 750.8 16 l ps
+680.8 462.5 m 145 462.5 l ps
+1253.5 462.5 m 952.4 462.5 l ps
+145 461.8 m 145 16 l ps
+1254.2 461.8 m 1254.2 16.1 l ps
+74.5 226.8 m 125.3 226.8 l ps
+176.1 226.8 m 226.9 226.8 l ps
+277.69999 226.8 m 328.5 226.8 l ps
+379.3 226.8 m 430.1 226.8 l ps
+480.9 226.8 m 531.7 226.8 l ps
+582.5 226.8 m 633.3 226.8 l ps
+684.1 226.8 m 734.9 226.8 l ps
+785.7 226.8 m 836.5 226.8 l ps
+887.3 226.8 m 938.1 226.8 l ps
+988.9 226.8 m 1039.7 226.8 l ps
+1090.5 226.8 m 1141.29999 226.8 l ps
+1192.1 226.8 m 1242.9 226.8 l ps
+1293.7 226.8 m 1320.5 226.8 l ps
+145 323.8 m 750.1 323.8 l ps
+882 61.5 m 1253.5 61.5 l ps
+65 323.4 m 65 318.3 l ps
+65 305.6 m 65 300.5 l ps
+65 287.8 m 65 262.4 l ps
+65 249.7 m 65 226.8 l ps
+135 323.4 m 129.9 323.4 l ps
+117.2 323.4 m 112.1 323.4 l ps
+99.4 323.4 m 74 323.4 l ps
+61.3 323.4 m 45 323.4 l ps
+135 226.8 m 129.9 226.8 l ps
+117.2 226.8 m 112.1 226.8 l ps
+99.4 226.8 m 74 226.8 l ps
+61.3 226.8 m 45 226.8 l ps
+gs
+gr
+gs
+99.9 254.3 m 135.7 254.3 l 135.7 288 l 99.9 288 l 99.9 254.3 l
+eoclip newpath
+gs
+99.8984 254.32284 t
+gs
+pum
+9.32385 -2.34194 t
+2.0931 15.63408 m 10.46554 15.63408 l 10.65583 15.76067 l 10.65583 16.20374 l
+6.2159 20.82434 l 1.64911 25.38164 l 1.64911 25.44494 l 6.97703 25.44494 l
+7.35759 25.38164 l 7.99187 24.68539 l 8.30901 24.11573 l 8.30901 23.92584 l
+8.56272 23.67265 l 8.87985 23.67265 l 9.07014 23.86254 l 9.07014 23.92584 l
+7.99187 27.15393 l 7.6113 27.40711 l -0.88798 27.40711 l -1.07826 27.21722 l
+-1.07826 26.77415 l 3.42508 22.15355 l 7.99187 17.72284 l 7.99187 17.53295 l
+3.04452 17.53295 l 2.60053 17.72284 l 1.64911 18.54569 l 1.64911 18.73558 l
+1.33197 19.05205 l 1.07826 19.05205 l 0.88798 18.92546 l 1.07826 18.73558 l
+1.90282 16.14044 l 1.90282 15.76067 l p ef
+2.0931 15.63408 m 10.46554 15.63408 l 10.65583 15.76067 l 10.65583 16.20374 l
+6.2159 20.82434 l 1.64911 25.38164 l 1.64911 25.44494 l 6.97703 25.44494 l
+7.35759 25.38164 l 7.99187 24.68539 l 8.30901 24.11573 l 8.30901 23.92584 l
+8.56272 23.67265 l 8.87985 23.67265 l 9.07014 23.86254 l 9.07014 23.92584 l
+7.99187 27.15393 l 7.6113 27.40711 l -0.88798 27.40711 l -1.07826 27.21722 l
+-1.07826 26.77415 l 3.42508 22.15355 l 7.99187 17.72284 l 7.99187 17.53295 l
+3.04452 17.53295 l 2.60053 17.72284 l 1.64911 18.54569 l 1.64911 18.73558 l
+1.33197 19.05205 l 1.07826 19.05205 l 0.88798 18.92546 l 1.07826 18.73558 l
+1.90282 16.14044 l 1.90282 15.76067 l pc
+pom
+gr
+gs
+pum
+22.00936 13.7985 t
+3.17137 5.31685 m 4.18621 5.31685 l 5.20106 5.69662 l 5.45477 5.88651 l
+6.27932 6.70936 l 6.53303 6.96254 l 6.59646 7.15243 l 6.72332 7.78539 l
+6.72332 8.67153 l 6.27932 9.93745 l 5.96219 10.6337 l 4.88392 12.08951 l
+2.02968 15.06441 l 5.7719 15.06441 l 6.2159 14.93782 l 6.40618 14.93782 l
+6.65989 14.74794 l 6.9136 14.43146 l 6.9136 14.36816 l 7.16731 14.17827 l
+7.29416 14.17827 l 7.35759 14.30486 l 7.35759 14.36816 l 7.29416 14.62134 l
+7.16731 14.81123 l 6.72332 16.07715 l 6.65989 16.20374 l 6.59646 16.33033 l
+0.31713 16.33033 l 0.31713 16.20374 l 0.31713 16.01385 l 0.44399 15.76067 l
+0.50742 15.76067 l 3.17137 13.16554 l 3.9325 12.1528 l 4.56678 11.20337 l
+4.94734 10.44382 l 5.32791 9.36779 l 5.32791 8.41835 l 5.13763 7.84868 l
+4.94734 7.46891 l 4.3765 6.96254 l 3.61537 6.58277 l 2.79081 6.58277 l
+2.47367 6.70936 l 1.90282 6.96254 l 1.26855 7.5955 l 1.26855 7.6588 l
+0.95141 8.22846 l 0.82455 8.41835 l 0.63427 8.41835 l 0.50742 8.29176 l
+0.50742 8.10187 l 1.07826 6.70936 l 1.3954 6.32958 l 1.71254 5.94981 l
+2.60053 5.50674 l p ef
+3.17137 5.31685 m 4.18621 5.31685 l 5.20106 5.69662 l 5.45477 5.88651 l
+6.27932 6.70936 l 6.53303 6.96254 l 6.59646 7.15243 l 6.72332 7.78539 l
+6.72332 8.67153 l 6.27932 9.93745 l 5.96219 10.6337 l 4.88392 12.08951 l
+2.02968 15.06441 l 5.7719 15.06441 l 6.2159 14.93782 l 6.40618 14.93782 l
+6.65989 14.74794 l 6.9136 14.43146 l 6.9136 14.36816 l 7.16731 14.17827 l
+7.29416 14.17827 l 7.35759 14.30486 l 7.35759 14.36816 l 7.29416 14.62134 l
+7.16731 14.81123 l 6.72332 16.07715 l 6.65989 16.20374 l 6.59646 16.33033 l
+0.31713 16.33033 l 0.31713 16.20374 l 0.31713 16.01385 l 0.44399 15.76067 l
+0.50742 15.76067 l 3.17137 13.16554 l 3.9325 12.1528 l 4.56678 11.20337 l
+4.94734 10.44382 l 5.32791 9.36779 l 5.32791 8.41835 l 5.13763 7.84868 l
+4.94734 7.46891 l 4.3765 6.96254 l 3.61537 6.58277 l 2.79081 6.58277 l
+2.47367 6.70936 l 1.90282 6.96254 l 1.26855 7.5955 l 1.26855 7.6588 l
+0.95141 8.22846 l 0.82455 8.41835 l 0.63427 8.41835 l 0.50742 8.29176 l
+0.50742 8.10187 l 1.07826 6.70936 l 1.3954 6.32958 l 1.71254 5.94981 l
+2.60053 5.50674 l pc
+pom
+gr
+99.9 254.3 m 135.7 254.3 l 135.7 288 l 99.9 288 l 99.9 254.3 l
+eoclip newpath
+gr
+0 0 m 1399.9 0 l 1399.9 1199.9 l 0 1199.9 l 0 0 l eoclip newpath
+gr
+1333.5 62.1 m 1333.5 67.2 l ps
+1333.5 79.9 m 1333.5 85 l ps
+1333.5 97.7 m 1333.5 123.1 l ps
+1333.5 135.8 m 1333.5 161.2 l ps
+1333.5 173.9 m 1333.5 199.3 l ps
+1333.5 212 m 1333.5 217.1 l ps
+1263.5 62.1 m 1268.6 62.1 l ps
+1281.3 62.1 m 1286.4 62.1 l ps
+1299.1 62.1 m 1324.5 62.1 l ps
+1337.2 62.1 m 1353.5 62.1 l ps
+1263.5 226.8 m 1268.6 226.8 l ps
+1281.3 226.8 m 1286.4 226.8 l ps
+1299.1 226.8 m 1324.5 226.8 l ps
+1337.2 226.8 m 1353.5 226.8 l ps
+gs
+gr
+gs
+1263.1 133 m 1298.9 133 l 1298.9 166.7 l 1263.1 166.7 l 1263.1 133 l
+eoclip newpath
+gs
+1263.10974 132.98464 t
+gs
+pum
+9.46101 -2.91161 t
+2.13844 15.63408 m 10.49783 15.63408 l 10.69223 15.76067 l 10.69223 16.20374 l
+6.15613 20.82434 l 1.68483 25.38164 l 1.68483 25.44494 l 6.93375 25.44494 l
+7.38736 25.38164 l 7.97057 24.68539 l 8.29458 24.11573 l 8.29458 23.92584 l
+8.55379 23.67265 l 8.87779 23.67265 l 9.0722 23.86254 l 9.0722 23.92584 l
+7.97057 27.15393 l 7.71137 27.40711 l -0.90722 27.40711 l -1.10162 27.21722 l
+-1.10162 26.77415 l 3.43447 22.15355 l 7.97057 17.72284 l 7.97057 17.53295 l
+3.04566 17.53295 l 2.52725 17.72284 l 1.68483 18.54569 l 1.68483 18.73558 l
+1.36083 19.05205 l 1.10162 19.05205 l 0.90722 18.92546 l 1.10162 18.73558 l
+1.94404 16.14044 l 1.94404 15.76067 l p ef
+2.13844 15.63408 m 10.49783 15.63408 l 10.69223 15.76067 l 10.69223 16.20374 l
+6.15613 20.82434 l 1.68483 25.38164 l 1.68483 25.44494 l 6.93375 25.44494 l
+7.38736 25.38164 l 7.97057 24.68539 l 8.29458 24.11573 l 8.29458 23.92584 l
+8.55379 23.67265 l 8.87779 23.67265 l 9.0722 23.86254 l 9.0722 23.92584 l
+7.97057 27.15393 l 7.71137 27.40711 l -0.90722 27.40711 l -1.10162 27.21722 l
+-1.10162 26.77415 l 3.43447 22.15355 l 7.97057 17.72284 l 7.97057 17.53295 l
+3.04566 17.53295 l 2.52725 17.72284 l 1.68483 18.54569 l 1.68483 18.73558 l
+1.36083 19.05205 l 1.10162 19.05205 l 0.90722 18.92546 l 1.10162 18.73558 l
+1.94404 16.14044 l 1.94404 15.76067 l pc
+pom
+gr
+gs
+pum
+22.16209 13.22883 t
+4.34169 5.31685 m 4.6009 5.31685 l 4.6657 5.44344 l 4.6657 15.38089 l
+4.7953 15.57078 l 4.98971 15.88726 l 5.44332 16.01385 l 5.96173 16.01385 l
+6.02653 16.07715 l 6.02653 16.20374 l 5.96173 16.33033 l 2.07364 16.33033 l
+2.00884 16.20374 l 2.00884 16.07715 l 2.07364 16.01385 l 2.65685 15.88726 l
+2.98086 15.88726 l 3.24007 15.57078 l 3.30487 15.38089 l 3.30487 7.40561 l
+3.24007 7.34232 l 3.17527 6.96254 l 3.17527 6.83595 l 3.04566 6.77265 l
+2.78646 6.70936 l 2.65685 6.70936 l 2.52725 6.77265 l 2.00884 6.96254 l
+1.87924 6.83595 l 1.81444 6.70936 l 2.00884 6.51947 l 2.07364 6.51947 l
+4.27689 5.44344 l p ef
+4.34169 5.31685 m 4.6009 5.31685 l 4.6657 5.44344 l 4.6657 15.38089 l
+4.7953 15.57078 l 4.98971 15.88726 l 5.44332 16.01385 l 5.96173 16.01385 l
+6.02653 16.07715 l 6.02653 16.20374 l 5.96173 16.33033 l 2.07364 16.33033 l
+2.00884 16.20374 l 2.00884 16.07715 l 2.07364 16.01385 l 2.65685 15.88726 l
+2.98086 15.88726 l 3.24007 15.57078 l 3.30487 15.38089 l 3.30487 7.40561 l
+3.24007 7.34232 l 3.17527 6.96254 l 3.17527 6.83595 l 3.04566 6.77265 l
+2.78646 6.70936 l 2.65685 6.70936 l 2.52725 6.77265 l 2.00884 6.96254 l
+1.87924 6.83595 l 1.81444 6.70936 l 2.00884 6.51947 l 2.07364 6.51947 l
+4.27689 5.44344 l pc
+pom
+gr
+1263.1 133 m 1298.9 133 l 1298.9 166.7 l 1263.1 166.7 l 1263.1 133 l
+eoclip newpath
+gr
+0 0 m 1399.9 0 l 1399.9 1199.9 l 0 1199.9 l 0 0 l eoclip newpath
+gr
+gs
+1049.2 19.2 m 1092 19.2 l 1092 53 l 1049.2 53 l 1049.2 19.2 l
+eoclip newpath
+gs
+1049.18064 19.17191 t
+gs
+pum
+10.01211 -3.61853 t
+13.3706 9.33202 m 13.81418 9.33202 l 14.00428 9.45898 l 14.00428 10.09382 l
+13.3706 14.6646 l 12.29335 25.07584 l 12.29335 25.83764 l 12.48345 26.3455 l
+12.99039 26.7264 l 13.24387 26.91685 l 13.75081 27.1073 l 14.57459 27.1073 l
+14.76469 27.17078 l 14.57459 27.4882 l 14.38449 27.67865 l 7.54076 27.67865 l
+7.35066 27.4882 l 7.35066 27.36123 l 7.60413 27.1073 l 8.74475 26.91685 l
+9.06159 26.91685 l 9.822 26.15505 l 10.39231 21.71123 l 5.44963 21.71123 l
+4.94268 22.2191 l 4.68921 22.66348 l 4.68921 22.79044 l 3.7387 24.06011 l
+3.35849 24.50449 l 3.04165 24.88539 l 3.04165 25.07584 l 2.85155 25.39325 l
+2.66144 25.5837 l 2.66144 26.40898 l 3.16838 26.91685 l 3.35849 26.91685 l
+3.9288 27.1073 l 4.1189 27.17078 l 4.1189 27.4882 l 3.9288 27.67865 l
+-1.33072 27.67865 l -1.52082 27.4882 l -1.33072 27.17078 l -1.26735 27.1073 l
+0.31683 26.59943 l 1.33072 25.5837 l 2.40797 24.25056 l 2.40797 24.06011 l
+2.85155 23.48876 l 3.35849 22.98089 l 5.8932 19.36235 l 6.27341 18.85449 l
+6.78035 18.28314 l 6.78035 18.21966 l 7.60413 16.94999 l 8.11107 16.50561 l
+8.36454 16.12471 l 8.36454 15.93426 l 9.31506 14.6646 l 9.822 14.2837 l
+10.70915 13.07752 l 10.70915 12.88707 l 13.24387 9.64943 l 13.24387 9.45898 l
+p
+11.15273 14.41067 m 10.89926 16.12471 l 10.39231 20.37808 l 10.39231 20.6955 l
+6.21004 20.6955 l 6.27341 20.37808 l 10.70915 14.6646 l 10.70915 14.60112 l
+11.15273 14.09325 l p ef
+13.3706 9.33202 m 13.81418 9.33202 l 14.00428 9.45898 l 14.00428 10.09382 l
+13.3706 14.6646 l 12.29335 25.07584 l 12.29335 25.83764 l 12.48345 26.3455 l
+12.99039 26.7264 l 13.24387 26.91685 l 13.75081 27.1073 l 14.57459 27.1073 l
+14.76469 27.17078 l 14.57459 27.4882 l 14.38449 27.67865 l 7.54076 27.67865 l
+7.35066 27.4882 l 7.35066 27.36123 l 7.60413 27.1073 l 8.74475 26.91685 l
+9.06159 26.91685 l 9.822 26.15505 l 10.39231 21.71123 l 5.44963 21.71123 l
+4.94268 22.2191 l 4.68921 22.66348 l 4.68921 22.79044 l 3.7387 24.06011 l
+3.35849 24.50449 l 3.04165 24.88539 l 3.04165 25.07584 l 2.85155 25.39325 l
+2.66144 25.5837 l 2.66144 26.40898 l 3.16838 26.91685 l 3.35849 26.91685 l
+3.9288 27.1073 l 4.1189 27.17078 l 4.1189 27.4882 l 3.9288 27.67865 l
+-1.33072 27.67865 l -1.52082 27.4882 l -1.33072 27.17078 l -1.26735 27.1073 l
+0.31683 26.59943 l 1.33072 25.5837 l 2.40797 24.25056 l 2.40797 24.06011 l
+2.85155 23.48876 l 3.35849 22.98089 l 5.8932 19.36235 l 6.27341 18.85449 l
+6.78035 18.28314 l 6.78035 18.21966 l 7.60413 16.94999 l 8.11107 16.50561 l
+8.36454 16.12471 l 8.36454 15.93426 l 9.31506 14.6646 l 9.822 14.2837 l
+10.70915 13.07752 l 10.70915 12.88707 l 13.24387 9.64943 l 13.24387 9.45898 l
+11.15273 14.41067 m 10.89926 16.12471 l 10.39231 20.37808 l 10.39231 20.6955 l
+6.21004 20.6955 l 6.27341 20.37808 l 10.70915 14.6646 l 10.70915 14.60112 l
+11.15273 14.09325 l pc
+pom
+gr
+gs
+pum
+27.75509 15.23595 t
+4.30901 5.33258 m 4.56248 5.33258 l 4.68921 5.45955 l 4.68921 15.4264 l
+4.81595 15.74382 l 5.00605 15.93426 l 5.44963 16.06123 l 5.95657 16.06123 l
+6.01994 16.12471 l 6.01994 16.37865 l 5.95657 16.37865 l 2.02776 16.37865 l
+2.02776 16.37865 l 2.02776 16.12471 l 2.02776 16.06123 l 2.66144 15.93426 l
+2.97828 15.93426 l 3.23175 15.74382 l 3.29512 15.4264 l 3.29512 7.42752 l
+3.23175 7.36404 l 3.16838 6.98314 l 3.16838 6.91966 l 3.10502 6.79269 l
+2.78818 6.72921 l 2.59807 6.72921 l 2.53471 6.79269 l 2.02776 6.98314 l
+1.90103 6.91966 l 1.83766 6.72921 l 2.02776 6.47528 l 2.02776 6.47528 l
+4.24564 5.45955 l p ef
+4.30901 5.33258 m 4.56248 5.33258 l 4.68921 5.45955 l 4.68921 15.4264 l
+4.81595 15.74382 l 5.00605 15.93426 l 5.44963 16.06123 l 5.95657 16.06123 l
+6.01994 16.12471 l 6.01994 16.37865 l 5.95657 16.37865 l 2.02776 16.37865 l
+2.02776 16.37865 l 2.02776 16.12471 l 2.02776 16.06123 l 2.66144 15.93426 l
+2.97828 15.93426 l 3.23175 15.74382 l 3.29512 15.4264 l 3.29512 7.42752 l
+3.23175 7.36404 l 3.16838 6.98314 l 3.16838 6.91966 l 3.10502 6.79269 l
+2.78818 6.72921 l 2.59807 6.72921 l 2.53471 6.79269 l 2.02776 6.98314 l
+1.90103 6.91966 l 1.83766 6.72921 l 2.02776 6.47528 l 2.02776 6.47528 l
+4.24564 5.45955 l pc
+pom
+gr
+1049.2 19.2 m 1092 19.2 l 1092 53 l 1049.2 53 l 1049.2 19.2 l
+eoclip newpath
+gr
+0 0 m 1399.9 0 l 1399.9 1199.9 l 0 1199.9 l 0 0 l eoclip newpath
+gr
+gs
+392.6 281.6 m 436.2 281.6 l 436.2 315.3 l 392.6 315.3 l 392.6 281.6 l
+eoclip newpath
+gs
+392.60232 281.60337 t
+gs
+pum
+8.68925 -4.24082 t
+13.25587 9.24119 m 13.76328 9.24119 l 13.95355 9.43108 l 13.95355 10.00074 l
+13.25587 14.62134 l 12.24107 24.87528 l 12.24107 25.63483 l 12.43134 26.0146 l
+12.87532 26.52097 l 13.19245 26.71086 l 13.573 26.77415 l 14.52438 26.77415 l
+14.71465 26.96404 l 14.52438 27.21722 l 14.3341 27.40711 l 7.48417 27.40711 l
+7.2939 27.21722 l 7.2939 27.15393 l 7.61103 26.77415 l 8.62583 26.71086 l
+9.00638 26.71086 l 9.70406 25.95131 l 10.33831 21.58389 l 5.39114 21.58389 l
+4.94716 22.09026 l 4.63004 22.53333 l 4.63004 22.59662 l 3.67866 23.86254 l
+3.29811 24.30561 l 3.04441 24.68539 l 3.04441 24.87528 l 2.85413 25.19176 l
+2.66386 25.38164 l 2.66386 26.20449 l 3.10783 26.71086 l 3.29811 26.71086 l
+3.86894 26.77415 l 4.05921 26.96404 l 4.05921 27.21722 l 3.86894 27.40711 l
+-1.33193 27.40711 l -1.5222 27.21722 l -1.33193 26.96404 l -1.20507 26.77415 l
+0.2537 26.39438 l 1.33193 25.38164 l 2.34673 23.92584 l 2.34673 23.86254 l
+2.85413 23.16629 l 3.29811 22.78651 l 5.77169 19.24194 l 6.2791 18.73558 l
+6.72307 18.16591 l 6.72307 18.03932 l 7.61103 16.9 l 8.055 16.39363 l
+8.37213 15.95056 l 8.37213 15.76067 l 9.32351 14.62134 l 9.70406 14.11498 l
+10.59201 12.91235 l 10.59201 12.84906 l 13.19245 9.49438 l 13.19245 9.43108 l
+p
+11.09941 14.30486 m 10.78229 15.95056 l 10.33831 20.25468 l 10.33831 20.57116 l
+6.15224 20.57116 l 6.2791 20.25468 l 10.59201 14.62134 l 10.59201 14.43146 l
+11.09941 14.05168 l p ef
+13.25587 9.24119 m 13.76328 9.24119 l 13.95355 9.43108 l 13.95355 10.00074 l
+13.25587 14.62134 l 12.24107 24.87528 l 12.24107 25.63483 l 12.43134 26.0146 l
+12.87532 26.52097 l 13.19245 26.71086 l 13.573 26.77415 l 14.52438 26.77415 l
+14.71465 26.96404 l 14.52438 27.21722 l 14.3341 27.40711 l 7.48417 27.40711 l
+7.2939 27.21722 l 7.2939 27.15393 l 7.61103 26.77415 l 8.62583 26.71086 l
+9.00638 26.71086 l 9.70406 25.95131 l 10.33831 21.58389 l 5.39114 21.58389 l
+4.94716 22.09026 l 4.63004 22.53333 l 4.63004 22.59662 l 3.67866 23.86254 l
+3.29811 24.30561 l 3.04441 24.68539 l 3.04441 24.87528 l 2.85413 25.19176 l
+2.66386 25.38164 l 2.66386 26.20449 l 3.10783 26.71086 l 3.29811 26.71086 l
+3.86894 26.77415 l 4.05921 26.96404 l 4.05921 27.21722 l 3.86894 27.40711 l
+-1.33193 27.40711 l -1.5222 27.21722 l -1.33193 26.96404 l -1.20507 26.77415 l
+0.2537 26.39438 l 1.33193 25.38164 l 2.34673 23.92584 l 2.34673 23.86254 l
+2.85413 23.16629 l 3.29811 22.78651 l 5.77169 19.24194 l 6.2791 18.73558 l
+6.72307 18.16591 l 6.72307 18.03932 l 7.61103 16.9 l 8.055 16.39363 l
+8.37213 15.95056 l 8.37213 15.76067 l 9.32351 14.62134 l 9.70406 14.11498 l
+10.59201 12.91235 l 10.59201 12.84906 l 13.19245 9.49438 l 13.19245 9.43108 l
+11.09941 14.30486 m 10.78229 15.95056 l 10.33831 20.25468 l 10.33831 20.57116 l
+6.15224 20.57116 l 6.2791 20.25468 l 10.59201 14.62134 l 10.59201 14.43146 l
+11.09941 14.05168 l pc
+pom
+gr
+gs
+pum
+29.04876 14.49475 t
+3.17126 5.31685 m 4.18606 5.31685 l 5.20087 5.69662 l 5.45457 5.88651 l
+6.2791 6.70936 l 6.5328 6.96254 l 6.59622 7.15243 l 6.72307 7.78539 l
+6.72307 8.67153 l 6.2791 9.93745 l 5.96197 10.6337 l 4.88374 12.08951 l
+2.0296 15.06441 l 5.77169 15.06441 l 6.21567 14.93782 l 6.40595 14.93782 l
+6.65965 14.74794 l 6.91335 14.43146 l 6.91335 14.36816 l 7.16705 14.17827 l
+7.2939 14.17827 l 7.35732 14.30486 l 7.35732 14.36816 l 7.2939 14.62134 l
+7.16705 14.81123 l 6.72307 16.07715 l 6.65965 16.20374 l 6.59622 16.33033 l
+0.31712 16.33033 l 0.31712 16.20374 l 0.31712 16.01385 l 0.44397 15.76067 l
+0.5074 15.76067 l 3.17126 13.16554 l 3.93236 12.1528 l 4.56661 11.20337 l
+4.94716 10.44382 l 5.32772 9.36779 l 5.32772 8.41835 l 5.13744 7.84868 l
+4.94716 7.46891 l 4.37634 6.96254 l 3.61523 6.58277 l 2.79071 6.58277 l
+2.47358 6.70936 l 1.90275 6.96254 l 1.2685 7.5955 l 1.2685 7.6588 l
+0.95137 8.22846 l 0.82452 8.41835 l 0.63425 8.41835 l 0.5074 8.29176 l
+0.5074 8.10187 l 1.07822 6.70936 l 1.39535 6.32958 l 1.71248 5.94981 l
+2.60043 5.50674 l p ef
+3.17126 5.31685 m 4.18606 5.31685 l 5.20087 5.69662 l 5.45457 5.88651 l
+6.2791 6.70936 l 6.5328 6.96254 l 6.59622 7.15243 l 6.72307 7.78539 l
+6.72307 8.67153 l 6.2791 9.93745 l 5.96197 10.6337 l 4.88374 12.08951 l
+2.0296 15.06441 l 5.77169 15.06441 l 6.21567 14.93782 l 6.40595 14.93782 l
+6.65965 14.74794 l 6.91335 14.43146 l 6.91335 14.36816 l 7.16705 14.17827 l
+7.2939 14.17827 l 7.35732 14.30486 l 7.35732 14.36816 l 7.2939 14.62134 l
+7.16705 14.81123 l 6.72307 16.07715 l 6.65965 16.20374 l 6.59622 16.33033 l
+0.31712 16.33033 l 0.31712 16.20374 l 0.31712 16.01385 l 0.44397 15.76067 l
+0.5074 15.76067 l 3.17126 13.16554 l 3.93236 12.1528 l 4.56661 11.20337 l
+4.94716 10.44382 l 5.32772 9.36779 l 5.32772 8.41835 l 5.13744 7.84868 l
+4.94716 7.46891 l 4.37634 6.96254 l 3.61523 6.58277 l 2.79071 6.58277 l
+2.47358 6.70936 l 1.90275 6.96254 l 1.2685 7.5955 l 1.2685 7.6588 l
+0.95137 8.22846 l 0.82452 8.41835 l 0.63425 8.41835 l 0.5074 8.29176 l
+0.5074 8.10187 l 1.07822 6.70936 l 1.39535 6.32958 l 1.71248 5.94981 l
+2.60043 5.50674 l pc
+pom
+gr
+392.6 281.6 m 436.2 281.6 l 436.2 315.3 l 392.6 315.3 l 392.6 281.6 l
+eoclip newpath
+gr
+0 0 m 1399.9 0 l 1399.9 1199.9 l 0 1199.9 l 0 0 l eoclip newpath
+gr
+gs
+799 942.8 m 832.4 942.8 l 832.4 972.7 l 799 972.7 l 799 942.8 l
+eoclip newpath
+gs
+798.99716 942.78481 t
+gs
+pum
+8.73913 -2.46835 t
+13.362 9.2405 m 13.74196 9.2405 l 13.93194 9.43037 l 13.93194 10 l
+13.362 14.62025 l 12.22211 24.87341 l 12.22211 25.63291 l 12.41209 26.13924 l
+12.85538 26.51898 l 13.17202 26.70886 l 13.61531 26.77215 l 14.50189 26.77215 l
+14.69187 26.96202 l 14.50189 27.21518 l 14.37523 27.40506 l 7.47258 27.40506 l
+7.2826 27.21518 l 7.2826 27.15189 l 7.66257 26.77215 l 8.73913 26.70886 l
+8.99243 26.70886 l 9.75236 25.94936 l 10.3223 21.58227 l 5.38279 21.58227 l
+4.9395 22.0886 l 4.62287 22.53164 l 4.62287 22.59493 l 3.67296 23.86075 l
+3.293 24.30379 l 3.03969 24.68354 l 3.03969 24.87341 l 2.84971 25.18987 l
+2.65973 25.37974 l 2.65973 26.20253 l 3.10302 26.70886 l 3.293 26.70886 l
+3.86294 26.77215 l 4.05293 26.96202 l 4.05293 27.21518 l 3.86294 27.40506 l
+-1.32986 27.40506 l -1.51984 27.21518 l -1.32986 26.96202 l -1.20321 26.77215 l
+0.2533 26.3924 l 1.32986 25.37974 l 2.3431 23.92405 l 2.3431 23.86075 l
+2.84971 23.16455 l 3.293 22.78481 l 5.88941 19.2405 l 6.26937 18.73417 l
+6.71266 18.16455 l 6.71266 18.03797 l 7.66257 16.89873 l 8.04253 16.3924 l
+8.35916 15.94936 l 8.35916 15.75949 l 9.30907 14.62025 l 9.75236 14.11392 l
+10.57561 12.91139 l 10.57561 12.8481 l 13.17202 9.49367 l 13.17202 9.43037 l
+p
+11.08223 14.30379 m 10.76559 15.94936 l 10.3223 20.25316 l 10.3223 20.56962 l
+6.14272 20.56962 l 6.26937 20.25316 l 10.57561 14.62025 l 10.57561 14.43037 l
+11.08223 14.05063 l p ef
+13.362 9.2405 m 13.74196 9.2405 l 13.93194 9.43037 l 13.93194 10 l
+13.362 14.62025 l 12.22211 24.87341 l 12.22211 25.63291 l 12.41209 26.13924 l
+12.85538 26.51898 l 13.17202 26.70886 l 13.61531 26.77215 l 14.50189 26.77215 l
+14.69187 26.96202 l 14.50189 27.21518 l 14.37523 27.40506 l 7.47258 27.40506 l
+7.2826 27.21518 l 7.2826 27.15189 l 7.66257 26.77215 l 8.73913 26.70886 l
+8.99243 26.70886 l 9.75236 25.94936 l 10.3223 21.58227 l 5.38279 21.58227 l
+4.9395 22.0886 l 4.62287 22.53164 l 4.62287 22.59493 l 3.67296 23.86075 l
+3.293 24.30379 l 3.03969 24.68354 l 3.03969 24.87341 l 2.84971 25.18987 l
+2.65973 25.37974 l 2.65973 26.20253 l 3.10302 26.70886 l 3.293 26.70886 l
+3.86294 26.77215 l 4.05293 26.96202 l 4.05293 27.21518 l 3.86294 27.40506 l
+-1.32986 27.40506 l -1.51984 27.21518 l -1.32986 26.96202 l -1.20321 26.77215 l
+0.2533 26.3924 l 1.32986 25.37974 l 2.3431 23.92405 l 2.3431 23.86075 l
+2.84971 23.16455 l 3.293 22.78481 l 5.88941 19.2405 l 6.26937 18.73417 l
+6.71266 18.16455 l 6.71266 18.03797 l 7.66257 16.89873 l 8.04253 16.3924 l
+8.35916 15.94936 l 8.35916 15.75949 l 9.30907 14.62025 l 9.75236 14.11392 l
+10.57561 12.91139 l 10.57561 12.8481 l 13.17202 9.49367 l 13.17202 9.43037 l
+11.08223 14.30379 m 10.76559 15.94936 l 10.3223 20.25316 l 10.3223 20.56962 l
+6.14272 20.56962 l 6.26937 20.25316 l 10.57561 14.62025 l 10.57561 14.43037 l
+11.08223 14.05063 l pc
+pom
+gr
+799 942.8 m 832.4 942.8 l 832.4 972.7 l 799 972.7 l 799 942.8 l
+eoclip newpath
+gr
+0 0 m 1399.9 0 l 1399.9 1199.9 l 0 1199.9 l 0 0 l eoclip newpath
+gr
+gs
+pum
+325.1 182.1 t
+2.5 11.8 m 5.5 11.8 l 6 12.4 l 6.4 13.1 l
+6.4 13.3 l 6.7 13.9 l 7.1 14.3 l 7.8 15.6 l
+7.8 15.8 l 8.09999 16.4 l 8.5 16.8 l 8.9 17.4 l
+8.9 17.6 l 9.6 18.9 l 9.9 19.3 l 10.3 19.9 l
+10.3 20.1 l 11 21.4 l 11.3 21.8 l 11.7 22.4 l
+11.7 22.6 l 12.4 23.8 l 12.8 24.3 l 13.5 25.5 l
+13.5 25.7 l 13.8 26.3 l 14.2 26.8 l 14.9 28 l
+14.9 28.2 l 15.2 28.8 l 15.6 29.2 l 15.9 29.9 l
+15.9 30.1 l 17 31.9 l 17.19999 32.1 l 17.19999 12 l
+17.4 11.8 l 20.2 11.8 l 20.4 12 l 20.4 38.4 l
+20.2 38.6 l 17.19999 38.6 l 16.69999 37.89999 l 16.69999 37.7 l
+16.3 37.1 l 15.9 36.7 l 15.6 36.1 l 15.6 35.89999 l
+14.9 34.6 l 14.5 34.2 l 13.8 33 l 13.8 32.8 l
+13.5 32.1 l 13.1 31.7 l 12.8 31.1 l 12.8 30.9 l
+12 29.6 l 11.7 29.2 l 11.3 28.6 l 11.3 28.4 l
+10.6 27.2 l 10.3 26.8 l 9.6 25.5 l 9.6 25.3 l
+9.2 24.7 l 8.9 24.3 l 8.09999 23 l 8.09999 22.8 l
+7.8 22.2 l 7.4 21.8 l 7.1 21.2 l 7.1 20.9 l
+6.4 19.7 l 6 19.3 l 5.7 18.69999 l 5.7 18.5 l
+5.5 18.19999 l 5.5 38.4 l 5.3 38.6 l 2.5 38.6 l
+2.3 38.4 l 2.3 12 l p ef
+pom
+pum
+350.5 182.1 t
+2.3 11.8 m 5.1 11.8 l 5.3 12 l 5.3 15.3 l
+5.1 15.6 l 2.3 15.6 l 2.1 15.3 l 2.1 12 l
+p
+2.3 19.1 m 5.1 19.1 l 5.3 19.3 l 5.3 38.4 l
+5.1 38.6 l 2.3 38.6 l 2.1 38.4 l 2.1 19.3 l
+p ef
+pom
+pum
+360.7 182.1 t
+0.4 19.1 m 3.6 19.1 l 4 19.5 l 8.59999 33.8 l
+8.8 34 l 9 33.8 l 12.2 24 l 12.4 23.6 l 13.6 19.9 l
+13.6 19.5 l 14 19.1 l 17.19999 19.1 l 17.4 19.3 l
+15.4 24.9 l 10.8 38.2 l 10.8 38.4 l 10.6 38.6 l
+7 38.6 l 6.8 38.4 l 6 36.1 l 1 21.6 l 0.8 21.2 l
+0.2 19.3 l p ef
+pom
+pum
+380.1 182.1 t
+8.7 18.69999 m 11.4 18.69999 l 14.4 19.7 l 14.8 20.1 l
+15.4 20.5 l 15.6 20.5 l 16.9 21.8 l 16.9 22 l
+17.3 22.6 l 17.69999 23 l 18.9 27.2 l 18.9 29.6 l
+18.69999 29.9 l 4.5 29.9 l 4.5 30.7 l 5.5 33.6 l
+7.1 35.2 l 8.3 35.89999 l 9.09999 36.1 l 11.4 36.1 l
+13.4 35.2 l 14.4 34.2 l 14.8 33.6 l 14.8 33.39999 l
+15.2 32.6 l 15.6 32.1 l 16.3 32.1 l 17.9 32.3 l
+18.5 32.6 l 18.69999 32.8 l 18.69999 33.2 l 17.9 35 l
+17.5 35.7 l 15.8 37.3 l 14.6 38.2 l 13.6 38.6 l
+11.8 39 l 8.7 39 l 5.5 37.89999 l 4.29999 37.1 l
+3 35.89999 l 2.4 35 l 1.8 33.6 l 1 30.7 l 1 27.2 l
+1.4 25.1 l 1.6 24.5 l 2.4 22.8 l 2.8 22.2 l
+4.7 20.3 l 5.3 19.9 l 6.7 19.3 l p
+8.9 21.6 m 11 21.6 l 13.4 22.6 l 14.4 23.6 l
+15.4 26.3 l 15.4 27 l 4.5 27 l 4.5 26.3 l
+4.9 24.9 l 5.3 24 l 6.9 22.4 l 8.09999 21.8 l
+p ef
+pom
+pum
+399.6 182.1 t
+2.3 11.8 m 5.1 11.8 l 5.3 12 l 5.3 38.4 l
+5.1 38.6 l 2.3 38.6 l 2.1 38.4 l 2.1 12 l
+p ef
+pom
+pum
+409.8 182.1 t
+pom
+pum
+419.9 182.1 t
+14.4 11.8 m 17.5 11.8 l 17.69999 12 l 17.69999 38.4 l
+17.5 38.6 l 14.4 38.6 l 14.2 38.4 l 14.2 36.3 l
+14 36.5 l 14 36.7 l 13 37.7 l 10.4 39 l 7.9 39 l
+6.5 38.6 l 5.3 37.89999 l 4.7 37.5 l 2.8 35.7 l
+2.4 35 l 1 30.5 l 1 27.2 l 1.2 25.7 l 1.6 24.3 l
+2.2 22.8 l 3 21.6 l 4.5 20.1 l 5.1 19.7 l
+6.3 19.1 l 6.9 18.9 l 7.9 18.69999 l 10.2 18.69999 l
+12.4 19.5 l 13 19.9 l 14.2 21.2 l 14.2 12 l
+p
+8.3 21.6 m 10.2 21.6 l 12.2 22.6 l 12.6 23 l
+13.2 23.8 l 13.6 24.7 l 13.8 25.3 l 14.2 27.4 l
+14.2 30.7 l 13.4 33.39999 l 13 34.2 l 11.8 35.5 l
+11 35.89999 l 10.2 36.1 l 8.5 36.1 l 7.1 35.5 l
+6.3 34.8 l 6.1 34.6 l 5.5 33.8 l 5.1 33 l
+4.7 31.7 l 4.5 30.5 l 4.5 27 l 5.3 24 l
+5.7 23.4 l 6.9 22.2 l 7.7 21.8 l p ef
+pom
+pum
+441.1 182.1 t
+8.7 18.69999 m 11.4 18.69999 l 14.4 19.7 l 14.8 20.1 l
+15.4 20.5 l 15.6 20.5 l 16.9 21.8 l 16.9 22 l
+17.3 22.6 l 17.69999 23 l 18.9 27.2 l 18.9 29.6 l
+18.69999 29.9 l 4.5 29.9 l 4.5 30.7 l 5.5 33.6 l
+7.1 35.2 l 8.3 35.89999 l 9.09999 36.1 l 11.4 36.1 l
+13.4 35.2 l 14.4 34.2 l 14.8 33.6 l 14.8 33.39999 l
+15.2 32.6 l 15.6 32.1 l 16.3 32.1 l 17.9 32.3 l
+18.5 32.6 l 18.69999 32.8 l 18.69999 33.2 l 17.9 35 l
+17.5 35.7 l 15.8 37.3 l 14.6 38.2 l 13.6 38.6 l
+11.8 39 l 8.7 39 l 5.5 37.89999 l 4.29999 37.1 l
+3 35.89999 l 2.4 35 l 1.8 33.6 l 1 30.7 l 1 27.2 l
+1.4 25.1 l 1.6 24.5 l 2.4 22.8 l 2.8 22.2 l
+4.7 20.3 l 5.3 19.9 l 6.7 19.3 l p
+8.9 21.6 m 11 21.6 l 13.4 22.6 l 14.4 23.6 l
+15.4 26.3 l 15.4 27 l 4.5 27 l 4.5 26.3 l
+4.9 24.9 l 5.3 24 l 6.9 22.4 l 8.09999 21.8 l
+p ef
+pom
+pum
+461.4 182.1 t
+pom
+pum
+470.7 182.1 t
+2.7 11.8 m 20.2 11.8 l 20.4 12 l 20.4 14.9 l
+20.2 15.1 l 6 15.1 l 6 23 l 19.2 23 l 19.4 23.2 l
+19.4 26.1 l 19.2 26.3 l 6 26.3 l 6 35.2 l
+20.7 35.2 l 20.9 35.5 l 20.9 38.4 l 20.7 38.6 l
+2.7 38.6 l 2.5 38.4 l 2.5 12 l p ef
+pom
+pum
+494.4 182.1 t
+7.7 18.69999 m 10 18.69999 l 11 18.9 l 11.2 19.1 l
+14.2 21.4 l 14.2 19.3 l 14.4 19.1 l 17.5 19.1 l
+17.69999 19.3 l 17.69999 45.8 l 17.5 46 l 14.4 46 l
+14.2 45.8 l 14.2 36.7 l 13.2 37.7 l 12.6 38.2 l
+11.8 38.6 l 10.4 39 l 8.09999 39 l 5.1 37.7 l
+2.8 35.5 l 2.4 34.8 l 1.8 33.39999 l 1 30.5 l
+1 26.8 l 1.4 24.9 l 1.8 23.6 l 2.4 22.4 l
+2.8 21.8 l 4.7 19.9 l 6.3 19.1 l p
+8.3 21.4 m 10 21.4 l 11.8 22.2 l 12.8 23.2 l
+13.2 23.8 l 13.6 24.7 l 13.8 25.3 l 14.2 27.4 l
+14.2 30.7 l 13.6 32.8 l 13 34.2 l 12 35.2 l
+10.2 36.1 l 8.5 36.1 l 7.9 35.89999 l 7.1 35.5 l
+5.5 33.8 l 5.1 33 l 4.7 31.7 l 4.5 30.5 l
+4.5 27 l 5.3 23.8 l 5.7 23.2 l 6.9 22 l
+7.7 21.6 l p ef
+pom
+pum
+516.39999 182.1 t
+2.4 19.1 m 5.5 19.1 l 5.7 19.3 l 5.7 32.6 l
+5.9 33.6 l 6.1 33.8 l 6.3 34.2 l 6.3 34.39999 l
+7.1 35.2 l 8.5 35.89999 l 10.4 35.89999 l 11.2 35.7 l
+12.4 35 l 13 34.6 l 13.2 34.39999 l 13.6 33.8 l
+14.4 31.3 l 14.4 19.3 l 14.6 19.1 l 17.69999 19.1 l
+17.9 19.3 l 17.9 38.4 l 17.69999 38.6 l 14.6 38.6 l
+14.4 38.4 l 14.4 35.89999 l 14 36.3 l 14 36.5 l
+13.2 37.3 l 12.4 37.89999 l 10.8 38.8 l 9.8 39 l
+7.5 39 l 5.3 38.2 l 4.5 37.7 l 3.2 36.5 l
+2.6 35.2 l 2.4 34.6 l 2.2 33.39999 l 2.2 19.3 l
+p ef
+pom
+pum
+538.5 182.1 t
+2.3 11.8 m 5.1 11.8 l 5.3 12 l 5.3 15.3 l
+5.1 15.6 l 2.3 15.6 l 2.1 15.3 l 2.1 12 l
+p
+2.3 19.1 m 5.1 19.1 l 5.3 19.3 l 5.3 38.4 l
+5.1 38.6 l 2.3 38.6 l 2.1 38.4 l 2.1 19.3 l
+p ef
+pom
+pum
+547.8 182.1 t
+2.3 11.8 m 5.1 11.8 l 5.3 12 l 5.3 38.4 l
+5.1 38.6 l 2.3 38.6 l 2.1 38.4 l 2.1 12 l
+p ef
+pom
+pum
+557.89999 182.1 t
+2.3 11.8 m 5.1 11.8 l 5.3 12 l 5.3 15.3 l
+5.1 15.6 l 2.3 15.6 l 2.1 15.3 l 2.1 12 l
+p
+2.3 19.1 m 5.1 19.1 l 5.3 19.3 l 5.3 38.4 l
+5.1 38.6 l 2.3 38.6 l 2.1 38.4 l 2.1 19.3 l
+p ef
+pom
+pum
+568.1 182.1 t
+2.4 11.8 m 5.5 11.8 l 5.7 12 l 5.7 21.2 l
+7.1 19.7 l 8.3 19.1 l 9.8 18.69999 l 12 18.69999 l
+14.2 19.5 l 15.4 20.1 l 16.9 21.6 l 17.69999 23 l
+18.3 24.7 l 18.9 27 l 18.9 30.3 l 18.69999 31.7 l
+18.1 33.8 l 17.69999 34.6 l 16.9 35.89999 l 15.4 37.3 l
+13.6 38.4 l 12 39 l 9.8 39 l 8.7 38.8 l 7.5 38.2 l
+6.9 37.7 l 5.9 36.7 l 5.9 36.5 l 5.7 36.3 l
+5.7 38.4 l 5.5 38.6 l 2.4 38.6 l 2.2 38.4 l
+2.2 12 l p
+9.8 21.6 m 11.4 21.6 l 13.2 22.4 l 14.2 23.4 l
+14.8 24.9 l 15.4 27.2 l 15.4 30.5 l 14.8 33 l
+14.6 33.39999 l 14.2 34 l 12.8 35.5 l 12 35.89999 l
+11.4 36.1 l 9.6 36.1 l 8.09999 35.5 l 6.7 34 l
+6.1 32.8 l 5.7 30.7 l 5.7 27.2 l 6.5 24.5 l
+6.9 23.6 l 8.3 22.2 l p ef
+pom
+pum
+589.3 182.1 t
+8.9 18.69999 m 10.6 18.69999 l 12.9 19.5 l 13.1 19.7 l
+13.1 19.9 l 12.9 20.1 l 12.1 22.4 l 12.1 22.6 l
+11.8 22.8 l 10.2 22 l 8.9 22 l 8.3 22.2 l
+7.8 22.4 l 7 23.2 l 5.9 26.5 l 5.9 38.4 l
+5.7 38.6 l 2.5 38.6 l 2.3 38.4 l 2.3 19.3 l
+2.5 19.1 l 5.3 19.1 l 5.5 19.3 l 5.5 21.4 l
+5.9 20.9 l 5.9 20.7 l 7.4 19.3 l 8.3 18.9 l
+p ef
+pom
+pum
+603.7 182.1 t
+2.3 11.8 m 5.1 11.8 l 5.3 12 l 5.3 15.3 l
+5.1 15.6 l 2.3 15.6 l 2.1 15.3 l 2.1 12 l
+p
+2.3 19.1 m 5.1 19.1 l 5.3 19.3 l 5.3 38.4 l
+5.1 38.6 l 2.3 38.6 l 2.1 38.4 l 2.1 19.3 l
+p ef
+pom
+pum
+613 182.1 t
+8.7 18.69999 m 11.4 18.69999 l 14.8 19.9 l 15.6 20.5 l
+17.1 22 l 17.5 22.6 l 18.1 24 l 18.9 27 l
+18.9 30.5 l 18.69999 31.9 l 18.1 34 l 17.69999 34.8 l
+17.3 35.5 l 15.4 37.3 l 14.8 37.7 l 11.4 39 l
+8.7 39 l 7.5 38.8 l 6.9 38.6 l 5.3 37.7 l
+4.7 37.3 l 3 35.7 l 2.6 35 l 1.8 33.39999 l
+1.6 32.8 l 1.2 30.7 l 1.2 27 l 2 24 l 2.6 22.6 l
+3 22 l 4.7 20.3 l 5.3 19.9 l p
+9.09999 21.6 m 11 21.6 l 13.2 22.6 l 14.2 23.6 l
+14.8 25.1 l 15.4 27.2 l 15.4 30.3 l 15 32.3 l
+14.2 34 l 13 35.2 l 11.8 35.89999 l 11 36.1 l
+9.09999 36.1 l 7.1 35.2 l 5.9 34 l 5.5 33.39999 l
+5.3 33 l 4.9 31.7 l 4.7 30.5 l 4.7 27.2 l
+5.5 24.3 l 5.9 23.6 l 7.1 22.4 l 8.3 21.8 l
+p ef
+pom
+gr
+1162.5 762.2 m 1174.9 724.6 l 1149.9 724.7 l
+1162.5 762.2 l p ef
+1162.5 554.39999 m 1162.5 732.2 l ps
+gs
+1122 642.6 m 1151 642.6 l 1151 672.6 l 1122 672.6 l 1122 642.6 l
+eoclip newpath
+gs
+1122.00196 642.57784 t
+gs
+pum
+8.32336 -2.15907 t
+6.79847 15.43101 m 8.89519 15.43101 l 10.03886 15.93902 l 10.67423 16.19303 l
+13.91462 16.19303 l 14.10524 16.38354 l 14.10524 16.76455 l 13.91462 16.95506 l
+13.85109 17.46308 l 13.85109 17.52658 l 13.66048 17.71708 l 11.75436 17.71708 l
+11.75436 18.2251 l 11.8179 18.2886 l 11.8179 19.62215 l 11.75436 20.32067 l
+11.24606 21.1462 l 10.48362 22.03523 l 9.33995 22.98776 l 8.32336 23.49578 l
+4.95589 24.2578 l 4.51113 24.51181 l 4.00283 24.89282 l 4.00283 25.40084 l
+4.38406 25.65485 l 4.95589 25.97236 l 9.14934 26.98839 l 10.48362 27.68691 l
+11.05545 28.25843 l 11.24606 28.51244 l 11.43668 29.02046 l 11.43668 30.03649 l
+10.80131 31.30654 l 10.03886 31.94156 l 9.65764 32.32257 l 8.70458 32.70358 l
+7.81506 33.02109 l 6.22663 33.4021 l 3.62161 33.4021 l 0.50829 32.44957 l
+-0.50829 31.56054 l -0.50829 31.37004 l -0.57183 31.11603 l -0.76244 30.92552 l
+-0.76244 30.03649 l -0.57183 29.59198 l -0.31768 29.21097 l 0.57183 28.25843 l
+1.08013 27.94092 l 2.60502 27.1789 l 2.60502 26.98839 l 2.28733 26.73438 l
+2.09672 26.41687 l 2.09672 25.65485 l 2.28733 25.40084 l 2.60502 24.89282 l
+2.85917 24.63881 l 3.431 24.2578 l 3.62161 24.2578 l 4.51113 23.74978 l
+4.38406 23.55928 l 4.00283 23.55928 l 3.17685 23.17827 l 2.09672 22.03523 l
+1.65196 20.95569 l 1.65196 19.62215 l 1.84257 19.05063 l 2.28733 18.2251 l
+2.60502 17.71708 l 3.431 16.76455 l 4.76528 16.00253 l p
+6.862 16.19303 m 7.94213 16.19303 l 8.13275 16.38354 l 8.57751 16.51054 l
+8.70458 16.51054 l 9.33995 17.14556 l 9.33995 17.27257 l 9.46703 17.71708 l
+9.65764 17.84409 l 9.65764 18.86012 l 9.46703 19.62215 l 9.14934 20.57468 l
+8.70458 21.46371 l 8.38689 21.90822 l 8.13275 22.22573 l 7.62445 22.47974 l
+7.05262 22.79725 l 6.60786 22.98776 l 5.52772 22.98776 l 5.46419 22.79725 l
+4.95589 22.67025 l 4.76528 22.67025 l 4.19344 22.03523 l 4.19344 21.90822 l
+4.00283 21.46371 l 3.9393 21.3367 l 3.9393 19.93966 l 4.19344 18.86012 l
+4.76528 17.71708 l 5.84541 16.70105 l p
+3.36746 27.49641 m 5.1465 27.94092 l 7.81506 28.51244 l 8.70458 28.82995 l
+8.95873 29.02046 l 9.65764 29.59198 l 9.72117 29.84599 l 9.72117 30.60801 l
+9.65764 30.79852 l 9.46703 31.11603 l 9.46703 31.30654 l 9.14934 31.56054 l
+8.70458 31.87805 l 8.13275 32.13206 l 7.24323 32.44957 l 6.29017 32.64008 l
+4.00283 32.64008 l 1.90611 31.87805 l 1.52489 31.37004 l 1.27074 30.79852 l
+1.27074 29.84599 l 1.65196 28.82995 l 2.60502 27.94092 l 2.98624 27.68691 l
+p ef
+6.79847 15.43101 m 8.89519 15.43101 l 10.03886 15.93902 l 10.67423 16.19303 l
+13.91462 16.19303 l 14.10524 16.38354 l 14.10524 16.76455 l 13.91462 16.95506 l
+13.85109 17.46308 l 13.85109 17.52658 l 13.66048 17.71708 l 11.75436 17.71708 l
+11.75436 18.2251 l 11.8179 18.2886 l 11.8179 19.62215 l 11.75436 20.32067 l
+11.24606 21.1462 l 10.48362 22.03523 l 9.33995 22.98776 l 8.32336 23.49578 l
+4.95589 24.2578 l 4.51113 24.51181 l 4.00283 24.89282 l 4.00283 25.40084 l
+4.38406 25.65485 l 4.95589 25.97236 l 9.14934 26.98839 l 10.48362 27.68691 l
+11.05545 28.25843 l 11.24606 28.51244 l 11.43668 29.02046 l 11.43668 30.03649 l
+10.80131 31.30654 l 10.03886 31.94156 l 9.65764 32.32257 l 8.70458 32.70358 l
+7.81506 33.02109 l 6.22663 33.4021 l 3.62161 33.4021 l 0.50829 32.44957 l
+-0.50829 31.56054 l -0.50829 31.37004 l -0.57183 31.11603 l -0.76244 30.92552 l
+-0.76244 30.03649 l -0.57183 29.59198 l -0.31768 29.21097 l 0.57183 28.25843 l
+1.08013 27.94092 l 2.60502 27.1789 l 2.60502 26.98839 l 2.28733 26.73438 l
+2.09672 26.41687 l 2.09672 25.65485 l 2.28733 25.40084 l 2.60502 24.89282 l
+2.85917 24.63881 l 3.431 24.2578 l 3.62161 24.2578 l 4.51113 23.74978 l
+4.38406 23.55928 l 4.00283 23.55928 l 3.17685 23.17827 l 2.09672 22.03523 l
+1.65196 20.95569 l 1.65196 19.62215 l 1.84257 19.05063 l 2.28733 18.2251 l
+2.60502 17.71708 l 3.431 16.76455 l 4.76528 16.00253 l 6.862 16.19303 m 7.94213 16.19303 l
+8.13275 16.38354 l 8.57751 16.51054 l 8.70458 16.51054 l 9.33995 17.14556 l
+9.33995 17.27257 l 9.46703 17.71708 l 9.65764 17.84409 l 9.65764 18.86012 l
+9.46703 19.62215 l 9.14934 20.57468 l 8.70458 21.46371 l 8.38689 21.90822 l
+8.13275 22.22573 l 7.62445 22.47974 l 7.05262 22.79725 l 6.60786 22.98776 l
+5.52772 22.98776 l 5.46419 22.79725 l 4.95589 22.67025 l 4.76528 22.67025 l
+4.19344 22.03523 l 4.19344 21.90822 l 4.00283 21.46371 l 3.9393 21.3367 l
+3.9393 19.93966 l 4.19344 18.86012 l 4.76528 17.71708 l 5.84541 16.70105 l
+3.36746 27.49641 m 5.1465 27.94092 l 7.81506 28.51244 l 8.70458 28.82995 l
+8.95873 29.02046 l 9.65764 29.59198 l 9.72117 29.84599 l 9.72117 30.60801 l
+9.65764 30.79852 l 9.46703 31.11603 l 9.46703 31.30654 l 9.14934 31.56054 l
+8.70458 31.87805 l 8.13275 32.13206 l 7.24323 32.44957 l 6.29017 32.64008 l
+4.00283 32.64008 l 1.90611 31.87805 l 1.52489 31.37004 l 1.27074 30.79852 l
+1.27074 29.84599 l 1.65196 28.82995 l 2.60502 27.94092 l 2.98624 27.68691 l
+pc
+pom
+gr
+1122 642.6 m 1151 642.6 l 1151 672.6 l 1122 672.6 l 1122 642.6 l
+eoclip newpath
+gr
+0 0 m 1399.9 0 l 1399.9 1199.9 l 0 1199.9 l 0 0 l eoclip newpath
+gr
+gs
+806.6 1141.4 m 835.4 1141.4 l 835.4 1171.4 l 806.6 1171.4 l 806.6 1141.4 l
+eoclip newpath
+gs
+806.60153 1141.38691 t
+gs
+pum
+6.21096 -3.1751 t
+3.92938 9.65232 m 11.15438 9.65232 l 11.21776 9.71582 l 11.21776 9.90632 l
+10.96425 10.22383 l 10.07697 10.22383 l 9.4432 10.41434 l 9.12631 10.47784 l
+8.55592 11.17637 l 8.30241 11.74789 l 5.13355 22.67025 l 4.37302 25.27383 l
+4.37302 26.16286 l 4.68991 26.41687 l 4.94342 26.60738 l 8.74605 26.60738 l
+9.63333 26.41687 l 10.45723 26.16286 l 10.8375 25.97236 l 11.21776 25.65485 l
+12.16842 24.82932 l 12.16842 24.63881 l 12.4853 24.2578 l 12.73881 23.87679 l
+13.0557 23.49578 l 13.30921 22.79725 l 13.30921 22.67025 l 13.49934 22.47974 l
+14.00635 22.47974 l 14.06973 22.67025 l 14.06973 22.79725 l 14.00635 22.98776 l
+13.81622 23.30527 l 12.92894 25.97236 l 12.73881 26.35337 l 12.4853 27.1789 l
+12.4853 27.49641 l 12.29517 27.68691 l -0.88728 27.68691 l -1.07741 27.49641 l
+-0.88728 27.1789 l -0.76052 26.98839 l 0.19013 26.98839 l 0.76052 26.92489 l
+1.26754 26.60738 l 1.33092 26.41687 l 2.02807 25.27383 l 5.51381 12.57341 l
+5.70394 11.81139 l 5.70394 10.79535 l 5.2603 10.41434 l 4.75328 10.22383 l
+3.92938 10.22383 l 3.73925 10.09683 l 3.73925 9.71582 l p ef
+3.92938 9.65232 m 11.15438 9.65232 l 11.21776 9.71582 l 11.21776 9.90632 l
+10.96425 10.22383 l 10.07697 10.22383 l 9.4432 10.41434 l 9.12631 10.47784 l
+8.55592 11.17637 l 8.30241 11.74789 l 5.13355 22.67025 l 4.37302 25.27383 l
+4.37302 26.16286 l 4.68991 26.41687 l 4.94342 26.60738 l 8.74605 26.60738 l
+9.63333 26.41687 l 10.45723 26.16286 l 10.8375 25.97236 l 11.21776 25.65485 l
+12.16842 24.82932 l 12.16842 24.63881 l 12.4853 24.2578 l 12.73881 23.87679 l
+13.0557 23.49578 l 13.30921 22.79725 l 13.30921 22.67025 l 13.49934 22.47974 l
+14.00635 22.47974 l 14.06973 22.67025 l 14.06973 22.79725 l 14.00635 22.98776 l
+13.81622 23.30527 l 12.92894 25.97236 l 12.73881 26.35337 l 12.4853 27.1789 l
+12.4853 27.49641 l 12.29517 27.68691 l -0.88728 27.68691 l -1.07741 27.49641 l
+-0.88728 27.1789 l -0.76052 26.98839 l 0.19013 26.98839 l 0.76052 26.92489 l
+1.26754 26.60738 l 1.33092 26.41687 l 2.02807 25.27383 l 5.51381 12.57341 l
+5.70394 11.81139 l 5.70394 10.79535 l 5.2603 10.41434 l 4.75328 10.22383 l
+3.92938 10.22383 l 3.73925 10.09683 l 3.73925 9.71582 l pc
+pom
+gr
+806.6 1141.4 m 835.4 1141.4 l 835.4 1171.4 l 806.6 1171.4 l 806.6 1141.4 l
+eoclip newpath
+gr
+0 0 m 1399.9 0 l 1399.9 1199.9 l 0 1199.9 l 0 0 l eoclip newpath
+gr
+383.1 912.2 m 370.6 949.7 l 395.6 949.6 l
+383.1 912.2 l p ef
+383.1 1183.7 m 383.1 942.2 l ps
+211.7 1183.7 m 554.39999 1183.7 l ps
+gs
+344.1 907.9 m 369.7 907.9 l 369.7 937.9 l 344.1 937.9 l 344.1 907.9 l
+eoclip newpath
+gs
+344.10147 907.88966 t
+gs
+pum
+8.98866 -3.3021 t
+2.08891 15.74852 m 10.57118 15.74852 l 10.63448 15.93902 l 10.63448 16.38354 l
+6.20344 20.95569 l 1.64581 25.59135 l 1.64581 25.65485 l 6.96305 25.65485 l
+7.34285 25.59135 l 7.97586 24.89282 l 8.29236 24.3213 l 8.29236 24.2578 l
+8.54556 23.87679 l 8.86206 23.87679 l 9.05197 24.06729 l 9.05197 24.2578 l
+7.97586 27.3694 l 7.72266 27.68691 l -0.8862 27.68691 l -1.0761 27.49641 l
+-1.0761 26.98839 l 3.41822 22.41624 l 7.97586 17.84409 l 7.97586 17.71708 l
+3.03842 17.71708 l 2.59532 17.84409 l 1.64581 18.79662 l 1.64581 18.86012 l
+1.32931 19.24113 l 1.0761 19.24113 l 0.8862 19.05063 l 1.0761 18.86012 l
+2.02561 16.19303 l 2.02561 15.93902 l p ef
+2.08891 15.74852 m 10.57118 15.74852 l 10.63448 15.93902 l 10.63448 16.38354 l
+6.20344 20.95569 l 1.64581 25.59135 l 1.64581 25.65485 l 6.96305 25.65485 l
+7.34285 25.59135 l 7.97586 24.89282 l 8.29236 24.3213 l 8.29236 24.2578 l
+8.54556 23.87679 l 8.86206 23.87679 l 9.05197 24.06729 l 9.05197 24.2578 l
+7.97586 27.3694 l 7.72266 27.68691 l -0.8862 27.68691 l -1.0761 27.49641 l
+-1.0761 26.98839 l 3.41822 22.41624 l 7.97586 17.84409 l 7.97586 17.71708 l
+3.03842 17.71708 l 2.59532 17.84409 l 1.64581 18.79662 l 1.64581 18.86012 l
+1.32931 19.24113 l 1.0761 19.24113 l 0.8862 19.05063 l 1.0761 18.86012 l
+2.02561 16.19303 l 2.02561 15.93902 l pc
+pom
+gr
+344.1 907.9 m 369.7 907.9 l 369.7 937.9 l 344.1 937.9 l 344.1 907.9 l
+eoclip newpath
+gr
+0 0 m 1399.9 0 l 1399.9 1199.9 l 0 1199.9 l 0 0 l eoclip newpath
+gr
+gr
+0 1200 t
+pom
+count op_count sub {pop} repeat countdictstack dict_count sub {end} repeat b4_inc_state restore
+%%PageTrailer
+%%Trailer
+%%EOF
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/e1e.gnuplot $
+# $Date: 2002-11-25 03:26:50 -0300 (lun, 25 nov 2002) $
+# $Rev: 30 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "e1e.eps"
+
+# Seteos generales.
+set title "Solución por Euler para el caso sin depósitos y con fricción turbulenta"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:1250]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Eje Y secundario.
+set y2label "Velocidad (z')"
+set y2range [-0.5:0.5]
+set y2tics -0.5, 0.1
+set my2tics 5
+
+# Plotea
+plot 'e1e.txt' using 1:2 title "z" with lines linetype 1, \
+ 'e1e.txt' using 1:3 axes x1y2 title "z'" with lines linetype 7
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/e1n.gnuplot $
+# $Date: 2002-11-25 03:26:50 -0300 (lun, 25 nov 2002) $
+# $Rev: 30 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "e1n.eps"
+
+# Seteos generales.
+set title "Solución por Nystrom para el caso sin depósitos y con fricción turbulenta"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:1250]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Eje Y secundario.
+set y2label "Velocidad (z')"
+set y2range [-0.5:0.5]
+set y2tics -0.5, 0.1
+set my2tics 5
+
+# Plotea
+plot 'e1n.txt' using 1:2 title "z" with lines linetype 1, \
+ 'e1n.txt' using 1:3 axes x1y2 title "z'" with lines linetype 7
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/e1r.gnuplot $
+# $Date: 2002-11-25 03:26:50 -0300 (lun, 25 nov 2002) $
+# $Rev: 30 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "e1r.eps"
+
+# Seteos generales.
+set title "Solución por RK4 para el caso sin depósitos y con fricción turbulenta"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:1250]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Eje Y secundario.
+set y2label "Velocidad (z')"
+set y2range [-0.5:0.5]
+set y2tics -0.5, 0.1
+set my2tics 5
+
+# Plotea
+plot 'e1r.txt' using 1:2 title "z" with lines linetype 1, \
+ 'e1r.txt' using 1:3 axes x1y2 title "z'" with lines linetype 7
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/e4n.gnuplot $
+# $Date: 2002-11-25 03:26:50 -0300 (lun, 25 nov 2002) $
+# $Rev: 30 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "e4n.eps"
+
+# Seteos generales.
+set title "Estimación del tiempo de reposo para Nystrom en el caso sin depósitos y con fricción turbulenta"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:50000]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set mytics 5
+
+# Plotea
+plot 'e4n.max.txt' title "Máximos" with lines linetype 1, \
+ 'e4n.min.txt' title "Mínimos" with lines linetype 8
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/e4r.gnuplot $
+# $Date: 2002-11-25 03:26:50 -0300 (lun, 25 nov 2002) $
+# $Rev: 30 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "e4r.eps"
+
+# Seteos generales.
+set title "Estimación del tiempo de reposo para RK4 en el caso sin depósitos y con fricción turbulenta"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:50000]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set mytics 5
+
+# Plotea
+plot 'e4r.max.txt' title "Máximos" with lines linetype 1, \
+ 'e4r.min.txt' title "Mínimos" with lines linetype 8
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/f1e.gnuplot $
+# $Date: 2002-11-30 03:48:32 -0300 (sáb, 30 nov 2002) $
+# $Rev: 31 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "f1e.eps"
+
+# Seteos generales.
+set title "Solución por Euler para el caso con depósitos y con fricción turbulenta"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:5000]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Eje Y secundario.
+set y2label "Velocidad (z')"
+set y2range [-0.5:0.5]
+set y2tics -0.5, 0.1
+set my2tics 5
+
+# Plotea
+plot 'f1e.txt' using 1:2 title "z" with lines linetype 1, \
+ 'f1e.txt' using 1:3 axes x1y2 title "z'" with lines linetype 7
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/f1n.gnuplot $
+# $Date: 2002-11-30 03:48:32 -0300 (sáb, 30 nov 2002) $
+# $Rev: 31 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "f1n.eps"
+
+# Seteos generales.
+set title "Solución por Nystrom para el caso con depósitos y con fricción turbulenta"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:5000]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Eje Y secundario.
+set y2label "Velocidad (z')"
+set y2range [-0.5:0.5]
+set y2tics -0.5, 0.1
+set my2tics 5
+
+# Plotea
+plot 'f1n.txt' using 1:2 title "z" with lines linetype 1, \
+ 'f1n.txt' using 1:3 axes x1y2 title "z'" with lines linetype 7
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/f1r.gnuplot $
+# $Date: 2002-11-30 03:48:32 -0300 (sáb, 30 nov 2002) $
+# $Rev: 31 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "f1r.eps"
+
+# Seteos generales.
+set title "Solución por RK4 para el caso con depósitos y con fricción turbulenta"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:5000]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set ytics nomirror
+set yrange [-3.5:3.5]
+set ytics -3.5, 0.5
+set mytics 5
+
+# Eje Y secundario.
+set y2label "Velocidad (z')"
+set y2range [-0.5:0.5]
+set y2tics -0.5, 0.1
+set my2tics 5
+
+# Plotea
+plot 'f1r.txt' using 1:2 title "z" with lines linetype 1, \
+ 'f1r.txt' using 1:3 axes x1y2 title "z'" with lines linetype 7
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/f4n.gnuplot $
+# $Date: 2002-11-30 18:54:58 -0300 (sáb, 30 nov 2002) $
+# $Rev: 32 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "f4n.eps"
+
+# Seteos generales.
+set title "Estimación del tiempo de reposo para Nystrom en el caso con depósitos y con fricción turbulenta"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:350000]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set mytics 5
+
+# Plotea
+plot 'f4n.max.txt' title "Máximos" with lines linetype 1, \
+ 'f4n.min.txt' title "Mínimos" with lines linetype 8
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/f4r.gnuplot $
+# $Date: 2002-11-30 18:54:58 -0300 (sáb, 30 nov 2002) $
+# $Rev: 32 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "f4r.eps"
+
+# Seteos generales.
+set title "Estimación del tiempo de reposo para RK4 en el caso con depósitos y con fricción turbulenta"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo (t)"
+set xrange [0:350000]
+set mxtics 5
+
+# Eje Y.
+set ylabel "Altura (z)"
+set mytics 5
+
+# Plotea
+plot 'f4r.max.txt' title "Máximos" with lines linetype 1, \
+ 'f4r.min.txt' title "Mínimos" with lines linetype 8
--- /dev/null
+#LyX 1.1 created this file. For more info see http://www.lyx.org/
+\lyxformat 218
+\textclass book
+\language spanish
+\inputencoding auto
+\fontscheme pslatex
+\graphics default
+\float_placement hbtp
+\paperfontsize default
+\spacing single
+\papersize Default
+\paperpackage widemarginsa4
+\use_geometry 0
+\use_amsmath 0
+\paperorientation portrait
+\secnumdepth 2
+\tocdepth 3
+\paragraph_separation indent
+\defskip medskip
+\quotes_language english
+\quotes_times 2
+\papercolumns 1
+\papersides 2
+\paperpagestyle default
+
+\layout Title
+
+Análisis Numérico I
+\newline
+Trabajo Práctico N° 2
+\layout Author
+
+Leandro Lucarella (77.891)
+\layout Date
+
+$Date: 2002-12-05 03:19:47 -0300 (jue, 05 dic 2002) $
+\newline
+$Rev: 36 $
+\layout Standard
+
+Copyright (C) 2002 Leandro Lucarella.
+\layout Standard
+
+Tiene permiso para copiar, distribuir y/o modificar este documento bajo
+ los términos de la GNU Free Documentation License (Licencia de Documentación
+ Libre GNU), Versión 1.1 o cualquier versión posterior publicada por la Free
+ Software Foundation (Fundación de Software Libre); sin Invariant Sections
+ (Secciones Invariantes), sin Front-Cover Texts (Texto de Portada-Delantera),
+ y sin Back-Cover Texts (Texto de Portada-Trasera).
+ Puede obtener una copia de la licencia en inglés en
+\begin_inset LatexCommand \url{http://www.gnu.org/licenses/fdl.txt}
+
+\end_inset
+
+ o en español (sin validez legal) en
+\begin_inset LatexCommand \url{http://www.geocities.com/larteaga/gnu/gfdl.html}
+
+\end_inset
+
+.
+\layout Standard
+
+
+\begin_inset LatexCommand \tableofcontents{}
+
+\end_inset
+
+
+\layout Standard
+
+
+\begin_inset LatexCommand \listoffigures{}
+
+\end_inset
+
+
+\layout Standard
+
+
+\begin_inset LatexCommand \listoftables{}
+
+\end_inset
+
+
+\layout Chapter
+
+Introducción.
+\layout Section
+
+Objetivo.
+\layout Standard
+
+Resolver un problema práctico implementando distintas metodologías de discretiza
+ción de ecuaciones diferenciales ordinarias.
+ Analizar el sistema físico bajo estudio y comparar las técnicas de resolución.
+\layout Section
+
+Introducción: Oscilación de líquidos
+\layout Standard
+
+Se estudiará un transitorio hidráulico, consistente en el movimiento de
+ un fluido luego que es apartado de su condición de equilibrio gravitatorio.
+ Como caso particular se presenta la oscilación entre dos depósitos comunicados
+ como se indica en la figura
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 368 283
+file diagrama.eps
+width 1 13
+height 1 10
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:diagrama}
+
+\end_inset
+
+Esquema del modelo físico.
+\end_float
+, donde
+\begin_inset Formula \( z_{1} \)
+\end_inset
+
+ y
+\begin_inset Formula \( z_{2} \)
+\end_inset
+
+ son los apartamientos de las superficies de los depósitos respecto de las
+ posiciones de equilibrio,
+\begin_inset Formula \( A_{1} \)
+\end_inset
+
+ y
+\begin_inset Formula \( A_{2} \)
+\end_inset
+
+ son las áreas horizontales de los depósitos (supuestas constantes),
+\begin_inset Formula \( L \)
+\end_inset
+
+ es la longitud de la tubería de comunicación y
+\begin_inset Formula \( L \)
+\end_inset
+
+ su sección (considerada circular).
+\layout Standard
+
+Considerando un fluido incompresible resulta
+\begin_inset Formula \( z\cdot A=z\cdot A_{1}=z\cdot A_{2} \)
+\end_inset
+
+, con
+\begin_inset Formula \( z \)
+\end_inset
+
+ el desplazamiento de una partícula de fluido dentro de la tubería y respecto
+ de su posición de equilibrio.
+ Así, la ecuación de movimiento del sistema es:
+\begin_inset Formula \begin{equation}
+\label{math:ec_dif_fisica}
+\frac{\textrm{d}^{2}z}{dt^{2}}+\phi _{(z)}\cdot \frac{dz}{dt}+\frac{g\cdot G}{L}\cdot z=0
+\end{equation}
+
+\end_inset
+
+con
+\begin_inset Formula \( t \)
+\end_inset
+
+ el tiempo,
+\begin_inset Formula \( g \)
+\end_inset
+
+ la aceleración de la gravedad,
+\begin_inset Formula \( \phi _{(z)} \)
+\end_inset
+
+ un factor asociado a pérdidas por fricción y
+\begin_inset Formula \( G \)
+\end_inset
+
+ un factor geométrico.
+ Como condiciones iniciales se considerarán:
+\begin_inset Formula \( z_{(0)}=\Delta z \)
+\end_inset
+
+,
+\begin_inset Formula \( \left. \frac{dz}{dt}\right| _{0}=0 \)
+\end_inset
+
+.
+
+\layout Chapter
+
+Discretización.
+\layout Standard
+
+La ecuación
+\begin_inset LatexCommand \vref{math:ec_dif_fisica}
+
+\end_inset
+
+ se deberá discretizar utilizando cada uno de los siguientes esquemas:
+\layout Itemize
+
+Euler explícito (E)
+\layout Itemize
+
+Runge-Kutta de orden 4 (RK4)
+\layout Itemize
+
+Nystrom (N)
+\layout Section
+
+Euler y Runge-Kutta de orden 4.
+\layout Standard
+
+Estos métodos se construyen de forma similar.
+ Primero, al tratarse de una ecuación diferencial de segundo grado, hay
+ que hacer un cambio de variables y plantear un sistema de dos ecuaciones:
+\begin_inset Formula \begin{equation}
+\label{math:cambio_variables}
+\left\{ \begin{array}{rcl}
+x=z & \Rightarrow & \frac{dx}{dt}=\frac{dz}{dt}\\
+y=\frac{dx}{dt}=\frac{dz}{dt} & \Rightarrow & \frac{dy}{dt}=\frac{d^{2}x}{dt^{2}}=\frac{d^{2}z}{dt^{2}}
+\end{array}\right.
+\end{equation}
+
+\end_inset
+
+
+\begin_inset Formula \begin{equation}
+\label{math:sist_ec_dif}
+\Rightarrow \left\{ \begin{array}{lllll}
+\frac{dx}{dt} & = & y & = & f_{x_{(t,x,y)}}\\
+\frac{dy}{dt} & = & -\phi _{\left( x,y_{(x)}\right) }\cdot y-\frac{g\cdot G}{L}\cdot x & = & f_{y_{(t,x,y)}}
+\end{array}\right.
+\end{equation}
+
+\end_inset
+
+ahora discretizamos le sistema de ecuaciones diferenciales de primer grado
+ según el método.
+\layout Subsection
+
+Euler.
+\layout Standard
+
+
+\begin_inset Formula \begin{equation}
+\label{math:euler}
+\left\{ \begin{array}{lllll}
+x_{n+1} & = & x_{n}+k\cdot f_{x_{\left( t_{n},x_{n},y_{n}\right) }} & = & x_{n}+k\cdot y_{n}\\
+y_{n+1} & = & y_{n}+k\cdot f_{y_{\left( t_{n},x_{n},y_{n}\right) }} & = & y_{n}-k\cdot \left( \phi _{\left( x_{n},y_{n}\right) }\cdot y_{n}+\frac{g\cdot G}{L}\cdot x_{n}\right)
+\end{array}\right.
+\end{equation}
+
+\end_inset
+
+
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+
+\begin_inset Formula \begin{equation}
+\label{math:rk4}
+\begin{array}{l}
+\left\{ \begin{array}{lll}
+q_{x_{1}} & = & k\cdot f_{x_{\left( t_{n},x_{n},y_{n}\right) }}\\
+q_{y_{1}} & = & k\cdot f_{y_{\left( t_{n},x_{n},y_{n}\right) }}
+\end{array}\right. \\
+\left\{ \begin{array}{lll}
+q_{x_{2}} & = & k\cdot f_{x_{\left( t_{n}+\frac{k}{2},x_{n}+\frac{q_{x_{1}}}{2},y_{n}+\frac{q_{y_{1}}}{2}\right) }}\\
+q_{y_{2}} & = & k\cdot f_{y_{\left( t_{n}+\frac{k}{2},x_{n}+\frac{q_{x_{1}}}{2},y_{n}+\frac{q_{y_{1}}}{2}\right) }}
+\end{array}\right. \\
+\left\{ \begin{array}{lll}
+q_{x_{3}} & = & k\cdot f_{x_{\left( t_{n}+\frac{k}{2},x_{n}+\frac{q_{x_{2}}}{2},y_{n}+\frac{q_{y_{2}}}{2}\right) }}\\
+q_{y_{3}} & = & k\cdot f_{y_{\left( t_{n}+\frac{k}{2},x_{n}+\frac{q_{x_{2}}}{2},y_{n}+\frac{q_{y_{2}}}{2}\right) }}
+\end{array}\right. \\
+\left\{ \begin{array}{lll}
+q_{x_{4}} & = & k\cdot f_{x_{\left( t_{n}+k,x_{n}+q_{x_{3}},y_{n}+q_{y_{3}}\right) }}\\
+q_{y_{4}} & = & k\cdot f_{y_{\left( t_{n}+k,x_{n}+q_{x_{3}},y_{n}+q_{y_{3}}\right) }}
+\end{array}\right. \\
+\left\{ \begin{array}{lll}
+x_{n+1} & = & x_{n}+\frac{1}{6}\cdot \left( q_{x_{1}}+2\cdot q_{x_{2}}+2\cdot q_{x_{3}}+q_{x_{4}}\right) \\
+y_{n+1} & = & y_{n}+\frac{1}{6}\cdot \left( q_{y_{1}}+2\cdot q_{y_{2}}+2\cdot q_{y_{3}}+q_{y_{4}}\right)
+\end{array}\right.
+\end{array}
+\end{equation}
+
+\end_inset
+
+
+\layout Section
+
+Nystrom.
+\layout Standard
+
+La construcción del método de Nystrom difiere de las anteriores ya que no
+ es necesario hacer un sistema de ecuaciones.
+ Nystrom parte del operador centrado
+\begin_inset Formula \( \frac{d^{2}z}{dt^{2}}=f_{\left( t,z,\frac{dz}{dt}\right) } \)
+\end_inset
+
+, por lo que se obtiene un método de paso múltiple (2 pasos).
+ Resulta entonces
+\begin_inset Formula \begin{equation}
+\label{math:operador_centrado}
+\frac{x_{n+1}-2\cdot x_{n}+x_{n-1}}{k^{2}}\approx \left. \frac{d^{2}x}{dt^{2}}\right| _{n}=f_{\left( t,x,\frac{dx}{dt}\right) }
+\end{equation}
+
+\end_inset
+
+
+\layout Standard
+
+donde
+\begin_inset Formula \( x \)
+\end_inset
+
+ es la discretización de
+\begin_inset Formula \( z \)
+\end_inset
+
+.
+\layout Standard
+
+Desarrollando la ecuación
+\begin_inset LatexCommand \vref{math:ec_dif_fisica}
+
+\end_inset
+
+ obtenemos
+\begin_inset Formula \begin{equation}
+\label{math:nystrom_inicial}
+\frac{x_{n+1}-2\cdot x_{n}+x_{n-1}}{k^{2}}+\phi _{(x)}\frac{x_{n+1}-x_{n-1}}{2\cdot k}+\frac{g\cdot G}{L}\cdot x_{n}=0
+\end{equation}
+
+\end_inset
+
+
+\layout Standard
+
+finalmente, despejando
+\begin_inset Formula \begin{equation}
+\label{math:nystrom}
+x_{n+1}=\frac{\left( \phi _{(x)}-1\right) \cdot x_{n-1}+\left( 2-\frac{g\cdot G\cdot k^{2}}{L}\right) \cdot x_{n}}{\phi _{(x)}+1}
+\end{equation}
+
+\end_inset
+
+
+\layout Subsection
+
+Obtención de valores iniciales.
+\layout Standard
+
+Hay que tener en cuenta que como el método de Nystrom necesita 2 valores
+ iniciales para arrancar, necesitamos obtener el dato correspondiente a
+
+\begin_inset Formula \( x_{1} \)
+\end_inset
+
+.
+ Este valor es obtenido por medio de una aproximación, considerando a la
+ solución una función par.
+ De esta manera suponemos que
+\begin_inset Formula \( x_{-1}=x_{1} \)
+\end_inset
+
+ y evaluamos la función discretizada (ver ecuación
+\begin_inset LatexCommand \ref{math:nystrom_inicial}
+
+\end_inset
+
+)
+\begin_inset Formula \begin{equation}
+\label{math:nystrom_valor_inicial}
+\begin{array}{r}
+\frac{x_{1}-2\cdot x_{0}+x_{-1}}{k^{2}}+\phi _{(x)}\frac{x_{1}-x_{-1}}{2\cdot k}+\frac{g\cdot G}{L}\cdot x_{0}=0\\
+\frac{x_{1}-2\cdot x_{0}+x_{1}}{k^{2}}+\phi _{(x)}\frac{x_{1}-x_{1}}{2\cdot k}+\frac{g\cdot G}{L}\cdot x_{0}=0\\
+\frac{2\cdot x_{1}-2\cdot x_{0}}{k^{2}}+\phi _{(x)}\frac{0}{2\cdot k}+\frac{g\cdot G}{L}\cdot x_{0}=0\\
+\frac{2}{k^{2}}\cdot \left( x_{1}-x_{0}\right) +\frac{g\cdot G}{L}\cdot x_{0}=0\\
+x_{1}-x_{0}+\frac{k^{2}\cdot g\cdot G}{2\cdot L}\cdot x_{0}=0\\
+x_{1}+\left( \frac{k^{2}\cdot g\cdot G}{2\cdot L}-1\right) \cdot x_{0}=0
+\end{array}
+\end{equation}
+
+\end_inset
+
+obteniendo un valor aproximado
+\begin_inset Formula \begin{equation}
+\label{math:nystrom_val_ini}
+x_{1}=\left( 1-\frac{k^{2}\cdot g\cdot G}{2\cdot L}\right) \cdot x_{0}
+\end{equation}
+
+\end_inset
+
+siendo
+\begin_inset Formula \( x_{0} \)
+\end_inset
+
+ dato del problema.
+\layout Subsection
+
+Aproximación de la derivada primera.
+\layout Standard
+
+Para construir la ecuación
+\begin_inset LatexCommand \vref{math:nystrom}
+
+\end_inset
+
+ supusimos un problema lineal aunque el coeficiente
+\begin_inset Formula \( \phi _{(z)} \)
+\end_inset
+
+ no siempre lo es.
+ En los casos donde
+\begin_inset Formula \( \phi _{(z)}\propto \left| \frac{dz}{dt}\right| \)
+\end_inset
+
+ hacemos una aproximación simple
+\begin_inset Formula \begin{equation}
+\label{mat:nystrom_aprox_derivada}
+\left| \frac{dz}{dt}\right| \approx \left| \frac{dx}{dt}\right| \cong \left| \frac{x_{n}-x_{n-1}}{k}\right|
+\end{equation}
+
+\end_inset
+
+
+\layout Standard
+
+No podemos utilizar un operador centrado para hacer la aproximación quedaría
+ en función de
+\begin_inset Formula \( x_{n+1} \)
+\end_inset
+
+ y al tratarse del valor absoluto sería imposible despejarlo para calcular
+ el paso siguiente como en la ecuación
+\begin_inset LatexCommand \vref{math:nystrom}
+
+\end_inset
+
+.
+\layout Section
+
+Valores iniciales.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:valores_iniciales}
+
+\end_inset
+
+Se toman los siguientes valores iniciales:
+\layout Itemize
+
+
+\begin_inset Formula \( D=0.5\, [m] \)
+\end_inset
+
+
+\layout Itemize
+
+
+\begin_inset Formula \( n=10^{-6}\, \left[ \frac{m^{2}}{s}\right] \)
+\end_inset
+
+
+\layout Itemize
+
+
+\begin_inset Formula \( g=9.8\, \left[ \frac{m^{2}}{s}\right] \)
+\end_inset
+
+
+\layout Itemize
+
+
+\begin_inset Formula \( f=0.03\, [-] \)
+\end_inset
+
+
+\layout Itemize
+
+
+\begin_inset Formula \( L=(3\textrm{ últimas cifras del Padrón})+1\, [m]=892\, [m] \)
+\end_inset
+
+
+\layout Itemize
+
+
+\begin_inset Formula \( L_{e}=1.2\, [m] \)
+\end_inset
+
+
+\layout Itemize
+
+
+\begin_inset Formula \( \Delta z=\frac{\sqrt{L}}{10}\, [m]=1070.4\, [m] \)
+\end_inset
+
+
+\layout Itemize
+
+
+\begin_inset Formula \( A_{1}=100A \)
+\end_inset
+
+
+\layout Itemize
+
+
+\begin_inset Formula \( A_{2}=50A \)
+\end_inset
+
+
+\layout Chapter
+
+Caso sin depósitos y sin fricción.
+\layout Standard
+
+Si se desprecian los efectos resistivos y se considera un tubo en U resulta
+
+\begin_inset Formula \( \phi _{(z)}=0 \)
+\end_inset
+
+,
+\begin_inset Formula \( G=2 \)
+\end_inset
+
+.
+\layout Section
+
+Gráfico de la solución en el tiempo.
+\layout Standard
+
+Se grafican aproximadamente 10 períodos de la solución.
+ La solución teórica es conservativa por lo que se espera que la solución
+ numérica también lo sea, aunque como se verá, no siempre es así.
+\layout Subsection
+
+Euler.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file c1e.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:euler_c1}
+
+\end_inset
+
+Solución por Euler para el caso sin depósitos ni fricción.
+\end_float
+
+\begin_inset LatexCommand \label{sec:euler_diverge}
+
+\end_inset
+
+La solución por este método diverge casi de forma incondicional.
+ En la figura
+\begin_inset LatexCommand \ref{fig:euler_c1}
+
+\end_inset
+
+podemos ver como al graficar variando el paso
+\begin_inset Formula \( k \)
+\end_inset
+
+, el método es mínimamente estable sólo si
+\begin_inset Formula \( k \)
+\end_inset
+
+ es extremadamente pequeño.
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file c1r.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:rk4_c1}
+
+\end_inset
+
+Solución por RK4 para el caso sin depósitos ni fricción.
+\end_float
+Luego de probar algunas variantes para el paso, se grafica la solución para
+ un paso de
+\begin_inset Formula \( k=0.44 \)
+\end_inset
+
+.
+ Con este paso la solución parece ser bastante precisa y hasta se podría
+ haber tomado un paso considerablemente mayor.
+ Los resultados pueden verse en la figura
+\begin_inset LatexCommand \ref{fig:rk4_c1}
+
+\end_inset
+
+.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:rk4_estable}
+
+\end_inset
+
+A partir de un paso
+\begin_inset Formula \( k=5 \)
+\end_inset
+
+ la solución parece ser estable.
+\layout Subsection
+
+Nystrom.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file c1n.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:nystrom_c1}
+
+\end_inset
+
+Solución por Nystrom para el caso sin depósitos ni fricción.
+\end_float
+
+\begin_inset LatexCommand \label{sec:nystrom_paso_minimo}
+
+\end_inset
+
+Al igual que con el método RK4, se prueban algunos pasos y se utiliza
+\begin_inset Formula \( k=0.44 \)
+\end_inset
+
+, aunque el método es estable y da resultados aparentemente válidos con
+ un paso del orden de
+\begin_inset Formula \( k=10 \)
+\end_inset
+
+.
+ Los resultados pueden verse en la figura
+\begin_inset LatexCommand \ref{fig:nystrom_c1}
+
+\end_inset
+
+.
+\layout Section
+
+Determinación del período.
+\layout Standard
+
+El valor teórico del período es
+\begin_inset Formula \( \tau =\pi \cdot \sqrt{\frac{2\cdot L}{g}}=42.387154 \)
+\end_inset
+
+.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:calculo_periodo}
+
+\end_inset
+
+Para hallar el período numéricamente, se estiman los
+\emph on
+ceros
+\emph default
+
+\emph on
+decrecientes
+\emph default
+ de la solución.
+ Llamamos
+\emph on
+cero decreciente
+\emph default
+ al punto donde la función cruza el eje de las abscisas en dirección decreciente.
+ También puede ser visto como el punto donde la derivada primera es mínima.
+ La diferencia entre un
+\emph on
+cero decreciente
+\emph default
+ y el siguiente es tomado como el período de la función.
+ Para calcularlo resolvió la ecuación númericamente hasta un
+\begin_inset Formula \( t=5000 \)
+\end_inset
+
+, aproximadamente 120 períodos, con un paso
+\begin_inset Formula \( k=0.05 \)
+\end_inset
+
+ para no perder mucha precisión.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file c2.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:periodo_c}
+
+\end_inset
+
+Evolución del Período para el caso sin depósitos y sin fricción
+\end_float
+
+\begin_inset LatexCommand \label{sec:periodo_analisis}
+
+\end_inset
+
+Podemos ver en la figura
+\begin_inset LatexCommand \ref{fig:periodo_c}
+
+\end_inset
+
+ que el período se comporta de la misma forma para todos los métodos analizados.
+ Vemos que sufre una variación leve cerca del período 24 (
+\begin_inset Formula \( t\cong 1000 \)
+\end_inset
+
+) y otra más
+\emph on
+brusca
+\emph default
+ cerca del período 95 (
+\begin_inset Formula \( t\cong 4000 \)
+\end_inset
+
+).
+ Cabe destacar que la variación
+\emph on
+brusca
+\emph default
+ es del orden de
+\begin_inset Formula \( 0.5\% \)
+\end_inset
+
+.
+\layout Subsection
+
+Euler.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:periodo_euler_c2}
+
+\end_inset
+
+A pesar de los problemas nombrados en el punto
+\begin_inset LatexCommand \vref{sec:euler_diverge}
+
+\end_inset
+
+, el período calculado por Euler da un valor muy cercano al teórico:
+\begin_inset Formula \( \tau =42.382906 \)
+\end_inset
+
+, lo que daría un error porcentual de
+\begin_inset Formula \( e=0.01\% \)
+\end_inset
+
+.
+ Cabe destacar que para el paso
+\begin_inset Formula \( k \)
+\end_inset
+
+ utilizado la solución diverge, pero el período no parece verse afectado.
+\layout Subsection
+
+Runge-Kutta de orden 4 y Nystrom.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:periodo_rk4_nystrom_c2}
+
+\end_inset
+
+Es curioso, ambos métodos promedian un período exactamente igual:
+\begin_inset Formula \( \tau =42.382051 \)
+\end_inset
+
+.
+ Es aún más curioso que este resultado sea más lejano al teórico que el
+ de Euler, aunque por poco.
+ La diferencia es mínima y el error porcentual se mantiene en
+\begin_inset Formula \( e=0.01\% \)
+\end_inset
+
+.
+\layout Section
+
+Análisis de conservación.
+\layout Standard
+
+Para analizar si el método es conservativo se propone igualar la solución
+ numérica con la solución matemática:
+\begin_inset Formula \begin{equation}
+\label{math:conservacion}
+u_{n}\approx c\cdot e^{\alpha \cdot t}\approx c\cdot e^{\alpha \cdot n\cdot k}=c\cdot \left( e^{\alpha \cdot k}\right) ^{n}=c\cdot \gamma ^{n}
+\end{equation}
+
+\end_inset
+
+
+\layout Standard
+
+Para que el método oscile,
+\begin_inset Formula \( \gamma \)
+\end_inset
+
+ debe ser complejo y tener parte imaginaria:
+\begin_inset Formula \begin{equation}
+\label{math:gamma_imaginario}
+\gamma \neq \overline{\gamma }\quad \Leftrightarrow \quad \Im _{(\gamma )}\neq 0
+\end{equation}
+
+\end_inset
+
+y para que el método sea conservativo,
+\begin_inset Formula \( \gamma \)
+\end_inset
+
+ debe tener módulo 1:
+\begin_inset Formula \begin{equation}
+\label{math:gamma_modulo_1}
+\left| \gamma \right| =\sqrt{\Re ^{2}_{(\gamma )}+\Im ^{2}_{(\gamma )}}=1\quad \Leftrightarrow \quad \left| \gamma \right| ^{2}=\Re ^{2}_{(\gamma )}+\Im ^{2}_{(\gamma )}=1
+\end{equation}
+
+\end_inset
+
+
+\layout Subsection
+
+Euler.
+\layout Standard
+
+Como
+\begin_inset Formula \( \phi _{(z)}=0 \)
+\end_inset
+
+, según la ecuación
+\begin_inset LatexCommand \vref{math:euler}
+
+\end_inset
+
+ resulta:
+\begin_inset Formula \[
+\left\{ \begin{array}{rcl}
+x_{n+1} & = & x_{n}+k\cdot y_{n}\\
+y_{n+1} & = & y_{n}-\frac{g\cdot G}{L}\cdot k\cdot x_{n}
+\end{array}\right. \]
+
+\end_inset
+
+reemplazando con la ecuación
+\begin_inset LatexCommand \vref{math:conservacion}
+
+\end_inset
+
+ y expresándolo matricialmente obtenemos:
+\begin_inset Formula \begin{eqnarray*}
+\left( \begin{array}{c}
+C_{x}\cdot \gamma ^{n+1}\\
+C_{y}\cdot \gamma ^{n+1}
+\end{array}\right) & = & \left( \begin{array}{cc}
+1 & k\\
+-k\cdot \frac{g\cdot G}{L} & 1
+\end{array}\right) \cdot \left( \begin{array}{c}
+C_{x}\cdot \gamma ^{n}\\
+C_{y}\cdot \gamma ^{n}
+\end{array}\right) \\
+\left( \begin{array}{c}
+C_{x}\cdot \gamma \\
+C_{y}\cdot \gamma
+\end{array}\right) & = & \left( \begin{array}{cc}
+1 & k\\
+-k\cdot \frac{g\cdot G}{L} & 1
+\end{array}\right) \cdot \left( \begin{array}{c}
+C_{x}\\
+C_{y}
+\end{array}\right) \\
+\left( \begin{array}{c}
+0\\
+0
+\end{array}\right) & = & \left( \begin{array}{cc}
+1-\gamma & k\\
+-k\cdot \frac{g\cdot G}{L} & 1-\gamma
+\end{array}\right) \cdot \left( \begin{array}{c}
+C_{x}\\
+C_{y}
+\end{array}\right)
+\end{eqnarray*}
+
+\end_inset
+
+
+\layout Standard
+
+Para que la matriz tenga otra solución además de la trivial:
+\begin_inset Formula \[
+\det \left( \begin{array}{cc}
+1-\gamma & k\\
+-k\cdot \frac{g\cdot G}{L} & 1-\gamma
+\end{array}\right) =0\quad \Leftrightarrow \quad \left( 1-\gamma \right) ^{2}+k\cdot \frac{g\cdot G}{L}=0\quad \Leftrightarrow \quad \gamma =1\pm i\cdot k\cdot \sqrt{\frac{g\cdot G}{L}}\]
+
+\end_inset
+
+para que el método resulte oscilatorio, se debe cumplir la ecuación
+\begin_inset LatexCommand \vref{math:gamma_imaginario}
+
+\end_inset
+
+:
+\begin_inset Formula \[
+\Im _{(\gamma )}\neq 0\quad \Leftrightarrow \quad k\neq 0\]
+
+\end_inset
+
+por lo tanto, para que el método de Euler oscile, debe cumplirse
+\begin_inset Formula \( k\neq 0 \)
+\end_inset
+
+ lo que no agrega ninguna limitación.
+ Por otro lado para que el método sea conservativo debe cumplirse la ecuación
+
+\begin_inset LatexCommand \vref{math:gamma_modulo_1}
+
+\end_inset
+
+:
+\begin_inset Formula \[
+\left| \gamma \right| ^{2}=1+k^{2}\cdot \left| \frac{g\cdot G}{L}\right| =1\quad \Leftrightarrow \quad k=0\]
+
+\end_inset
+
+por lo tanto, el método de Euler diverge para cualquier valor de
+\begin_inset Formula \( k \)
+\end_inset
+
+ ya que
+\begin_inset Formula \( \left| \gamma \right| >1\quad \forall k>0 \)
+\end_inset
+
+.
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:rk4_conservacion}
+
+\end_inset
+
+Lo primero que hay que hacer es expresar el método de forma más simple,
+ en un sólo par de ecuaciones.
+ Teniendo en cuenta que
+\begin_inset Formula \( \phi _{(z)}=0 \)
+\end_inset
+
+, reemplazando y desarrollando la ecuación
+\begin_inset LatexCommand \vref{math:rk4}
+
+\end_inset
+
+ obtenemos:
+\begin_inset Formula \[
+\left\{ \begin{array}{rcl}
+x_{n+1} & = & \left( 1-\frac{k^{2}\cdot g\cdot G}{2\cdot L}\right) \cdot x_{n}+\frac{k}{2}\cdot \left( 1-\frac{k\cdot g\cdot G}{3\cdot L}\right) \cdot y_{n}\\
+y_{n+1} & = & \left( \frac{k^{3}}{2}\cdot \left( \frac{g\cdot G}{L}\right) ^{2}-\frac{k\cdot g\cdot G}{L}\right) \cdot x_{n}+\left( 1+\frac{k^{4}}{24}\cdot \left( \frac{g\cdot G}{L}\right) ^{2}-\frac{k^{2}\cdot g\cdot G}{2\cdot L}\right) \cdot y_{n}
+\end{array}\right. \]
+
+\end_inset
+
+
+\layout Standard
+
+reemplazando con la ecuación
+\begin_inset LatexCommand \vref{math:conservacion}
+
+\end_inset
+
+ y expresándolo matricialmente obtenemos:
+\begin_inset Formula \begin{eqnarray*}
+\left( \begin{array}{c}
+C_{x}\cdot \gamma ^{n+1}\\
+C_{y}\cdot \gamma ^{n+1}
+\end{array}\right) & = & \left( \begin{array}{cc}
+1-\frac{k^{2}\cdot g\cdot G}{2\cdot L} & \frac{k}{2}\cdot \left( 1-\frac{k\cdot g\cdot G}{3\cdot L}\right) \\
+\frac{k^{3}}{2}\cdot \left( \frac{g\cdot G}{L}\right) ^{2}-\frac{k\cdot g\cdot G}{L} & 1+\frac{k^{4}}{24}\cdot \left( \frac{g\cdot G}{L}\right) ^{2}-\frac{k^{2}\cdot g\cdot G}{2\cdot L}
+\end{array}\right) \cdot \left( \begin{array}{c}
+C_{x}\cdot \gamma ^{n}\\
+C_{y}\cdot \gamma ^{n}
+\end{array}\right) \\
+\left( \begin{array}{c}
+C_{x}\cdot \gamma \\
+C_{y}\cdot \gamma
+\end{array}\right) & = & \left( \begin{array}{cc}
+1-\frac{k^{2}\cdot g\cdot G}{2\cdot L} & \frac{k}{2}\cdot \left( 1-\frac{k\cdot g\cdot G}{3\cdot L}\right) \\
+\frac{k^{3}}{2}\cdot \left( \frac{g\cdot G}{L}\right) ^{2}-\frac{k\cdot g\cdot G}{L} & 1+\frac{k^{4}}{24}\cdot \left( \frac{g\cdot G}{L}\right) ^{2}-\frac{k^{2}\cdot g\cdot G}{2\cdot L}
+\end{array}\right) \cdot \left( \begin{array}{c}
+C_{x}\\
+C_{y}
+\end{array}\right) \\
+\left( \begin{array}{c}
+0\\
+0
+\end{array}\right) & = & \left( \begin{array}{cc}
+1-\frac{k^{2}\cdot g\cdot G}{2\cdot L}-\gamma & \frac{k}{2}\cdot \left( 1-\frac{k\cdot g\cdot G}{3\cdot L}\right) \\
+\frac{k^{3}}{2}\cdot \left( \frac{g\cdot G}{L}\right) ^{2}-\frac{k\cdot g\cdot G}{L} & 1+\frac{k^{4}}{24}\cdot \left( \frac{g\cdot G}{L}\right) ^{2}-\frac{k^{2}\cdot g\cdot G}{2\cdot L}-\gamma
+\end{array}\right) \cdot \left( \begin{array}{c}
+C_{x}\\
+C_{y}
+\end{array}\right)
+\end{eqnarray*}
+
+\end_inset
+
+
+\layout Standard
+
+Para que la matriz tenga otra solución además de la trivial
+\begin_inset Formula \( \left( a=\frac{g\cdot G}{L}\right) \)
+\end_inset
+
+:
+\begin_inset Formula \begin{eqnarray*}
+\det \left( \begin{array}{cc}
+1-\frac{k^{2}}{2}\cdot a-\gamma & \frac{k}{2}\cdot \left( 1-\frac{k}{3}\cdot a\right) \\
+\frac{k^{3}}{2}\cdot a^{2}-k\cdot a & 1+\frac{k^{4}}{24}\cdot a^{2}-\frac{k^{2}}{2}\cdot a-\gamma
+\end{array}\right) & = & 0\\
+\left( 1-\frac{k^{2}}{2}\cdot a-\frac{k^{3}}{6}\cdot a^{2}-\frac{7\cdot k^{4}}{24}\cdot a^{2}+\frac{k^{5}}{32}\cdot a^{3}+\frac{k^{6}}{48}\cdot a^{3}\right) +\left( k^{2}\cdot a-\frac{k^{4}}{24}\cdot a^{2}-2\right) \cdot \gamma +\gamma ^{2} & = & 0
+\end{eqnarray*}
+
+\end_inset
+
+resultando:
+\begin_inset Formula \[
+\gamma =\frac{-\left( k^{2}\cdot a-\frac{k^{4}}{24}\cdot a^{2}-2\right) \pm \sqrt{\frac{k^{8}\cdot a^{4}}{576}+\frac{k^{5}\cdot a^{3}}{8}-\frac{2\cdot k^{3}\cdot a^{2}}{3}-6\cdot k^{2}\cdot a}}{2}\]
+
+\end_inset
+
+ para que el método resulte oscilatorio, se debe cumplir la ecuación
+\begin_inset LatexCommand \vref{math:gamma_imaginario}
+
+\end_inset
+
+:
+\begin_inset Formula \[
+\Im _{(\gamma )}\neq 0\quad \Leftrightarrow \quad \frac{k^{8}\cdot a^{4}}{576}+\frac{k^{5}\cdot a^{3}}{8}-\frac{2\cdot k^{3}\cdot a^{2}}{3}-6\cdot k^{2}\cdot a<0\quad \Leftrightarrow \quad \frac{k^{4}\cdot a^{3}}{576}+\frac{k^{3}\cdot a^{2}}{8}-\frac{k\cdot 2\cdot a}{3}-6<0\]
+
+\end_inset
+
+
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file c3o.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:oscilacion_rk4}
+
+\end_inset
+
+Análisis de oscilación para RK4.
+\end_float
+Como la inecuación resultante es muy compleja de resolver analíticamente
+ se la resolvió gráficamente y se ve en la figura
+\begin_inset LatexCommand \ref{fig:oscilacion_rk4}
+
+\end_inset
+
+ que para un paso
+\begin_inset Formula \( k<51 \)
+\end_inset
+
+ el método se comporta de forma oscilatoria.
+\layout Standard
+
+Por otro lado para que el método sea conservativo debe cumplirse la ecuación
+
+\begin_inset LatexCommand \vref{math:gamma_modulo_1}
+
+\end_inset
+
+:
+\begin_inset Formula \begin{eqnarray*}
+\left| \gamma \right| ^{2}=\left( \frac{k^{2}\cdot a-\frac{k^{4}}{24}\cdot a^{2}-2}{2}\right) ^{2}+\left( \frac{\sqrt{\frac{k^{8}\cdot a^{4}}{576}+\frac{k^{5}\cdot a^{3}}{8}-\frac{2\cdot k^{3}\cdot a^{2}}{3}-6\cdot k^{2}\cdot a}}{2}\right) ^{2} & = & 1\\
+\frac{k^{4}\cdot a^{2}}{4}-\frac{k^{8}\cdot a^{4}}{2304}-2-\frac{k^{6}\cdot a^{2}}{48}-k^{2}\cdot a+\frac{k^{4}\cdot a^{2}}{24}+\left| \frac{k^{8}\cdot a^{4}}{2304}+\frac{k^{5}\cdot a^{3}}{32}-\frac{k^{3}\cdot a^{2}}{6}-\frac{3\cdot k^{2}\cdot a}{2}\right| & = & 0
+\end{eqnarray*}
+
+\end_inset
+
+
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file c3c.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:convergencia_rk4}
+
+\end_inset
+
+Análisis de convergencia para RK4.
+\end_float
+Nuevamente obtenemos una ecuación muy compleja de resolver analíticamente.
+ En la figura se presenta la resulución gráfica en donde observamos que
+ el método converge para cualquier
+\begin_inset Formula \( k>0 \)
+\end_inset
+
+.
+ Sin embargo para un
+\begin_inset Formula \( k<7 \)
+\end_inset
+
+ aproximadamente vemos que tiende a converger lentamente, mientras que para
+
+\begin_inset Formula \( k>7 \)
+\end_inset
+
+ tiende a converger de forma mucho más brusca (y cada vez más acentuada).
+\layout Subsection
+
+Nystrom.
+\layout Standard
+
+Como
+\begin_inset Formula \( \phi _{(z)}=0 \)
+\end_inset
+
+, según la ecuación
+\begin_inset LatexCommand \vref{math:nystrom}
+
+\end_inset
+
+ resulta:
+\begin_inset Formula \[
+x_{n+1}=\left( 2-\frac{g\cdot G}{L}\cdot k^{2}\right) \cdot x_{n}-x_{n-1}\]
+
+\end_inset
+
+ reemplazando con la ecuación
+\begin_inset LatexCommand \vref{math:conservacion}
+
+\end_inset
+
+, obtenemos:
+\begin_inset Formula \[
+\left. \begin{array}{lll}
+\gamma ^{n+1} & = & \left( 2-\frac{g\cdot G}{L}\cdot k^{2}\right) \cdot \gamma ^{n}-\gamma ^{n-1}\\
+\gamma ^{2} & = & \left( 2-\frac{g\cdot G}{L}\cdot k^{2}\right) \cdot \gamma -1\\
+0 & = & \gamma ^{2}-\left( 2-\frac{g\cdot G}{L}\cdot k^{2}\right) \cdot \gamma +1
+\end{array}\right\} \quad \Rightarrow \quad \gamma =\left( 1-\frac{g\cdot G}{2\cdot L}\cdot k^{2}\right) \pm \sqrt{\left( 1-\frac{g\cdot G}{2\cdot L}\cdot k^{2}\right) ^{2}-1}\]
+
+\end_inset
+
+para que el método resulte oscilatorio, se debe cumplir la ecuación
+\begin_inset LatexCommand \vref{math:gamma_imaginario}
+
+\end_inset
+
+:
+\begin_inset Formula \[
+\Im _{(\gamma )}\neq 0\quad \Leftrightarrow \quad \Im _{\left( \sqrt{\left( 1-\frac{g\cdot G}{2\cdot L}\cdot k^{2}\right) ^{2}-1}\right) }\neq 0\quad \Leftrightarrow \quad \left( 1-\frac{g\cdot G}{2\cdot L}\cdot k^{2}\right) ^{2}-1<0\quad \Leftrightarrow \quad 0<k<\sqrt{\frac{4\cdot L}{g\cdot G}}\]
+
+\end_inset
+
+por lo tanto, para que el método de Nystrom oscile, debe cumplirse
+\begin_inset Formula \( k<\sqrt{\frac{4\cdot L}{g\cdot G}}=13.49225 \)
+\end_inset
+
+, que coincide con lo obtenido experimentalmente en el punto
+\begin_inset LatexCommand \vref{sec:nystrom_paso_minimo}
+
+\end_inset
+
+.
+\layout Standard
+
+Para que el método sea conservativo debe cumplirse la ecuación
+\begin_inset LatexCommand \vref{math:gamma_modulo_1}
+
+\end_inset
+
+:
+\begin_inset Formula \[
+\left| \gamma \right| ^{2}=\left( 1-\frac{g\cdot G}{2\cdot L}\cdot k^{2}\right) ^{2}+\left| \left( 1-\frac{g\cdot G}{2\cdot L}\cdot k^{2}\right) ^{2}-1\right| =1\quad \Leftrightarrow \quad k=\sqrt{\frac{4\cdot L}{g\cdot G}}\]
+
+\end_inset
+
+por lo tanto,
+\begin_inset Formula \( k=\sqrt{\frac{4\cdot L}{g\cdot G}}=13.49225 \)
+\end_inset
+
+.
+ Sin embargo en la práctica (ver figura
+\begin_inset LatexCommand \vref{fig:nystrom_c1}
+
+\end_inset
+
+) vemos que, a pesar de que el método debería converger con un paso más
+ pequeño que
+\begin_inset Formula \( k<13.49225 \)
+\end_inset
+
+, no lo hace y da la impresión de comportarse de forma conservativa.
+\layout Chapter
+
+Caso sin depósitos y con fricción laminar.
+\layout Standard
+
+Considerando la fricción laminar y un tubo en U resulta
+\begin_inset Formula \( \phi _{(z)}=\frac{32\cdot n}{D^{2}} \)
+\end_inset
+
+,
+\begin_inset Formula \( G=2 \)
+\end_inset
+
+, siendo
+\begin_inset Formula \( n \)
+\end_inset
+
+ la viscosidad cinemática del líquido y el diámetro del tubo.
+\layout Section
+
+Gráfico de la solución en el tiempo.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:graficos_d}
+
+\end_inset
+
+Se grafican aproximadamente 50 períodos de la solución.
+ Se toman más períodos a pesar de que no se vea muy claro el gráfico porque
+ la solución converge pero de forma lenta y de tomarse pocos períodos casi
+ no se observaría el fenómeno.
+\layout Subsection
+
+Euler.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file d1e.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:euler_d1}
+
+\end_inset
+
+Solución por Euler para el caso sin depósitos y con fricción laminar.
+\end_float
+El método de Euler sigue teniendo un error muy grande con pasos relativamente
+ pequeños lo que hace que tienda a divergir muy fácilmente (o al menos a
+ contrarrestar la poca convergencia en este caso).
+ Para que esto no suceda, como se ve en la figura
+\begin_inset LatexCommand \ref{fig:euler_d1}
+
+\end_inset
+
+, se tomó un paso
+\begin_inset Formula \( k=0.0025 \)
+\end_inset
+
+, 1000 veces menor que el utilizado para RK4 y Nystrom para obtener los
+ mismos (o incluso mejores) resultados.
+ De tomar un paso más grande, la divergencia del método es muy similar a
+ la presentada en la figura
+\begin_inset LatexCommand \vref{fig:euler_c1}
+
+\end_inset
+
+.
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file d1r.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:rk4_d1}
+
+\end_inset
+
+Solución por RK4 para el caso sin depósitos y con fricción laminar.
+\end_float
+Es el método más estable para este caso.
+ El la figura
+\begin_inset LatexCommand \ref{fig:rk4_d1}
+
+\end_inset
+
+ se grafica con un paso de
+\begin_inset Formula \( k=2.5 \)
+\end_inset
+
+, con el cual comienza a comportarse de forma estable.
+ A medida que se disminuye el paso conserva el comportamiento.
+ Si se toma un paso mayor, diverge rápidamente.
+\layout Subsection
+
+Nystrom.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file d1n.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:nystrom_d1}
+
+\end_inset
+
+Solución por Nystrom para el caso sin depósitos y con fricción laminar.
+\end_float
+
+\begin_inset LatexCommand \label{sec:nystrom_converge}
+
+\end_inset
+
+Este método se comporta de una forma muy particular.
+ Con un paso de
+\begin_inset Formula \( k=2 \)
+\end_inset
+
+ se mantiene estable y parece dar buenos resultados.
+ Si se toma un paso menor, converge de forma más violenta, dando una solución
+ no válida como se aprecia en la figura
+\begin_inset LatexCommand \ref{fig:nystrom_d1}
+
+\end_inset
+
+.
+ Con un paso mayor se observa el efecto contrario: diverge rápidamente.
+\layout Section
+
+Determinación del período.
+\layout Standard
+
+El valor teórico del período es
+\begin_inset Formula \( \tau =\frac{2\cdot \pi }{\sqrt{\frac{2\cdot g}{L}+\left( \frac{16\cdot n}{D^{2}}\right) ^{2}}}=42.387150 \)
+\end_inset
+
+.
+\layout Standard
+
+Para hallar el período numéricamente se utilizó el mismo método que en el
+ punto
+\begin_inset LatexCommand \vref{sec:calculo_periodo}
+
+\end_inset
+
+, con un paso de
+\begin_inset Formula \( k=0.05 \)
+\end_inset
+
+ y resolviendo hasta
+\begin_inset Formula \( t=5000\cong 120 \)
+\end_inset
+
+ períodos.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file d2.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:periodo_d}
+
+\end_inset
+
+Evolución del Período para el caso sin depósitos y con fricción laminar.
+\end_float
+Podemos ver en la figura
+\begin_inset LatexCommand \ref{fig:periodo_d}
+
+\end_inset
+
+ que el período se comporta de la misma forma que en el punto
+\begin_inset LatexCommand \vref{sec:periodo_analisis}
+
+\end_inset
+
+.
+\layout Subsection
+
+Euler.
+\layout Standard
+
+Al igual que en el punto
+\begin_inset LatexCommand \vref{sec:periodo_euler_c2}
+
+\end_inset
+
+, el período obtenido, a pesar de la divergencia, es
+\begin_inset Formula \( \tau =42.382906 \)
+\end_inset
+
+, un valor muy cercano al teórico.
+ Tiene el mismo error porcentual de
+\begin_inset Formula \( e=0.01\% \)
+\end_inset
+
+.
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+También el período hallado por este método coincide con el caso donde no
+ hay fricción (ver punto
+\begin_inset LatexCommand \vref{sec:periodo_rk4_nystrom_c2}
+
+\end_inset
+
+):
+\begin_inset Formula \( \tau =42.382051 \)
+\end_inset
+
+.
+ El error porcentual vuelve a ser del orden de
+\begin_inset Formula \( e=0.01\% \)
+\end_inset
+
+.
+\layout Subsection
+
+Nystrom.
+\layout Standard
+
+Este es el único método que varía con respecto al caso sin fricción.
+ Con el efecto de la fricción laminar y para un paso tan pequeño el método
+ converge, como se explicó en el punto
+\begin_inset LatexCommand \vref{sec:nystrom_converge}
+
+\end_inset
+
+.
+ Al igual que con Euler, esto no impide calcular el período y también coincidien
+do con Euler, hallamos que el error es menor que para RK4 e incluso que
+ para Euler.
+ El período calculado numéricamente da
+\begin_inset Formula \( \tau =42.387949 \)
+\end_inset
+
+, con lo que observamos que ganamos un dígito de precisión, siendo el error
+ porcentual del orden de
+\begin_inset Formula \( e=0.002\% \)
+\end_inset
+
+.
+\layout Section
+
+Valores de excursión máxima y mínima del menisco.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:max_min_d}
+
+\end_inset
+
+Al calcular estos valores se puso en evidencia la inestabilidad del método
+ de Nystrom para este caso.
+ Hubo que probar valores del paso (sin que sea demasiado grande ni demasiado
+ pequeño por lo explicado en el punto
+\begin_inset LatexCommand \vref{sec:nystrom_converge}
+
+\end_inset
+
+) e ir comparando con RK4 que resulta el más estable.
+ También puede notarse que las crestas no decrecen (en valor absoluto) monótonam
+ente como sucede con Euler y RK4 que tienen un comportamiento similar (aunque
+ Euler necesita un paso extremadamente pequeño para lograr estos resultados).
+\layout Standard
+
+\begin_float tab
+\layout Standard
+\align center
+
+\begin_inset Tabular
+<lyxtabular version="2" rows="12" columns="6">
+<features rotate="false" islongtable="false" endhead="0" endfirsthead="0" endfoot="0" endlastfoot="0">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Euler (
+\begin_inset Formula \( k=0.00405 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+RK4 (
+\begin_inset Formula \( k=0.405 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Nystrom (
+\begin_inset Formula \( k=2.13158 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.98664
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.98664
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.98664
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+42.3839
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.98417
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+42.525
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.97792
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+40.5
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.9732
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+84.7838
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.9817
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+84.6449
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.96993
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+83.1316
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.94811
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+127.184
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.97923
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+127.17
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.96243
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+123.632
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.93945
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+169.505
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.97677
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+169.695
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.95371
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+166.263
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.95007
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+211.826
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.97431
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+211.814
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.94593
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+208.895
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.94901
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+254.146
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.97185
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+254.339
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.93841
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+251.526
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.93633
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+296.618
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.96941
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+296.864
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.92969
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+294.158
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.91215
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+339.098
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.96695
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+338.984
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.92212
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+334.658
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.90121
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+381.578
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.96449
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+381.509
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.91458
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+377.29
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.91229
+\end_inset
+</cell>
+</row>
+</lyxtabular>
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{tab:max_d}
+
+\end_inset
+
+Valores de excursión máxima para el caso sin depósitos y con fricción laminar.
+\end_float
+\begin_float tab
+\layout Standard
+\align center
+
+\begin_inset Tabular
+<lyxtabular version="2" rows="12" columns="6">
+<features rotate="false" islongtable="false" endhead="0" endfirsthead="0" endfoot="0" endlastfoot="0">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Euler (
+\begin_inset Formula \( k=0.0039 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+RK4 (
+\begin_inset Formula \( k=0.39 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Nystrom (
+\begin_inset Formula \( k=1.95 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+21.189
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.9854
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+21.06
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.982
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+19.1842
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.98138
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+63.5839
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.98293
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+63.5849
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.97451
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+61.8158
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.9621
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+105.984
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.98047
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+106.11
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.96579
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+104.447
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.93124
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+148.345
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.978
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+148.23
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.95791
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+144.947
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.94622
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+190.665
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.97554
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+190.755
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.9504
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+187.579
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.951
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+232.986
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.97308
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+233.279
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.94167
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+230.21
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.94412
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+275.379
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.97063
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+275.399
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.934
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+272.842
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.92567
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+317.858
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.96817
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+317.924
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.92647
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+315.474
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.89578
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+360.338
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.96572
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+360.449
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.91775
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+355.974
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.90819
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+402.818
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.96327
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+402.569
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.91028
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+398.606
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.9135
+\end_inset
+</cell>
+</row>
+</lyxtabular>
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{tab:min_d}
+
+\end_inset
+
+Valores de excursión mínima para el caso sin depósitos y con fricción laminar.
+\end_float
+Pueden verse los resultados en los cuadros
+\begin_inset LatexCommand \ref{tab:max_d}
+
+\end_inset
+
+ y
+\begin_inset LatexCommand \ref{tab:min_d}
+
+\end_inset
+
+.
+\layout Section
+
+Estimación del tiempo de reposo.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:tiempo_reposo}
+
+\end_inset
+
+Para estimar el tiempo de reposo se calculó los máximos de la solución igual
+ que en el punto
+\begin_inset LatexCommand \ref{sec:max_min_d}
+
+\end_inset
+
+ pero para una mayor cantidad de períodos (aproximadamente 1200 en un principio).
+ Luego se ajustaron los datos por mínimos cuadrados a través de una función:
+
+\begin_inset Formula \begin{equation}
+\label{math:aproximacion_minimos_cuadrados}
+z_{(t)}=a\cdot e^{-b\cdot t}
+\end{equation}
+
+\end_inset
+
+
+\layout Standard
+
+Luego de comparar los resultados con cada vez menor cantidad de períodos,
+ se observo que la calidad de la aproximación no empeoraba, incluso al utilizar
+ sólo los primeros 10 períodos obtenidos en el punto
+\begin_inset LatexCommand \ref{sec:max_min_d}
+
+\end_inset
+
+, al menos para el método RK4.
+\layout Standard
+
+Consideramos que se llega al reposo cuando
+\begin_inset Formula \( \left| z\right| \leq 0.01 \)
+\end_inset
+
+, por lo que si despejamos
+\begin_inset Formula \( t \)
+\end_inset
+
+ de la ecuación
+\begin_inset LatexCommand \ref{math:aproximacion_minimos_cuadrados}
+
+\end_inset
+
+, resulta:
+\begin_inset Formula \begin{equation}
+\label{math:reposo}
+t\geq \frac{\ln \left| a\right| -\ln (z)}{b}=\frac{\ln \left| a\right| -\ln (0.01)}{b}=\frac{\ln \left| a\right| +4.60517}{b}
+\end{equation}
+
+\end_inset
+
+
+\layout Subsection
+
+Euler.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file d4e.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:euler_d4}
+
+\end_inset
+
+Estimación del tiempo de reposo para Euler.
+\end_float
+No tiene mucho sentido la estimación por Euler, ya que se pone en evidencia
+ la tendencia a divergir de este método y se obtienen resultados poco precisos
+ cuando se los compara con RK4 o incluso Nystrom, que no es muy estable
+ para este caso.
+ Aún así se presentan los resultados del ajuste de los máximos y mínimos
+ obtenidos en el punto
+\begin_inset LatexCommand \ref{sec:max_min_d}
+
+\end_inset
+
+ en la figura
+\begin_inset LatexCommand \ref{fig:euler_d4}
+
+\end_inset
+
+ porque no tiene sentido aproximar con más períodos porque el paso
+\begin_inset Formula \( k \)
+\end_inset
+
+ debería ser extremadamente pequeño para que no diverja.
+ La funciones aproximantes resultaron:
+\begin_inset Formula \[
+z^{\max }_{(t)}=2.986634\cdot e^{-1.95\cdot 10^{-5}\cdot t}\]
+
+\end_inset
+
+
+\begin_inset Formula \[
+z^{\min }_{(t)}=-2.986629\cdot e^{-1.95\cdot 10^{-5}\cdot t}\]
+
+\end_inset
+
+
+\layout Standard
+
+Para hallar el tiempo de reposo estimado reemplazamos en la ecuación
+\begin_inset LatexCommand \ref{math:reposo}
+
+\end_inset
+
+ obteniendo
+\begin_inset Formula \( t\cong \frac{\ln (2.98663)+4.60517}{1.95\cdot 10^{-5}}\cong 292272\cong 300000 \)
+\end_inset
+
+ como se aprecia en la figura
+\begin_inset LatexCommand \ref{fig:euler_d4}
+
+\end_inset
+
+.
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file d4r.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:rk4_d4}
+
+\end_inset
+
+Estimación del tiempo de reposo para RK4.
+\end_float
+Como se explico en el punto
+\begin_inset LatexCommand \ref{sec:tiempo_reposo}
+
+\end_inset
+
+, a pesar de ser posible calcular los máximos y mínimos para muchos más
+ períodos que en el punto
+\begin_inset LatexCommand \vref{sec:max_min_d}
+
+\end_inset
+
+, no es necesario ya que con estos datos se obtiene una precisión que no
+ es mejorada considerablemente aumentando la cantidad de períodos evaluados.
+\layout Standard
+
+La funciones aproximantes resultaron:
+\begin_inset Formula \[
+z^{\max }_{(t)}=2.9862768\cdot e^{-6.4\cdot 10^{-5}\cdot t}\]
+
+\end_inset
+
+
+\begin_inset Formula \[
+z^{\min }_{(t)}=-2.9862509\cdot e^{-6.4\cdot 10^{-5}\cdot t}\]
+
+\end_inset
+
+Para hallar el tiempo de reposo estimado reemplazamos en la ecuación
+\begin_inset LatexCommand \ref{math:reposo}
+
+\end_inset
+
+ obteniendo
+\begin_inset Formula \( t\cong \frac{\ln (2.98626)+4.60517}{6.4\cdot 10^{-5}}\cong 89049\cong 90000 \)
+\end_inset
+
+ como se aprecia en la figura
+\begin_inset LatexCommand \ref{fig:rk4_d4}
+
+\end_inset
+
+.
+\layout Subsection
+
+Nystrom.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file d4n.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:nystrom_d4}
+
+\end_inset
+
+Estimación del tiempo de reposo para Nystrom.
+\end_float
+Al igual que con RK4, y a pesar de que para el caso de este método la variación
+ de los máximos y mínimos no es monótona, se obtienen resultados precisos
+ utilizando los datos del punto
+\begin_inset LatexCommand \vref{sec:max_min_d}
+
+\end_inset
+
+.
+\layout Standard
+
+La funciones aproximantes resultaron:
+\begin_inset Formula \[
+z^{\max }_{(t)}=2.977926\cdot e^{-6.68\cdot 10^{-5}\cdot t}\]
+
+\end_inset
+
+
+\begin_inset Formula \[
+z^{\min }_{(t)}=-2.732692\cdot e^{-6.06\cdot 10^{-5}\cdot t}\]
+
+\end_inset
+
+Para hallar el tiempo de reposo estimado reemplazamos en la ecuación
+\begin_inset LatexCommand \ref{math:reposo}
+
+\end_inset
+
+ obteniendo
+\begin_inset Formula \( t\cong \frac{\ln (2.975)+4.60517}{6.37\cdot 10^{-5}}\cong 89409\cong 90000 \)
+\end_inset
+
+ como se aprecia en la figura
+\begin_inset LatexCommand \ref{fig:nystrom_d4}
+
+\end_inset
+
+.
+\layout Chapter
+
+Caso sin depósitos y con fricción turbulenta.
+\layout Standard
+
+Considerando flujo turbulento y un tubo en U resulta
+\begin_inset Formula \( \phi _{(z)}=\frac{f}{2\cdot D}\left| \frac{dz}{dt}\right| \)
+\end_inset
+
+,
+\begin_inset Formula \( G=2 \)
+\end_inset
+
+, siendo
+\begin_inset Formula \( f \)
+\end_inset
+
+ el factor de fricción.
+\layout Section
+
+Gráfico de la solución en el tiempo.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:graficos_e}
+
+\end_inset
+
+Se grafican aproximadamente 25 períodos de la solución.
+ La solución converge de forma más rápida que en el punto
+\begin_inset LatexCommand \ref{sec:graficos_d}
+
+\end_inset
+
+, por lo que se pueden tomar menos períodos lográndose ver el efecto de
+ la convergencia.
+ Se incluyen la derivada primera en los gráficos.
+\layout Subsection
+
+Euler.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file e1e.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:euler_e1}
+
+\end_inset
+
+Solución por Euler para el caso sin depósitos y con fricción turbulenta.
+\end_float
+Como la convergencia es más violenta en este caso, no es necesario tomar
+ un paso tan pequeño para Euler.
+ Al tomarse un
+\begin_inset Formula \( k=0.0125 \)
+\end_inset
+
+ vemos en la figura
+\begin_inset LatexCommand \ref{fig:euler_e1}
+
+\end_inset
+
+ que el método se comporta de manera razonable.
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file e1r.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:rk4_e1}
+
+\end_inset
+
+Solución por RK4 para el caso sin depósitos y con fricción turbulenta.
+\end_float
+Nuevamente este método se comporta de forma estable para un paso bastante
+ grande.
+ El la figura
+\begin_inset LatexCommand \ref{fig:rk4_e1}
+
+\end_inset
+
+ se grafica con un
+\begin_inset Formula \( k=3.125 \)
+\end_inset
+
+, con el cual comienza a comportarse de forma estable.
+ A medida que se disminuye el paso conserva el comportamiento.
+ Si se toma un paso un poco mayor converge rápidamente, y si el paso es
+ mucho mayor, diverge rápidamente.
+\layout Subsection
+
+Nystrom.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file e1n.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:nystrom_e1}
+
+\end_inset
+
+Solución por Nystrom para el caso sin depósitos y con fricción turbulenta.
+\end_float
+El método se comporta de la misma forma que en el punto
+\begin_inset LatexCommand \vref{sec:nystrom_converge}
+
+\end_inset
+
+, por lo que solamente se grafica para un paso estable
+\begin_inset Formula \( k=2 \)
+\end_inset
+
+ como se ve en la figura
+\begin_inset LatexCommand \ref{fig:nystrom_e1}
+
+\end_inset
+
+.
+\layout Section
+
+Determinación del período.
+\layout Standard
+
+En este caso no podemos calcular, al menos de forma simple, el valor teórico
+ del período.
+\layout Standard
+
+Para hallar el período numéricamente se utilizó el mismo método que en el
+ punto
+\begin_inset LatexCommand \vref{sec:calculo_periodo}
+
+\end_inset
+
+, con un paso de
+\begin_inset Formula \( k=0.05 \)
+\end_inset
+
+ y resolviendo hasta
+\begin_inset Formula \( t=5000\cong 120 \)
+\end_inset
+
+ períodos.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file e2.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:periodo_e}
+
+\end_inset
+
+Evolución del Período para el caso sin depósitos y con fricción turbulenta.
+\end_float
+Podemos ver en la figura
+\begin_inset LatexCommand \ref{fig:periodo_e}
+
+\end_inset
+
+ que el período se comporta de la misma forma que en el punto
+\begin_inset LatexCommand \vref{sec:periodo_analisis}
+
+\end_inset
+
+.
+\layout Subsection
+
+Euler.
+\layout Standard
+
+Al igual que en el punto
+\begin_inset LatexCommand \vref{sec:periodo_euler_c2}
+
+\end_inset
+
+, el período obtenido, a pesar de la divergencia, es
+\begin_inset Formula \( \tau =42.381624 \)
+\end_inset
+
+, similar al hallado en los casos anteriores.
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+El período hallado por este método no sólo es similar a los hallados en
+ casos anteriores, es igual:
+\begin_inset Formula \( \tau =42.382051 \)
+\end_inset
+
+.
+\layout Subsection
+
+Nystrom.
+\layout Standard
+
+Al igual que con Euler, el período hallado es muy similar al de los casos
+ anteriores:
+\begin_inset Formula \( \tau =42.383419 \)
+\end_inset
+
+.
+\layout Section
+
+Valores de excursión máxima y mínima del menisco.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:max_min_e}
+
+\end_inset
+
+A diferencia del punto
+\begin_inset LatexCommand \ref{sec:max_min_d}
+
+\end_inset
+
+, el método de Nystrom para este caso evoluciona de forma monótona con un
+ paso
+\begin_inset Formula \( k\cong 2 \)
+\end_inset
+
+.
+ Por lo demás es muy similar.
+\layout Standard
+
+\begin_float tab
+\layout Standard
+\align center
+
+\begin_inset Tabular
+<lyxtabular version="2" rows="12" columns="6">
+<features rotate="false" islongtable="false" endhead="0" endfirsthead="0" endfoot="0" endlastfoot="0">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Euler (
+\begin_inset Formula \( k=0.00405 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+RK4 (
+\begin_inset Formula \( k=0.405 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Nystrom (
+\begin_inset Formula \( k=2.13158 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.98664
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.98664
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.98664
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+42.4325
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.41423
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+42.525
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.4099
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+40.5
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.43704
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+84.8608
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.02668
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+85.0499
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.01941
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+83.1316
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.04639
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+127.281
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.74685
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+127.17
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.7389
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+123.632
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.78361
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+169.619
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.53529
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+169.695
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.52657
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+166.263
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.58168
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+211.955
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.36974
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+212.219
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.36003
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+208.895
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.41523
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+254.283
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.23665
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+254.339
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.22663
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+251.526
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.2743
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+296.765
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.12732
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+296.864
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.11716
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+292.026
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.15909
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+339.252
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.03592
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+339.389
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.02529
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+334.658
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.07448
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+381.736
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.958364
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+381.509
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.947538
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+377.29
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.997706
+\end_inset
+</cell>
+</row>
+</lyxtabular>
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{tab:max_e}
+
+\end_inset
+
+Valores de excursión máxima para el caso sin depósitos y con fricción turbulenta.
+\end_float
+\begin_float tab
+\layout Standard
+\align center
+
+\begin_inset Tabular
+<lyxtabular version="2" rows="12" columns="6">
+<features rotate="false" islongtable="false" endhead="0" endfirsthead="0" endfoot="0" endlastfoot="0">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Euler (
+\begin_inset Formula \( k=0.0039 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+RK4 (
+\begin_inset Formula \( k=0.39 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Nystrom (
+\begin_inset Formula \( k=1.95 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+21.2173
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.66993
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+21.06
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.66681
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+19.1842
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.686
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+63.6487
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.20344
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+63.5849
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.19796
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+61.8158
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.22681
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+106.073
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.87632
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+106.11
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.86909
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+102.316
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.90256
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+148.451
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.6342
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+148.635
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.62538
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+144.947
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.67739
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+190.787
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.44776
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+190.755
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.43851
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+187.579
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.49474
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+233.119
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.29977
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+233.279
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.29016
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+230.21
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.34204
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+275.521
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.17943
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+275.804
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.16917
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+272.842
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.21128
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+318.008
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.07967
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+317.924
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.06917
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+313.342
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.11568
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+360.492
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.995614
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+360.449
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.985082
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+355.974
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.03522
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+402.98
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.923832
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+402.974
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.912937
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+398.606
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.961757
+\end_inset
+</cell>
+</row>
+</lyxtabular>
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{tab:min_e}
+
+\end_inset
+
+Valores de excursión mínima para el caso sin depósitos y con fricción turbulenta.
+\end_float
+Pueden verse los resultados en los cuadros
+\begin_inset LatexCommand \ref{tab:max_e}
+
+\end_inset
+
+ y
+\begin_inset LatexCommand \ref{tab:min_e}
+
+\end_inset
+
+.
+\layout Section
+
+Estimación del tiempo de reposo.
+\layout Standard
+
+Para estimar el tiempo de reposo se probó el método utilizado en el punto
+
+\begin_inset LatexCommand \vref{sec:tiempo_reposo}
+
+\end_inset
+
+, pero no se pudo hallar una buena función aproximante, por lo tanto simplemente
+ se buscó la solución hasta hallar el mismo valor límite de
+\begin_inset Formula \( z=0.01 \)
+\end_inset
+
+ que para el punto
+\begin_inset LatexCommand \ref{sec:tiempo_reposo}
+
+\end_inset
+
+.
+ Para el método de Euler no se justifica calcular la estimación, ya que
+ basándonos en los valores obtenidos por otros métodos hay que llegar a
+ un
+\begin_inset Formula \( t\cong 50000 \)
+\end_inset
+
+ para lo que serían necesario un paso muy pequeño para que no diverja.
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file e4r.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:rk4_e4}
+
+\end_inset
+
+Estimación del tiempo de reposo para RK4.
+\end_float
+Para hallar la estimación simplemente se resolvió la ecuación hasta que
+
+\begin_inset Formula \( z\leq 0.01 \)
+\end_inset
+
+.
+ Esto sucedió para
+\begin_inset Formula \( t\cong 50000 \)
+\end_inset
+
+ utilizando un paso de
+\begin_inset Formula \( k=0.5 \)
+\end_inset
+
+ como se observa en la figura
+\begin_inset LatexCommand \ref{fig:rk4_e4}
+
+\end_inset
+
+.
+\layout Subsection
+
+Nystrom.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file e4n.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:nystrom_e4}
+
+\end_inset
+
+Estimación del tiempo de reposo para Nystrom.
+\end_float
+Al igual que para RK4, simplemente se resolvió la ecuación hasta que
+\begin_inset Formula \( z\leq 0.01 \)
+\end_inset
+
+.
+ Esto también sucedió para
+\begin_inset Formula \( t\cong 50000 \)
+\end_inset
+
+ pero utilizando un paso mucho mayor
+\begin_inset Formula \( k=2 \)
+\end_inset
+
+ conservando la precisión, como se observa en la figura
+\begin_inset LatexCommand \ref{fig:nystrom_e4}
+
+\end_inset
+
+.
+\layout Chapter
+
+Caso con depósitos y con fricción turbulenta.
+\layout Standard
+
+Considerando flujo turbulento y el sistema hidráulico de la figura
+\begin_inset LatexCommand \vref{fig:diagrama}
+
+\end_inset
+
+, resulta
+\begin_inset Formula \( \phi _{(z)}=\frac{f}{2\cdot D}\cdot \frac{L_{e}}{L}\left| \frac{dz}{dt}\right| \)
+\end_inset
+
+,
+\begin_inset Formula \( G=A\cdot \left( \frac{1}{A_{1}}+\frac{1}{A_{2}}\right) \)
+\end_inset
+
+, siendo
+\begin_inset Formula \( L_{e} \)
+\end_inset
+
+ un factor de pérdidas de carga,
+\begin_inset Formula \( A \)
+\end_inset
+
+ la sección del tubo y
+\begin_inset Formula \( A_{i} \)
+\end_inset
+
+ la sección horizontal del depósito.
+\layout Standard
+
+Considerando los valores iniciales (ver punto
+\begin_inset LatexCommand \vref{sec:valores_iniciales}
+
+\end_inset
+
+), vemos que
+\begin_inset Formula \( G \)
+\end_inset
+
+ es constante:
+\begin_inset Formula \[
+G=A\cdot \left( \frac{1}{A_{1}}+\frac{1}{A_{2}}\right) =A\cdot \left( \frac{1}{100\cdot A}+\frac{1}{50\cdot A}\right) =A\cdot \frac{1+2}{100\cdot A}=\frac{3}{100}=0.03\]
+
+\end_inset
+
+
+\layout Section
+
+Gráfico de la solución en el tiempo.
+\layout Standard
+
+Se grafican aproximadamente 15 períodos de la solución.
+ La solución converge de forma más rápida que en el punto
+\begin_inset LatexCommand \ref{sec:graficos_e}
+
+\end_inset
+
+ y con un período mayor, por lo que se pueden tomar menos períodos lográndose
+ ver el efecto de la convergencia.
+ Se incluyen la derivada primera en los gráficos.
+\layout Standard
+
+Los métodos se comportan igual que en los casos anteriores, al menos para
+ la cantidad de períodos graficados.
+\layout Subsection
+
+Euler.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file f1e.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:euler_f1}
+
+\end_inset
+
+Solución por Euler para el caso con depósitos y con fricción turbulenta.
+\end_float
+Como la convergencia es más violenta en este caso, no es necesario tomar
+ un paso tan pequeño para Euler.
+ Al tomarse un
+\begin_inset Formula \( k=0.05 \)
+\end_inset
+
+ vemos en la figura
+\begin_inset LatexCommand \ref{fig:euler_f1}
+
+\end_inset
+
+ que el método se comporta de manera razonable.
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file f1r.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:rk4_f1}
+
+\end_inset
+
+Solución por RK4 para el caso con depósitos y con fricción turbulenta.
+\end_float
+Nuevamente este método se comporta de forma estable para un paso bastante
+ grande.
+ El la figura
+\begin_inset LatexCommand \ref{fig:rk4_f1}
+
+\end_inset
+
+ se grafica con un
+\begin_inset Formula \( k=5 \)
+\end_inset
+
+.
+\layout Subsection
+
+Nystrom.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file f1n.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:nystrom_f1}
+
+\end_inset
+
+Solución por Nystrom para el caso sin depósitos y con fricción turbulenta.
+\end_float
+Volvemos a observar que el método es solamente estable para valores de
+\begin_inset Formula \( k\cong 2 \)
+\end_inset
+
+.
+ En la figura
+\begin_inset LatexCommand \ref{fig:nystrom_f1}
+
+\end_inset
+
+ se grafica para un paso estable
+\begin_inset Formula \( k=2 \)
+\end_inset
+
+.
+\layout Section
+
+Determinación del período.
+\layout Standard
+
+En este caso al igual que en el anterior no podemos calcular, al menos de
+ forma simple, el valor teórico del período.
+\layout Standard
+
+Para hallar el período numéricamente se utilizó el mismo método que en el
+ punto
+\begin_inset LatexCommand \vref{sec:calculo_periodo}
+
+\end_inset
+
+, con un paso de
+\begin_inset Formula \( k=0.04 \)
+\end_inset
+
+ y resolviendo hasta
+\begin_inset Formula \( t=40000\cong 120 \)
+\end_inset
+
+ períodos.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file f2.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:periodo_f}
+
+\end_inset
+
+Evolución del Período para el caso con depósitos y con fricción turbulenta.
+\end_float
+Podemos ver en la figura
+\begin_inset LatexCommand \ref{fig:periodo_f}
+
+\end_inset
+
+ que el período se comporta de la misma forma que en el punto
+\begin_inset LatexCommand \vref{sec:periodo_analisis}
+
+\end_inset
+
+.
+ Cabe destacar que para este caso el período aproximadamente 10 veces superior
+ al de los casos anteriores, por lo que el período 24 se alcanza en
+\begin_inset Formula \( t\cong 8300 \)
+\end_inset
+
+ y el período 95 en
+\begin_inset Formula \( t\cong 33000 \)
+\end_inset
+
+.
+\layout Subsection
+
+Euler.
+\layout Standard
+
+Nuevamente, a pesar de la divergencia, el período
+\begin_inset Formula \( \tau =346.03739 \)
+\end_inset
+
+ parece ser bastante preciso, al menos al compararlo con los resultados
+ obtenidos con los otros métodos.
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+El período hallado con este método es:
+\begin_inset Formula \( \tau =346.04435 \)
+\end_inset
+
+.
+\layout Subsection
+
+Nystrom.
+\layout Standard
+
+El período hallado con este método es:
+\begin_inset Formula \( \tau =346.04695 \)
+\end_inset
+
+.
+\layout Section
+
+Valores de excursión máxima y mínima del menisco.
+\layout Standard
+
+
+\begin_inset LatexCommand \label{sec:max_min_f}
+
+\end_inset
+
+Pueden verse los resultados en los cuadros
+\begin_inset LatexCommand \ref{tab:max_f}
+
+\end_inset
+
+ y
+\begin_inset LatexCommand \ref{tab:min_f}
+
+\end_inset
+
+.
+\layout Standard
+
+\begin_float tab
+\layout Standard
+\align center
+
+\begin_inset Tabular
+<lyxtabular version="2" rows="12" columns="6">
+<features rotate="false" islongtable="false" endhead="0" endfirsthead="0" endfoot="0" endlastfoot="0">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Euler (
+\begin_inset Formula \( k=0.01 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+RK4 (
+\begin_inset Formula \( k=1 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Nystrom (
+\begin_inset Formula \( k=2 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.98664
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.98664
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.98664
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+346.627
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.32148
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+347
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.32024
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+344
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2.31979
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+693.385
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.89903
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+693
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.89726
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+690
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.89658
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1040.03
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.60687
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1039
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.60474
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1036
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.60405
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1386.63
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.39277
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1386
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.39041
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1384
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.38988
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1733.19
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.22912
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1732
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.22664
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1730
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.22619
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2079.72
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.09995
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2078
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.09738
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2076
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1.09701
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2426.23
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.995414
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2424
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.992764
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2422
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.99246
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2772.71
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.90907
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2770
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.906352
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2768
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.90611
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+3119.2
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.836549
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+3116
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.833774
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+3114
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+0.833586
+\end_inset
+</cell>
+</row>
+</lyxtabular>
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{tab:max_f}
+
+\end_inset
+
+Valores de excursión máxima para el caso con depósitos y con fricción turbulenta.
+\end_float
+\begin_float tab
+\layout Standard
+\align center
+
+\begin_inset Tabular
+<lyxtabular version="2" rows="12" columns="6">
+<features rotate="false" islongtable="false" endhead="0" endfirsthead="0" endfoot="0" endlastfoot="0">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
+<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Euler (
+\begin_inset Formula \( k=0.01 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+RK4 (
+\begin_inset Formula \( k=1 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+<cell multicolumn="1" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Nystrom (
+\begin_inset Formula \( k=2 \)
+\end_inset
+
+)
+\end_inset
+</cell>
+<cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Tiempo (t)
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+Altura (z)
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+173.314
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.61227
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+173
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.61152
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+172
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.61105
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+520.026
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.08906
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+520
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.08754
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+518
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-2.08701
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+866.724
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.74075
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+866
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.73878
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+864
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.7383
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1213.34
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.49216
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1212
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.48988
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1210
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.4895
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1559.91
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.30582
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1559
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.3034
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1556
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.30304
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1906.45
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.16094
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1905
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.15842
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+1902
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.15807
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2252.97
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.04507
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2251
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.04246
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2248
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-1.04214
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2599.47
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.950282
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2597
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.947593
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2594
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.947306
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="false" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2945.96
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.871298
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2943
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.86855
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+2940
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.868298
+\end_inset
+</cell>
+</row>
+<row topline="true" bottomline="true" newpage="false">
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+3292.44
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.804476
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+3290
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.801688
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+3286
+\end_inset
+</cell>
+<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
+\begin_inset Text
+
+\layout Standard
+
+-0.801451
+\end_inset
+</cell>
+</row>
+</lyxtabular>
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{tab:min_f}
+
+\end_inset
+
+Valores de excursión mínima para el caso con depósitos y con fricción turbulenta.
+\end_float
+\layout Section
+
+Estimación del tiempo de reposo.
+\layout Standard
+
+Para estimar el tiempo de reposo se probó el método utilizado en el punto
+
+\begin_inset LatexCommand \vref{sec:tiempo_reposo}
+
+\end_inset
+
+, pero no se pudo hallar una buena función aproximante, por lo tanto se
+ resolvió igual que en el caso anterior, buscando una solución hasta hallar
+ el valor límite de
+\begin_inset Formula \( z=0.01 \)
+\end_inset
+
+ que para el punto
+\begin_inset LatexCommand \ref{sec:tiempo_reposo}
+
+\end_inset
+
+.
+ Para el método de Euler no se justifica calcular la estimación, ya que
+ basándonos en los valores obtenidos por otros métodos hay que llegar a
+ un
+\begin_inset Formula \( t\cong 350000 \)
+\end_inset
+
+ para lo que serían necesario un paso muy pequeño para que se note su tendencia
+ a divergir.
+\layout Subsection
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file f4r.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:rk4_f4}
+
+\end_inset
+
+Estimación del tiempo de reposo para RK4.
+\end_float
+Para hallar la estimación simplemente se resolvió la ecuación hasta que
+
+\begin_inset Formula \( z\leq 0.01 \)
+\end_inset
+
+.
+ Esto sucedió para
+\begin_inset Formula \( t\cong 350000 \)
+\end_inset
+
+ utilizando un paso de
+\begin_inset Formula \( k=3.5 \)
+\end_inset
+
+ como se observa en la figura
+\begin_inset LatexCommand \ref{fig:rk4_f4}
+
+\end_inset
+
+.
+\layout Subsection
+
+Nystrom.
+\layout Standard
+
+\begin_float fig
+\layout Standard
+\align center
+
+\begin_inset Figure size 360 252
+file f4n.eps
+flags 11
+
+\end_inset
+
+
+\layout Caption
+
+
+\begin_inset LatexCommand \label{fig:nystrom_f4}
+
+\end_inset
+
+Estimación del tiempo de reposo para Nystrom.
+\end_float
+Al igual que para RK4, simplemente se resolvió la ecuación hasta que
+\begin_inset Formula \( z\leq 0.01 \)
+\end_inset
+
+.
+ Esto también sucedió para
+\begin_inset Formula \( t\cong 350000 \)
+\end_inset
+
+ pero utilizando un el único paso estable para Nystrom,
+\begin_inset Formula \( k=2 \)
+\end_inset
+
+, como se observa en la figura
+\begin_inset LatexCommand \ref{fig:nystrom_f4}
+
+\end_inset
+
+.
+\layout Chapter
+
+Conclusiones.
+\layout Standard
+
+Este trabajo práctico sirvió para ver las ventajas y desventajas de cada
+ método para distintas situaciones.
+ En términos generales se pueden hacer las siguientes observaciones sobre
+ cada método en particular.
+\layout Section
+
+Euler.
+\layout Standard
+
+El método de Euler es un método que en la práctica sólo sirve para darse
+ una idea de cual es la forma de la solución a grandes rasgos.
+ Al buscar algo de estabilidad y precisión con este método se ven rápidamente
+ sus falencias y para hacer cálculos levemente precisos es necesario un
+ gran número de iteraciones.
+ A pesar de esto tiene como ventaja ser un método muy simple, característica
+ que facilita el análisis teórico para evaluar su comportamiento y su implementa
+ción computacional.
+\layout Section
+
+Runge-Kutta de orden 4.
+\layout Standard
+
+Este método se comporta de forma muy estable en todas las situaciones y
+ aún con pasos relativamente grandes.
+ A pesar de esto es un método lento (evalúa la función
+\begin_inset Formula \( f_{(t,x)} \)
+\end_inset
+
+ de la ecuación diferencial 4 veces por iteración) esto no se convierte
+ en un problema por la posibilidad de usar un paso grande sin perder precisión
+ ni estabilidad.
+ Como desventaja principal se puede nombrar que es un método complejo, no
+ tanto de implementar pero sí de analizar teóricamente para predecir su
+ comportamiento (como se vio en el punto
+\begin_inset LatexCommand \vref{sec:rk4_conservacion}
+
+\end_inset
+
+).
+ También pudimos comprobar experimentalmente que es un método conservativo,
+ al menos para los rangos de
+\begin_inset Formula \( k \)
+\end_inset
+
+ que estuvimos trabajando.
+\layout Section
+
+Nystrom.
+\layout Standard
+
+El método de Nystrom sorprendió por su incondicional estabilidad y bajo
+ error para un paso
+\begin_inset Formula \( k\cong 2 \)
+\end_inset
+
+ y su gran inestabilidad para pasos que no estén en este rango, ya sea convergie
+ndo rápidamente (dejando de ser conservativo) como divergiendo rápidamente
+ (de manera tan brusca que ni pudo ser graficado).
+ El método no es tan complejo de analizar teóricamente, lo que facilita
+ un poco el predecir su comportamiento y es tal vez el más fácil de implementar
+ ya que no tiene que ser convertido en un sistema de ecuaciones diferenciales
+ (aunque necesita un segundo valor inicial para arrancar, que puede ser
+ un problema si no se conoce en absoluto la ecuación que se está discretizando).
+ El hecho de que el paso deba ser del orden de
+\begin_inset Formula \( k\cong 2 \)
+\end_inset
+
+ puede ser visto tanto como una ventaja como una desventaja, ya que no nos
+ permite analizar lo que pasa en la función en intervalos de tiempo pequeño
+ pero nos deja analizar que pasa en intervalos de tiempo relativamente grandes
+ con pocas iteraciones.
+\layout Chapter
+
+Código Fuente.
+\layout Section
+
+Programa Principal (
+\family typewriter
+77891.cpp
+\family default
+).
+\layout LyX-Code
+
+// vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+\layout LyX-Code
+
+//
+\layout LyX-Code
+
+// Trabajo Práctico II de Análisis Numérico I
+\layout LyX-Code
+
+// Este programa resuelve un sistema de ecuaciones diferenciales
+\layout LyX-Code
+
+// resultante de un problema físico de oscilación de líquidos.
+\layout LyX-Code
+
+// Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+\layout LyX-Code
+
+//
+\layout LyX-Code
+
+// Este programa es Software Libre; usted puede redistribuirlo
+\layout LyX-Code
+
+// y/o modificarlo bajo los términos de la "GNU General Public
+\layout LyX-Code
+
+// License" como lo publica la "FSF Free Software Foundation",
+\layout LyX-Code
+
+// o (a su elección) de cualquier versión posterior.
+\layout LyX-Code
+
+//
+\layout LyX-Code
+
+// Este programa es distribuido con la esperanza de que le será
+\layout LyX-Code
+
+// útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+\layout LyX-Code
+
+// implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+\layout LyX-Code
+
+// particular.
+ Vea la "GNU General Public License" para más
+\layout LyX-Code
+
+// detalles.
+\layout LyX-Code
+
+//
+\layout LyX-Code
+
+// Usted debe haber recibido una copia de la "GNU General Public
+\layout LyX-Code
+
+// License" junto con este programa, si no, escriba a la "FSF
+\layout LyX-Code
+
+// Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+\layout LyX-Code
+
+// Boston, MA 02111-1307, USA.
+\layout LyX-Code
+
+//
+\layout LyX-Code
+
+// $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/informe.lyx $
+\layout LyX-Code
+
+// $Date: 2002-12-05 03:19:47 -0300 (jue, 05 dic 2002) $
+\layout LyX-Code
+
+// $Rev: 36 $
+\layout LyX-Code
+
+// $Author: luca $
+\layout LyX-Code
+
+//
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+#include <iostream.h>
+\layout LyX-Code
+
+#include <stdlib.h>
+\layout LyX-Code
+
+#include <math.h>
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Tipos de datos.
+\layout LyX-Code
+
+typedef unsigned int Indice;
+\layout LyX-Code
+
+typedef float Numero;
+\layout LyX-Code
+
+struct Datos;
+\layout LyX-Code
+
+typedef Numero (*Friccion)( Datos&, Numero, Numero );
+\layout LyX-Code
+
+typedef Numero (*Funcion)( Datos&, Numero, Numero, Numero );
+\layout LyX-Code
+
+typedef void (*Metodo)( Datos& );
+\layout LyX-Code
+
+struct Datos {
+\layout LyX-Code
+
+ Numero to; // Tiempo inicial
+\layout LyX-Code
+
+ Numero tf; // Tiempo final
+\layout LyX-Code
+
+ Numero k; // Paso
+\layout LyX-Code
+
+ Numero xo; // X inicial = X(to) = Z(to)
+\layout LyX-Code
+
+ Numero yo; // Y inicial = Y(to) = X'(to) = Z'(to)
+\layout LyX-Code
+
+ Numero D; // Diametro del tubo
+\layout LyX-Code
+
+ Numero n; // Viscosidad cinemática del líquido
+\layout LyX-Code
+
+ Numero g; // Aceleración de la gravedad
+\layout LyX-Code
+
+ Numero f; // Factor de fricción
+\layout LyX-Code
+
+ Numero L; // Longitud del tubo
+\layout LyX-Code
+
+ Numero Le; // Factor de pérdida de carga
+\layout LyX-Code
+
+ Numero G; // Factor geométrico
+\layout LyX-Code
+
+ Funcion fx; // Función asociada a la derivada de x
+\layout LyX-Code
+
+ Funcion fy; // Función asociada a la derivada de y
+\layout LyX-Code
+
+ Friccion fi; // Factor asociado a pérdidas por fricción
+\layout LyX-Code
+
+};
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Factor de fricción nulo.
+\layout LyX-Code
+
+Numero friccionNula( Datos&, Numero, Numero );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Factor de fricción laminar.
+\layout LyX-Code
+
+Numero friccionLaminar( Datos&, Numero, Numero );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Factor de fricción turbulenta.
+\layout LyX-Code
+
+Numero friccionTurbulenta( Datos&, Numero, Numero );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Factor de fricción turbulenta (con depósitos).
+\layout LyX-Code
+
+Numero friccionTurbulentaConDepositos( Datos&, Numero, Numero );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Función asociada a la primera derivada (x'=z').
+\layout LyX-Code
+
+Numero funcionX( Datos&, Numero, Numero, Numero );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Función asociada a la segunda derivada (y'=x''=z'').
+\layout LyX-Code
+
+Numero funcionY( Datos&, Numero, Numero, Numero );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Calcula la ecuación diferencial por el método de Euler.
+\layout LyX-Code
+
+void euler( Datos& );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Calcula la ecuación diferencial por el método de Runge-Kutta de órden
+ 4.
+\layout LyX-Code
+
+void rk4( Datos& );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Calcula la ecuación diferencial por el método de Nystrom.
+\layout LyX-Code
+
+void nystrom( Datos& );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Constantes.
+\layout LyX-Code
+
+const Numero DEFAULT_N = 1000, // Cantidad de pasos por defecto
+\layout LyX-Code
+
+ DEFAULT_to = 0.0,
+\layout LyX-Code
+
+ DEFAULT_tf = 440.0,
+\layout LyX-Code
+
+ DEFAULT_xo = 2.9866369,
+\layout LyX-Code
+
+ DEFAULT_yo = 0.0,
+\layout LyX-Code
+
+ DEFAULT_D = 0.5,
+\layout LyX-Code
+
+ DEFAULT_n = 1e-6,
+\layout LyX-Code
+
+ DEFAULT_g = 9.8,
+\layout LyX-Code
+
+ DEFAULT_f = 0.03,
+\layout LyX-Code
+
+ DEFAULT_L = 892.0,
+\layout LyX-Code
+
+ DEFAULT_Le = 1070.4,
+\layout LyX-Code
+
+ DEFAULT_G = 2.0;
+\layout LyX-Code
+
+const Funcion DEFAULT_fx = &funcionX,
+\layout LyX-Code
+
+ DEFAULT_fy = &funcionY;
+\layout LyX-Code
+
+const Friccion DEFAULT_fi = &friccionNula;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+int main( int argc, char* argv[] ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Se fija que tenga los argumentos necesarios para correr.
+\layout LyX-Code
+
+ if ( argc < 2 ) {
+\layout LyX-Code
+
+ cerr << "Faltan argumentos.
+ Modo de uso:" << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+t" << argv[0] << " método fi G tf N to xo yo D n g f L Le" << endl;
+\layout LyX-Code
+
+ cerr << "Desde fi en adelante son opcionales.
+ Los valores por defecto son:" << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tfi = n" << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tG = " << DEFAULT_G << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+ttf = " << DEFAULT_tf << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tN = " << DEFAULT_N << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tto = " << DEFAULT_to << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+txo = " << DEFAULT_xo << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tyo = " << DEFAULT_yo << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tD = " << DEFAULT_D << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tn = " << DEFAULT_n << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tg = " << DEFAULT_g << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tf = " << DEFAULT_f << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tL = " << DEFAULT_L << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tLe = " << DEFAULT_Le << endl;
+\layout LyX-Code
+
+ return EXIT_FAILURE;
+\layout LyX-Code
+
+ }
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Selecciona el método deseado.
+\layout LyX-Code
+
+ Metodo metodo = NULL;
+\layout LyX-Code
+
+ switch ( char( argv[1][0] ) ) {
+\layout LyX-Code
+
+ case 'e':
+\layout LyX-Code
+
+ metodo = &euler;
+\layout LyX-Code
+
+ break;
+\layout LyX-Code
+
+ case 'r':
+\layout LyX-Code
+
+ metodo = &rk4;
+\layout LyX-Code
+
+ break;
+\layout LyX-Code
+
+ case 'n':
+\layout LyX-Code
+
+ metodo = &nystrom;
+\layout LyX-Code
+
+ break;
+\layout LyX-Code
+
+ default:
+\layout LyX-Code
+
+ cerr << "Debe especificar un método válido:" << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+te: Euler" << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tr: Runge-Kutta 4" << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tn: Nystrom" << endl;
+\layout LyX-Code
+
+ return EXIT_FAILURE;
+\layout LyX-Code
+
+ }
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Se inicializan los datos.
+\layout LyX-Code
+
+ Numero N = DEFAULT_N;
+\layout LyX-Code
+
+ Datos D;
+\layout LyX-Code
+
+ D.to = DEFAULT_to;
+\layout LyX-Code
+
+ D.tf = DEFAULT_tf;
+\layout LyX-Code
+
+ D.k = ( D.tf - D.to ) / N;
+\layout LyX-Code
+
+ D.xo = DEFAULT_xo;
+\layout LyX-Code
+
+ D.yo = DEFAULT_yo;
+\layout LyX-Code
+
+ D.D = DEFAULT_D;
+\layout LyX-Code
+
+ D.n = DEFAULT_n;
+\layout LyX-Code
+
+ D.g = DEFAULT_g;
+\layout LyX-Code
+
+ D.f = DEFAULT_f;
+\layout LyX-Code
+
+ D.L = DEFAULT_L;
+\layout LyX-Code
+
+ D.Le = DEFAULT_Le;
+\layout LyX-Code
+
+ D.G = DEFAULT_G;
+\layout LyX-Code
+
+ D.fx = DEFAULT_fx;
+\layout LyX-Code
+
+ D.fy = DEFAULT_fy;
+\layout LyX-Code
+
+ D.fi = DEFAULT_fi;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Si se pasaron datos como argumento, se los va agregando.
+\layout LyX-Code
+
+ switch ( argc ) {
+\layout LyX-Code
+
+ case 15: D.Le = Numero( atof( argv[14] ) );
+\layout LyX-Code
+
+ case 14: D.L = Numero( atof( argv[13] ) );
+\layout LyX-Code
+
+ case 13: D.f = Numero( atof( argv[12] ) );
+\layout LyX-Code
+
+ case 12: D.g = Numero( atof( argv[11] ) );
+\layout LyX-Code
+
+ case 11: D.n = Numero( atof( argv[10] ) );
+\layout LyX-Code
+
+ case 10: D.D = Numero( atof( argv[9] ) );
+\layout LyX-Code
+
+ case 9: D.yo = Numero( atof( argv[8] ) );
+\layout LyX-Code
+
+ case 8: D.xo = Numero( atof( argv[7] ) );
+\layout LyX-Code
+
+ case 7: D.to = Numero( atof( argv[6] ) );
+\layout LyX-Code
+
+ case 6: N = Numero( atof( argv[5] ) );
+\layout LyX-Code
+
+ case 5: D.tf = Numero( atof( argv[4] ) );
+\layout LyX-Code
+
+ // Se recalcula el paso (k) si se cambio to, N o tf.
+\layout LyX-Code
+
+ D.k = ( D.tf - D.to ) / N;
+\layout LyX-Code
+
+ case 4: D.G = Numero( atof( argv[3] ) );
+\layout LyX-Code
+
+ case 3: switch ( char( argv[2][0] ) ) { // Tipo de fricción
+\layout LyX-Code
+
+ case 'n':
+\layout LyX-Code
+
+ D.fi = &friccionNula;
+\layout LyX-Code
+
+ break;
+\layout LyX-Code
+
+ case 'l':
+\layout LyX-Code
+
+ D.fi = &friccionLaminar;
+\layout LyX-Code
+
+ break;
+\layout LyX-Code
+
+ case 't':
+\layout LyX-Code
+
+ D.fi = &friccionTurbulenta;
+\layout LyX-Code
+
+ break;
+\layout LyX-Code
+
+ case 'd':
+\layout LyX-Code
+
+ D.fi = &friccionTurbulentaConDepositos;
+\layout LyX-Code
+
+ break;
+\layout LyX-Code
+
+ default:
+\layout LyX-Code
+
+ cerr << "Debe especificar un tipo de fricción válido:"
+ << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tn: Nula" << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tl: Laminar" << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+tt: Turbulenta" << endl;
+\layout LyX-Code
+
+ cerr << "
+\backslash
+td: Turbulenta (con depósitos)" << endl;
+\layout LyX-Code
+
+ return EXIT_FAILURE;
+\layout LyX-Code
+
+ }
+\layout LyX-Code
+
+ }
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Imprime el paso utilizado.
+\layout LyX-Code
+
+ cerr << "Paso k = " << D.k << endl;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Ejecuta el método correspondiente con los datos correspondientes.
+\layout LyX-Code
+
+ metodo( D );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ return EXIT_SUCCESS;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+Numero friccionNula( Datos& D, Numero x, Numero y ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ return 0.0;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+Numero friccionLaminar( Datos& D, Numero x, Numero y ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ return 32 * D.n / ( D.D * D.D );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+Numero friccionTurbulenta( Datos& D, Numero x, Numero y ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ return D.f * fabs( y ) / ( 2 * D.D );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+Numero friccionTurbulentaConDepositos( Datos& D, Numero x, Numero y ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ return D.f * fabs( y ) * D.Le / ( 2 * D.D * D.L);
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+Numero funcionX( Datos& D, Numero t, Numero x, Numero y ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ return y;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+Numero funcionY( Datos& D, Numero t, Numero x, Numero y ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ return - D.fi( D, x, y ) * y - D.g * D.G * x / D.L;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+void euler( Datos& D ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ Numero xo = D.xo,
+\layout LyX-Code
+
+ yo = D.yo,
+\layout LyX-Code
+
+ x = 0.0,
+\layout LyX-Code
+
+ y = 0.0,
+\layout LyX-Code
+
+ t = D.to;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ while ( t < D.tf ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Calculo los datos para este punto.
+\layout LyX-Code
+
+ x = xo + D.k * D.fx( D, t, xo, yo );
+\layout LyX-Code
+
+ y = yo + D.k * D.fy( D, t, xo, yo );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Imprimo resultados.
+\layout LyX-Code
+
+ cout << t << " " << x << " " << y << endl;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Reemplazo valores iniciales.
+\layout LyX-Code
+
+ xo = x;
+\layout LyX-Code
+
+ yo = y;
+\layout LyX-Code
+
+ t += D.k;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ }
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+void rk4( Datos& D ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ Numero x = D.xo,
+\layout LyX-Code
+
+ y = D.yo,
+\layout LyX-Code
+
+ t = D.to,
+\layout LyX-Code
+
+ qx1 = 0.0,
+\layout LyX-Code
+
+ qx2 = 0.0,
+\layout LyX-Code
+
+ qx3 = 0.0,
+\layout LyX-Code
+
+ qx4 = 0.0,
+\layout LyX-Code
+
+ qy1 = 0.0,
+\layout LyX-Code
+
+ qy2 = 0.0,
+\layout LyX-Code
+
+ qy3 = 0.0,
+\layout LyX-Code
+
+ qy4 = 0.0,
+\layout LyX-Code
+
+ unSexto = 1.0 / 6.0;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Imprimo datos iniciales.
+\layout LyX-Code
+
+ cout << t << " " << x << " " << y << endl;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ while ( t < D.tf ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Calculo los datos para este punto.
+\layout LyX-Code
+
+ qx1 = D.k * D.fx( D, t, x, y );
+\layout LyX-Code
+
+ qy1 = D.k * D.fy( D, t, x, y );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ qx2 = D.k * D.fx( D, t + D.k / 2.0, x + qx1 / 2.0, y + qy1 / 2.0 );
+\layout LyX-Code
+
+ qy2 = D.k * D.fy( D, t + D.k / 2.0, x + qx1 / 2.0, y + qy1 / 2.0 );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ qx3 = D.k * D.fx( D, t + D.k / 2.0, x + qx2 / 2.0, y + qy2 / 2.0 );
+\layout LyX-Code
+
+ qy3 = D.k * D.fy( D, t + D.k / 2.0, x + qx2 / 2.0, y + qy2 / 2.0 );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ qx4 = D.k * D.fx( D, t + D.k, x + qx3, y + qy3 );
+\layout LyX-Code
+
+ qy4 = D.k * D.fy( D, t + D.k, x + qx3, y + qy3 );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ x += unSexto * ( qx1 + 2 * qx2 + 2 * qx3 + qx4 );
+\layout LyX-Code
+
+ y += unSexto * ( qy1 + 2 * qy2 + 2 * qy3 + qy4 );
+\layout LyX-Code
+
+ t += D.k;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Imprimo resultados.
+\layout LyX-Code
+
+ cout << t << " " << x << " " << y << endl;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ }
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+void nystrom( Datos& D ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ Numero gGk2_L = D.g * D.G * D.k * D.k / D.L,
+\layout LyX-Code
+
+ xo = D.xo,
+\layout LyX-Code
+
+ x1 = ( 1 - gGk2_L * 0.5 ) * D.xo,
+\layout LyX-Code
+
+ x2 = 0.0,
+\layout LyX-Code
+
+ y = 0.0,
+\layout LyX-Code
+
+ fi = 0.0,
+\layout LyX-Code
+
+ t = D.to;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Imprimo valores iniciales.
+\layout LyX-Code
+
+ cout << t << " " << xo << " " << y << endl;
+\layout LyX-Code
+
+ y = ( x1 - xo ) / D.k;
+\layout LyX-Code
+
+ cout << t << " " << x1 << " " << y << endl;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ while ( t < D.tf ) {
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Calculo los datos para este punto.
+\layout LyX-Code
+
+ fi = D.fi( D, x1, y );
+\layout LyX-Code
+
+ x2 = ( ( fi - 1 ) * xo + ( 2 - gGk2_L ) * x1 ) / ( fi + 1 );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Prepara para próxima iteración
+\layout LyX-Code
+
+ t += D.k;
+\layout LyX-Code
+
+ xo = x1;
+\layout LyX-Code
+
+ x1 = x2;
+\layout LyX-Code
+
+ y = ( x1 - xo ) / D.k;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ // Imprimo resultados.
+\layout LyX-Code
+
+ cout << t << " " << x2 << " " << y << endl;
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+ }
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+}
+\layout Section
+
+Utilidades.
+\layout Standard
+
+Todas las utilidades listadas aquí son Software Libre; puede redistribuirlas
+ y/o modificarlas bajo los términos de la "GNU General Public License" como
+ lo publica la "FSF Free Software Foundation", o (a su elección) de cualquier
+ versión posterior.
+\layout Subsection
+
+
+\family typewriter
+calcula_periodo
+\layout LyX-Code
+
+#!/usr/bin/php4 -qC
+\layout LyX-Code
+
+<?
+\layout LyX-Code
+
+// Muestra ayuda.
+\layout LyX-Code
+
+if ( $argc < 2 ) {
+\layout LyX-Code
+
+ echo "Modo de uso:
+\backslash
+n";
+\layout LyX-Code
+
+ echo "$argv[0] archivo
+\backslash
+n";
+\layout LyX-Code
+
+ exit;
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Abre archivo y obtiene datos iniciales.
+\layout LyX-Code
+
+$f = fopen( $argv[1], 'r' );
+\layout LyX-Code
+
+$s = fgets( $f, 4096 )
+\layout LyX-Code
+
+ or die( "El archivo está vacío o no se pudo abrir.
+\backslash
+n" );
+\layout LyX-Code
+
+list( $t0, $z0 ) = preg_split( '/
+\backslash
+s/', $s );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Procesa archivo calculando período.
+\layout LyX-Code
+
+$t_ant = 0;
+\layout LyX-Code
+
+$c = 0;
+\layout LyX-Code
+
+$t_sum = 0;
+\layout LyX-Code
+
+$t_max = 0;
+\layout LyX-Code
+
+$tt_max = 0;
+\layout LyX-Code
+
+$t_min = 5000;
+\layout LyX-Code
+
+$tt_min = 0;
+\layout LyX-Code
+
+while ( ( $s = fgets( $f, 4096 ) ) !== false ) {
+\layout LyX-Code
+
+ // Obtiene datos.
+\layout LyX-Code
+
+ list( $t, $z ) = preg_split( '/
+\backslash
+s/', $s );
+\layout LyX-Code
+
+ // Se fija si es un "cero decreciente".
+\layout LyX-Code
+
+ if ( $z0 > 0 and ( $z < 0 or $z == 0 ) ) {
+\layout LyX-Code
+
+ if ( $t_ant ) {
+\layout LyX-Code
+
+ $t_actual = $t - $t_ant;
+\layout LyX-Code
+
+ if ( $t_actual > $t_max ) {
+\layout LyX-Code
+
+ $t_max = $t_actual;
+\layout LyX-Code
+
+ $tt_max = $t;
+\layout LyX-Code
+
+ }
+\layout LyX-Code
+
+ if ( $t_actual < $t_min ) {
+\layout LyX-Code
+
+ $t_min = $t_actual;
+\layout LyX-Code
+
+ $tt_min = $t;
+\layout LyX-Code
+
+ }
+\layout LyX-Code
+
+ echo "$t_actual
+\backslash
+n";
+\layout LyX-Code
+
+ $t_sum += $t_actual;
+\layout LyX-Code
+
+ $t_ant = $t;
+\layout LyX-Code
+
+ $c++;
+\layout LyX-Code
+
+ } else {
+\layout LyX-Code
+
+ $t_ant = $t;
+\layout LyX-Code
+
+ }
+\layout LyX-Code
+
+ }
+\layout LyX-Code
+
+ // Actualiza valores anteriores.
+\layout LyX-Code
+
+ $t0 = $t;
+\layout LyX-Code
+
+ $z0 = $z;
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+fclose( $f );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Imprime período.
+\layout LyX-Code
+
+echo "Períodos promedio: " .
+ $t_sum / $c .
+ " ($c períodos promediados)
+\backslash
+n";
+\layout LyX-Code
+
+echo "Período máximo: $t_max (en t = $tt_max)
+\backslash
+n";
+\layout LyX-Code
+
+echo "Período mínimo: $t_min (en t = $tt_min)
+\backslash
+n";
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+?>
+\layout Subsection
+
+
+\family typewriter
+calcula_maxmin
+\layout LyX-Code
+
+#!/usr/bin/php4 -qC
+\layout LyX-Code
+
+<?
+\layout LyX-Code
+
+// Muestra ayuda.
+\layout LyX-Code
+
+if ( $argc < 3 ) {
+\layout LyX-Code
+
+ echo "Modo de uso:
+\backslash
+n";
+\layout LyX-Code
+
+ echo "$argv[0] modo archivo
+\backslash
+n";
+\layout LyX-Code
+
+ echo "Donde modo es 'max' para calcular los máximos o 'min' para calcular
+ los mínimos.
+\backslash
+n";
+\layout LyX-Code
+
+ exit;
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Abre archivos y obtiene datos iniciales.
+\layout LyX-Code
+
+$f = fopen( $argv[2], 'r' )
+\layout LyX-Code
+
+ or die( "Error al abrir $argv[2] para lectura.
+\backslash
+n" );
+\layout LyX-Code
+
+$s = fgets( $f, 4096 )
+\layout LyX-Code
+
+ or die( "El archivo $argv[2] está vacío.
+\backslash
+n" );
+\layout LyX-Code
+
+list( $t0, $z0, $dz0 ) = preg_split( '/
+\backslash
+s/', $s );
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// El primer valor siempre es un máximo.
+\layout LyX-Code
+
+if ( $argv[1] == 'max' )
+\layout LyX-Code
+
+ echo "$t0 $z0
+\backslash
+n";
+\layout LyX-Code
+
+
+\layout LyX-Code
+
+// Procesa archivo calculando máximos y mínimos.
+\layout LyX-Code
+
+while ( ( $s = fgets( $f, 4096 ) ) !== false ) {
+\layout LyX-Code
+
+ // Obtiene datos.
+\layout LyX-Code
+
+ list( $t, $z, $dz ) = preg_split( '/
+\backslash
+s/', $s );
+\layout LyX-Code
+
+ // Se fija si la derivada es un "cero decreciente" (si es un máximo).
+\layout LyX-Code
+
+ if ( $argv[1] == 'max' and $dz0 > 0 and ( $dz < 0 or $dz == 0 ) )
+\layout LyX-Code
+
+ if ( $z0 > $z )
+\layout LyX-Code
+
+ echo "$t0 $z0
+\backslash
+n";
+\layout LyX-Code
+
+ else
+\layout LyX-Code
+
+ echo "$t $z
+\backslash
+n";
+\layout LyX-Code
+
+ // Se fija si la derivada es un "cero creciente" (si es un mínimo).
+\layout LyX-Code
+
+ if ( $argv[1] == 'min' and $dz0 < 0 and ( $dz > 0 or $dz == 0 ) )
+\layout LyX-Code
+
+ if ( $z0 < $z )
+\layout LyX-Code
+
+ echo "$t0 $z0
+\backslash
+n";
+\layout LyX-Code
+
+ else
+\layout LyX-Code
+
+ echo "$t $z
+\backslash
+n";
+\layout LyX-Code
+
+ // Actualiza valores anteriores.
+\layout LyX-Code
+
+ $t0 = $t;
+\layout LyX-Code
+
+ $z0 = $z;
+\layout LyX-Code
+
+ $dz0 = $dz;
+\layout LyX-Code
+
+}
+\layout LyX-Code
+
+fclose( $f );
+\layout LyX-Code
+
+?>
+\the_end
--- /dev/null
+#!/usr/bin/gnuplot
+# vim: set tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
+#
+# Trabajo Práctico II de Análisis Numérico I
+# Genera gráficos con los resultados de las corridas utilizando
+# GNU Plot.
+# Copyright (C) 2002 Leandro Lucarella <leandro@lucarella.com.ar>
+#
+# Este programa es Software Libre; usted puede redistribuirlo
+# y/o modificarlo bajo los términos de la "GNU General Public
+# License" como lo publica la "FSF Free Software Foundation",
+# o (a su elección) de cualquier versión posterior.
+#
+# Este programa es distribuido con la esperanza de que le será
+# útil, pero SIN NINGUNA GARANTIA; incluso sin la garantía
+# implícita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
+# particular. Vea la "GNU General Public License" para más
+# detalles.
+#
+# Usted debe haber recibido una copia de la "GNU General Public
+# License" junto con este programa, si no, escriba a la "FSF
+# Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+# $URL: http://www.llucax.hn.org:81/svn/facultad/75.12/tp2/periodo.gnuplot $
+# $Date: 2002-11-30 03:48:32 -0300 (sáb, 30 nov 2002) $
+# $Rev: 31 $
+# $Author: luca $
+#
+
+# Seteo terminal para que "dibuje" en un PS.
+set term postscript eps enhanced color
+set encoding iso_8859_1
+set output "<P>2.eps"
+
+# Seteos generales.
+set title "Evolución del período para el caso <PUNTO_DEP> depósitos y <PUNTO_FRIC> fricción<PUNTO_FRIC_TIPO>"
+set key right top
+
+# Eje X.
+set xlabel "Tiempo"
+set mxtics 5
+
+# Eje Y.
+set ylabel "Período (s)"
+set ytics nomirror
+set mytics 5
+
+# Plotea
+plot '<P>2e.txt' every ::::110 title "Período con Euler" with lines linetype 1, \
+ '<P>2r.txt' every ::::110 title "Período con RK4" with lines linetype 3, \
+ '<P>2n.txt' every ::::110 title "Período con Nystrom" with lines linetype 7