2 * This module contains the garbage collector implementation.
4 * Copyright: Copyright (C) 2001-2007 Digital Mars, www.digitalmars.com.
7 * This software is provided 'as-is', without any express or implied
8 * warranty. In no event will the authors be held liable for any damages
9 * arising from the use of this software.
11 * Permission is granted to anyone to use this software for any purpose,
12 * including commercial applications, and to alter it and redistribute it
13 * freely, in both source and binary form, subject to the following
16 * o The origin of this software must not be misrepresented; you must not
17 * claim that you wrote the original software. If you use this software
18 * in a product, an acknowledgment in the product documentation would be
19 * appreciated but is not required.
20 * o Altered source versions must be plainly marked as such, and must not
21 * be misrepresented as being the original software.
22 * o This notice may not be removed or altered from any source
24 * Authors: Walter Bright, David Friedman, Sean Kelly
29 // D Programming Language Garbage Collector implementation
31 /************** Debugging ***************************/
33 //debug = COLLECT_PRINTF; // turn on printf's
34 //debug = PTRCHECK; // more pointer checking
35 //debug = PTRCHECK2; // thorough but slow pointer checking
37 /*************** Configuration *********************/
39 version = STACKGROWSDOWN; // growing the stack means subtracting from the stack pointer
40 // (use for Intel X86 CPUs)
41 // else growing the stack means adding to the stack pointer
43 /***************************************************/
45 import rt.gc.cdgc.bits: GCBits;
46 import rt.gc.cdgc.stats: GCStats, Stats;
47 import dynarray = rt.gc.cdgc.dynarray;
48 import os = rt.gc.cdgc.os;
49 import opts = rt.gc.cdgc.opts;
51 import cstdlib = tango.stdc.stdlib;
52 import cstring = tango.stdc.string;
55 * This is a small optimization that proved it's usefulness. For small chunks
56 * or memory memset() seems to be slower (probably because of the call) that
57 * simply doing a simple loop to set the memory.
59 void memset(void* dst, int c, size_t n)
61 // This number (32) has been determined empirically
63 cstring.memset(dst, c, n);
66 auto p = cast(ubyte*)(dst);
73 // BUG: The following import will likely not work, since the gcc
74 // subdirectory is elsewhere. Instead, perhaps the functions
75 // could be declared directly or some other resolution could
77 static import gcc.builtins; // for __builtin_unwind_int
87 package enum BlkAttr : uint
89 FINALIZE = 0b0000_0001,
90 NO_SCAN = 0b0000_0010,
91 NO_MOVE = 0b0000_0100,
92 ALL_BITS = 0b1111_1111
95 package bool has_pointermap(uint attrs)
97 return !opts.options.conservative && !(attrs & BlkAttr.NO_SCAN);
102 alias void delegate(Object) DEvent;
103 alias void delegate( void*, void* ) scanFn;
104 enum { OPFAIL = ~cast(size_t)0 }
108 version (DigitalMars) version(OSX)
109 oid _d_osx_image_init();
111 void* rt_stackBottom();
113 void rt_finalize( void* p, bool det = true );
114 void rt_attachDisposeEvent(Object h, DEvent e);
115 bool rt_detachDisposeEvent(Object h, DEvent e);
116 void rt_scanStaticData( scanFn scan );
119 bool thread_needLock();
120 void thread_suspendAll();
121 void thread_resumeAll();
122 void thread_scanAll( scanFn fn, void* curStackTop = null );
124 void onOutOfMemoryError();
132 POOLSIZE = (4096*256),
146 B_PAGE, // start of large alloc
147 B_PAGEPLUS, // continuation of large alloc
166 int opCmp(in Range other)
168 if (pbot < other.pbot)
171 return cast(int)(pbot > other.pbot);
176 const uint binsize[B_MAX] = [ 16,32,64,128,256,512,1024,2048,4096 ];
177 const uint notbinsize[B_MAX] = [ ~(16u-1),~(32u-1),~(64u-1),~(128u-1),~(256u-1),
178 ~(512u-1),~(1024u-1),~(2048u-1),~(4096u-1) ];
181 /* ============================ GC =============================== */
184 class GCLock {} // just a dummy so we can get a global lock
195 // !=0 means don't scan stack
200 /// Turn off collections if > 0
203 /// min(pool.baseAddr)
205 /// max(pool.topAddr)
208 /// Free list for each size
209 List*[B_MAX] free_list;
211 dynarray.DynArray!(void*) roots;
212 dynarray.DynArray!(Range) ranges;
213 dynarray.DynArray!(Pool) pools;
218 // call locked if necessary
219 private T locked(T, alias Code)()
221 if (thread_needLock())
222 synchronized (gc.lock) return Code();
231 assert (gc !is null);
233 for (size_t i = 0; i < gc.pools.length; i++) {
234 Pool* pool = gc.pools[i];
237 assert(gc.min_addr == pool.baseAddr);
238 if (i + 1 < gc.pools.length)
239 assert(*pool < gc.pools[i + 1]);
240 else if (i + 1 == gc.pools.length)
241 assert(gc.max_addr == pool.topAddr);
244 gc.roots.Invariant();
245 gc.ranges.Invariant();
247 for (size_t i = 0; i < gc.ranges.length; i++) {
248 assert(gc.ranges[i].pbot);
249 assert(gc.ranges[i].ptop);
250 assert(gc.ranges[i].pbot <= gc.ranges[i].ptop);
253 for (size_t i = 0; i < B_PAGE; i++)
254 for (List *list = gc.free_list[i]; list; list = list.next)
263 * Find Pool that pointer is in.
264 * Return null if not in a Pool.
265 * Assume pools is sorted.
267 Pool* findPool(void* p)
269 if (p < gc.min_addr || p >= gc.max_addr)
271 if (gc.pools.length == 0)
273 if (gc.pools.length == 1)
275 /// The pooltable[] is sorted by address, so do a binary search
277 size_t high = gc.pools.length - 1;
278 while (low <= high) {
279 size_t mid = (low + high) / 2;
280 auto pool = gc.pools[mid];
281 if (p < pool.baseAddr)
283 else if (p >= pool.topAddr)
294 * Determine the base address of the block containing p. If p is not a gc
295 * allocated pointer, return null.
297 BlkInfo getInfo(void* p)
300 Pool* pool = findPool(p);
304 info.base = pool.findBase(p);
305 info.size = pool.findSize(info.base);
306 info.attr = getAttr(pool, cast(size_t)(info.base - pool.baseAddr) / 16u);
307 if (has_pointermap(info.attr)) {
308 info.size -= size_t.sizeof; // PointerMap bitmask
309 // Points to the PointerMap bitmask pointer, not user data
310 if (p >= (info.base + info.size)) {
314 if (opts.options.sentinel) {
315 info.base = sentinel_add(info.base);
316 // points to sentinel data, not user data
317 if (p < info.base || p >= sentinel_post(info.base))
319 info.size -= SENTINEL_EXTRA;
326 * Compute bin for size.
328 Bins findBin(size_t size)
372 * Allocate a new pool of at least size bytes.
373 * Sort it into pools.
374 * Mark all memory in the pool as B_FREE.
375 * Return the actual number of bytes reserved or 0 on error.
377 size_t reserve(size_t size)
380 size_t npages = (size + PAGESIZE - 1) / PAGESIZE;
381 Pool* pool = newPool(npages);
385 return pool.npages * PAGESIZE;
390 * Minimizes physical memory usage by returning free pools to the OS.
398 for (n = 0; n < gc.pools.length; n++)
401 for (pn = 0; pn < pool.npages; pn++)
403 if (cast(Bins)pool.pagetable[pn] != B_FREE)
406 if (pn < pool.npages)
409 gc.pools.remove_at(n);
412 gc.min_addr = gc.pools[0].baseAddr;
413 gc.max_addr = gc.pools[gc.pools.length - 1].topAddr;
418 * Allocate a chunk of memory that is larger than a page.
419 * Return null if out of memory.
421 void *bigAlloc(size_t size)
431 npages = (size + PAGESIZE - 1) / PAGESIZE;
435 // This code could use some refinement when repeatedly
436 // allocating very large arrays.
438 for (n = 0; n < gc.pools.length; n++)
441 pn = pool.allocPages(npages);
456 freedpages = fullcollectshell();
457 if (freedpages >= gc.pools.length * ((POOLSIZE / PAGESIZE) / 4))
462 // Release empty pools to prevent bloat
465 pool = newPool(npages);
471 pn = pool.allocPages(npages);
472 assert(pn != OPFAIL);
475 // Release empty pools to prevent bloat
478 pool = newPool(npages);
481 pn = pool.allocPages(npages);
482 assert(pn != OPFAIL);
492 pool.pagetable[pn] = B_PAGE;
494 memset(&pool.pagetable[pn + 1], B_PAGEPLUS, npages - 1);
495 p = pool.baseAddr + pn * PAGESIZE;
496 memset(cast(char *)p + size, 0, npages * PAGESIZE - size);
497 if (opts.options.mem_stomp)
498 memset(p, 0xF1, size);
502 return null; // let mallocNoSync handle the error
507 * Allocate a new pool with at least npages in it.
508 * Sort it into pools.
509 * Return null if failed.
511 Pool *newPool(size_t npages)
513 // Minimum of POOLSIZE
514 if (npages < POOLSIZE/PAGESIZE)
515 npages = POOLSIZE/PAGESIZE;
516 else if (npages > POOLSIZE/PAGESIZE)
518 // Give us 150% of requested size, so there's room to extend
519 auto n = npages + (npages >> 1);
520 if (n < size_t.max/PAGESIZE)
524 // Allocate successively larger pools up to 8 megs
527 size_t n = gc.pools.length;
529 n = 8; // cap pool size at 8 megs
530 n *= (POOLSIZE / PAGESIZE);
536 p.initialize(npages);
543 Pool* pool = gc.pools.insert_sorted(p);
546 gc.min_addr = gc.pools[0].baseAddr;
547 gc.max_addr = gc.pools[gc.pools.length - 1].topAddr;
554 * Allocate a page of bin's.
558 int allocPage(Bins bin)
566 for (n = 0; n < gc.pools.length; n++)
569 pn = pool.allocPages(1);
576 pool.pagetable[pn] = cast(ubyte)bin;
578 // Convert page to free list
579 size_t size = binsize[bin];
580 List **b = &gc.free_list[bin];
582 p = pool.baseAddr + pn * PAGESIZE;
584 for (; p < ptop; p += size)
586 (cast(List *)p).next = *b;
594 * Search a range of memory values and mark any pointers into the GC pool using
595 * type information (bitmask of pointer locations).
597 void mark_range(void *pbot, void *ptop, size_t* pm_bitmask)
599 // TODO: make our own assert because assert uses the GC
600 assert (pbot <= ptop);
602 const BITS_PER_WORD = size_t.sizeof * 8;
604 void **p1 = cast(void **)pbot;
605 void **p2 = cast(void **)ptop;
609 size_t type_size = pm_bitmask[0];
610 size_t* pm_bits = pm_bitmask + 1;
611 bool has_type_info = type_size != 1 || pm_bits[0] != 1 || pm_bits[1] != 0;
613 //printf("marking range: %p -> %p\n", pbot, ptop);
614 for (; p1 + type_size <= p2; p1 += type_size) {
615 for (size_t n = 0; n < type_size; n++) {
616 // scan bit set for this word
618 !(pm_bits[n / BITS_PER_WORD] & (1 << (n % BITS_PER_WORD))))
623 if (p < gc.min_addr || p >= gc.max_addr)
626 if ((cast(size_t)p & ~(PAGESIZE-1)) == pcache)
629 Pool* pool = findPool(p);
632 size_t offset = cast(size_t)(p - pool.baseAddr);
634 size_t pn = offset / PAGESIZE;
635 Bins bin = cast(Bins)pool.pagetable[pn];
637 // Adjust bit to be at start of allocated memory block
639 bit_i = (offset & notbinsize[bin]) >> 4;
640 else if (bin == B_PAGEPLUS)
646 while (cast(Bins)pool.pagetable[pn] == B_PAGEPLUS);
647 bit_i = pn * (PAGESIZE / 16);
651 // Don't mark bits in B_FREE pages
655 if (bin >= B_PAGE) // Cache B_PAGE and B_PAGEPLUS lookups
656 pcache = cast(size_t)p & ~(PAGESIZE-1);
658 if (!pool.mark.test(bit_i))
660 pool.mark.set(bit_i);
661 if (!pool.noscan.test(bit_i))
663 pool.scan.set(bit_i);
671 gc.any_changes = true;
675 * Return number of full pages free'd.
677 size_t fullcollectshell()
679 gc.stats.collection_started();
681 gc.stats.collection_finished();
683 // The purpose of the 'shell' is to ensure all the registers
684 // get put on the stack so they'll be scanned
689 gcc.builtins.__builtin_unwind_init();
696 uint eax,ecx,edx,ebx,ebp,esi,edi;
709 else version (X86_64)
711 ulong rax,rbx,rcx,rdx,rbp,rsi,rdi,r8,r9,r10,r11,r12,r13,r14,r15;
734 static assert( false, "Architecture not supported." );
745 result = fullcollect(sp);
768 size_t fullcollect(void *stackTop)
770 debug(COLLECT_PRINTF) printf("Gcx.fullcollect()\n");
779 void mark(void *stackTop)
781 debug(COLLECT_PRINTF) printf("\tmark()\n");
784 gc.stats.world_stopped();
789 gc.any_changes = false;
790 for (size_t n = 0; n < gc.pools.length; n++)
792 Pool* pool = gc.pools[n];
795 pool.freebits.zero();
798 // Mark each free entry, so it doesn't get scanned
799 for (size_t n = 0; n < B_PAGE; n++)
801 for (List *list = gc.free_list[n]; list; list = list.next)
803 Pool* pool = findPool(list);
805 pool.freebits.set(cast(size_t)(cast(byte*)list - pool.baseAddr) / 16);
809 for (size_t n = 0; n < gc.pools.length; n++)
811 Pool* pool = gc.pools[n];
812 pool.mark.copy(&pool.freebits);
815 /// Marks a range of memory in conservative mode.
816 void mark_conservative_range(void* pbot, void* ptop)
818 mark_range(pbot, ptop, PointerMap.init.bits.ptr);
821 rt_scanStaticData(&mark_conservative_range);
825 // Scan stacks and registers for each paused thread
826 thread_scanAll(&mark_conservative_range, stackTop);
830 debug(COLLECT_PRINTF) printf("scan roots[]\n");
831 mark_conservative_range(gc.roots.ptr, gc.roots.ptr + gc.roots.length);
834 debug(COLLECT_PRINTF) printf("scan ranges[]\n");
835 for (size_t n = 0; n < gc.ranges.length; n++)
837 debug(COLLECT_PRINTF) printf("\t%x .. %x\n", gc.ranges[n].pbot, gc.ranges[n].ptop);
838 mark_conservative_range(gc.ranges[n].pbot, gc.ranges[n].ptop);
841 debug(COLLECT_PRINTF) printf("\tscan heap\n");
842 while (gc.any_changes)
844 gc.any_changes = false;
845 for (size_t n = 0; n < gc.pools.length; n++)
851 Pool* pool = gc.pools[n];
853 bbase = pool.scan.base();
854 btop = bbase + pool.scan.nwords;
855 for (b = bbase; b < btop;)
871 o = pool.baseAddr + (b - bbase) * 32 * 16;
872 if (!(bitm & 0xFFFF))
877 for (; bitm; o += 16, bitm >>= 1)
882 pn = cast(size_t)(o - pool.baseAddr) / PAGESIZE;
883 bin = cast(Bins)pool.pagetable[pn];
885 if (opts.options.conservative)
886 mark_conservative_range(o, o + binsize[bin]);
888 auto end_of_blk = cast(size_t**)(o +
889 binsize[bin] - size_t.sizeof);
890 size_t* pm_bitmask = *end_of_blk;
891 mark_range(o, end_of_blk, pm_bitmask);
894 else if (bin == B_PAGE || bin == B_PAGEPLUS)
896 if (bin == B_PAGEPLUS)
898 while (pool.pagetable[pn - 1] != B_PAGE)
902 while (pn + u < pool.npages &&
903 pool.pagetable[pn + u] == B_PAGEPLUS)
906 size_t blk_size = u * PAGESIZE;
907 if (opts.options.conservative)
908 mark_conservative_range(o, o + blk_size);
910 auto end_of_blk = cast(size_t**)(o + blk_size -
912 size_t* pm_bitmask = *end_of_blk;
913 mark_range(o, end_of_blk, pm_bitmask);
922 gc.stats.world_started();
931 // Free up everything not marked
932 debug(COLLECT_PRINTF) printf("\tsweep\n");
933 size_t freedpages = 0;
935 for (size_t n = 0; n < gc.pools.length; n++)
937 Pool* pool = gc.pools[n];
939 uint* bbase = pool.mark.base();
941 for (pn = 0; pn < pool.npages; pn++, bbase += PAGESIZE / (32 * 16))
943 Bins bin = cast(Bins)pool.pagetable[pn];
947 auto size = binsize[bin];
948 byte* p = pool.baseAddr + pn * PAGESIZE;
949 byte* ptop = p + PAGESIZE;
950 size_t bit_i = pn * (PAGESIZE/16);
951 size_t bit_stride = size / 16;
953 version(none) // BUG: doesn't work because freebits() must also be cleared
955 // If free'd entire page
956 if (bbase[0] == 0 && bbase[1] == 0 && bbase[2] == 0 &&
957 bbase[3] == 0 && bbase[4] == 0 && bbase[5] == 0 &&
958 bbase[6] == 0 && bbase[7] == 0)
960 for (; p < ptop; p += size, bit_i += bit_stride)
962 if (pool.finals.nbits && pool.finals.testClear(bit_i)) {
963 if (opts.options.sentinel)
964 rt_finalize(cast(List *)sentinel_add(p), false/*gc.no_stack > 0*/);
966 rt_finalize(cast(List *)p, false/*gc.no_stack > 0*/);
968 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
970 List *list = cast(List *)p;
972 if (opts.options.mem_stomp)
973 memset(p, 0xF3, size);
975 pool.pagetable[pn] = B_FREE;
980 for (; p < ptop; p += size, bit_i += bit_stride)
982 if (!pool.mark.test(bit_i))
984 if (opts.options.sentinel)
985 sentinel_Invariant(sentinel_add(p));
987 pool.freebits.set(bit_i);
988 if (pool.finals.nbits && pool.finals.testClear(bit_i)) {
989 if (opts.options.sentinel)
990 rt_finalize(cast(List *)sentinel_add(p), false/*gc.no_stack > 0*/);
992 rt_finalize(cast(List *)p, false/*gc.no_stack > 0*/);
994 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
996 List *list = cast(List *)p;
998 if (opts.options.mem_stomp)
999 memset(p, 0xF3, size);
1005 else if (bin == B_PAGE)
1007 size_t bit_i = pn * (PAGESIZE / 16);
1008 if (!pool.mark.test(bit_i))
1010 byte *p = pool.baseAddr + pn * PAGESIZE;
1011 if (opts.options.sentinel)
1012 sentinel_Invariant(sentinel_add(p));
1013 if (pool.finals.nbits && pool.finals.testClear(bit_i)) {
1014 if (opts.options.sentinel)
1015 rt_finalize(sentinel_add(p), false/*gc.no_stack > 0*/);
1017 rt_finalize(p, false/*gc.no_stack > 0*/);
1019 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
1021 debug(COLLECT_PRINTF) printf("\tcollecting big %x\n", p);
1022 pool.pagetable[pn] = B_FREE;
1024 if (opts.options.mem_stomp)
1025 memset(p, 0xF3, PAGESIZE);
1026 while (pn + 1 < pool.npages && pool.pagetable[pn + 1] == B_PAGEPLUS)
1029 pool.pagetable[pn] = B_FREE;
1032 if (opts.options.mem_stomp)
1035 memset(p, 0xF3, PAGESIZE);
1044 gc.free_list[] = null;
1046 // Free complete pages, rebuild free list
1047 debug(COLLECT_PRINTF) printf("\tfree complete pages\n");
1048 size_t recoveredpages = 0;
1049 for (size_t n = 0; n < gc.pools.length; n++)
1051 Pool* pool = gc.pools[n];
1052 for (size_t pn = 0; pn < pool.npages; pn++)
1054 Bins bin = cast(Bins)pool.pagetable[pn];
1060 size_t size = binsize[bin];
1061 size_t bit_stride = size / 16;
1062 size_t bit_base = pn * (PAGESIZE / 16);
1063 size_t bit_top = bit_base + (PAGESIZE / 16);
1067 for (; bit_i < bit_top; bit_i += bit_stride)
1069 if (!pool.freebits.test(bit_i))
1072 pool.pagetable[pn] = B_FREE;
1077 p = pool.baseAddr + pn * PAGESIZE;
1078 for (u = 0; u < PAGESIZE; u += size)
1080 bit_i = bit_base + u / 16;
1081 if (pool.freebits.test(bit_i))
1083 List *list = cast(List *)(p + u);
1084 // avoid unnecessary writes
1085 if (list.next != gc.free_list[bin])
1086 list.next = gc.free_list[bin];
1087 gc.free_list[bin] = list;
1094 debug(COLLECT_PRINTF) printf("recovered pages = %d\n", recoveredpages);
1095 debug(COLLECT_PRINTF) printf("\tfree'd %u bytes, %u pages from %u pools\n", freed, freedpages, gc.pools.length);
1097 return freedpages + recoveredpages;
1104 uint getAttr(Pool* pool, size_t bit_i)
1113 if (pool.finals.nbits &&
1114 pool.finals.test(bit_i))
1115 attrs |= BlkAttr.FINALIZE;
1116 if (pool.noscan.test(bit_i))
1117 attrs |= BlkAttr.NO_SCAN;
1118 // if (pool.nomove.nbits &&
1119 // pool.nomove.test(bit_i))
1120 // attrs |= BlkAttr.NO_MOVE;
1128 void setAttr(Pool* pool, size_t bit_i, uint mask)
1135 if (mask & BlkAttr.FINALIZE)
1137 if (!pool.finals.nbits)
1138 pool.finals.alloc(pool.mark.nbits);
1139 pool.finals.set(bit_i);
1141 if (mask & BlkAttr.NO_SCAN)
1143 pool.noscan.set(bit_i);
1145 // if (mask & BlkAttr.NO_MOVE)
1147 // if (!pool.nomove.nbits)
1148 // pool.nomove.alloc(pool.mark.nbits);
1149 // pool.nomove.set(bit_i);
1157 void clrAttr(Pool* pool, size_t bit_i, uint mask)
1164 if (mask & BlkAttr.FINALIZE && pool.finals.nbits)
1165 pool.finals.clear(bit_i);
1166 if (mask & BlkAttr.NO_SCAN)
1167 pool.noscan.clear(bit_i);
1168 // if (mask & BlkAttr.NO_MOVE && pool.nomove.nbits)
1169 // pool.nomove.clear(bit_i);
1177 gc.stack_bottom = cast(char*)&dummy;
1178 opts.parse(cstdlib.getenv("D_GC_OPTS"));
1179 gc.lock = GCLock.classinfo;
1181 setStackBottom(rt_stackBottom());
1182 gc.stats = Stats(gc);
1189 private void *malloc(size_t size, uint attrs, size_t* pm_bitmask)
1193 gc.stats.malloc_started(size, attrs, pm_bitmask);
1195 gc.stats.malloc_finished(p);
1200 if (opts.options.sentinel)
1201 size += SENTINEL_EXTRA;
1203 bool has_pm = has_pointermap(attrs);
1205 size += size_t.sizeof;
1208 // Cache previous binsize lookup - Dave Fladebo.
1209 static size_t lastsize = -1;
1210 static Bins lastbin;
1211 if (size == lastsize)
1215 bin = findBin(size);
1220 size_t capacity; // to figure out where to store the bitmask
1223 p = gc.free_list[bin];
1226 if (!allocPage(bin) && !gc.disabled) // try to find a new page
1228 if (!thread_needLock())
1230 /* Then we haven't locked it yet. Be sure
1231 * and gc.lock for a collection, since a finalizer
1232 * may start a new thread.
1234 synchronized (gc.lock)
1239 else if (!fullcollectshell()) // collect to find a new page
1244 if (!gc.free_list[bin] && !allocPage(bin))
1246 newPool(1); // allocate new pool to find a new page
1247 int result = allocPage(bin);
1249 onOutOfMemoryError();
1251 p = gc.free_list[bin];
1253 capacity = binsize[bin];
1255 // Return next item from free list
1256 gc.free_list[bin] = (cast(List*)p).next;
1257 if (!(attrs & BlkAttr.NO_SCAN))
1258 memset(p + size, 0, capacity - size);
1259 if (opts.options.mem_stomp)
1260 memset(p, 0xF0, size);
1266 onOutOfMemoryError();
1267 // Round the size up to the number of pages needed to store it
1268 size_t npages = (size + PAGESIZE - 1) / PAGESIZE;
1269 capacity = npages * PAGESIZE;
1272 // Store the bit mask AFTER SENTINEL_POST
1273 // TODO: store it BEFORE, so the bitmask is protected too
1275 auto end_of_blk = cast(size_t**)(p + capacity - size_t.sizeof);
1276 *end_of_blk = pm_bitmask;
1277 size -= size_t.sizeof;
1280 if (opts.options.sentinel) {
1281 size -= SENTINEL_EXTRA;
1282 p = sentinel_add(p);
1283 sentinel_init(p, size);
1288 Pool *pool = findPool(p);
1291 setAttr(pool, cast(size_t)(p - pool.baseAddr) / 16, attrs);
1300 private void *calloc(size_t size, uint attrs, size_t* pm_bitmask)
1304 void *p = malloc(size, attrs, pm_bitmask);
1313 private void *realloc(void *p, size_t size, uint attrs,
1326 p = malloc(size, attrs, pm_bitmask);
1330 Pool* pool = findPool(p);
1334 // Set or retrieve attributes as appropriate
1335 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
1337 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
1338 setAttr(pool, bit_i, attrs);
1341 attrs = getAttr(pool, bit_i);
1343 void* blk_base_addr = pool.findBase(p);
1344 size_t blk_size = pool.findSize(p);
1345 bool has_pm = has_pointermap(attrs);
1346 size_t pm_bitmask_size = 0;
1348 pm_bitmask_size = size_t.sizeof;
1349 // Retrieve pointer map bit mask if appropriate
1350 if (pm_bitmask is null) {
1351 auto end_of_blk = cast(size_t**)(blk_base_addr +
1352 blk_size - size_t.sizeof);
1353 pm_bitmask = *end_of_blk;
1357 if (opts.options.sentinel)
1359 sentinel_Invariant(p);
1360 size_t sentinel_stored_size = *sentinel_size(p);
1361 if (sentinel_stored_size != size)
1363 void* p2 = malloc(size, attrs, pm_bitmask);
1364 if (sentinel_stored_size < size)
1365 size = sentinel_stored_size;
1366 cstring.memcpy(p2, p, size);
1372 size += pm_bitmask_size;
1373 if (blk_size >= PAGESIZE && size >= PAGESIZE)
1375 auto psz = blk_size / PAGESIZE;
1376 auto newsz = (size + PAGESIZE - 1) / PAGESIZE;
1380 auto pagenum = (p - pool.baseAddr) / PAGESIZE;
1385 if (opts.options.mem_stomp)
1386 memset(p + size - pm_bitmask_size, 0xF2,
1387 blk_size - size - pm_bitmask_size);
1388 pool.freePages(pagenum + newsz, psz - newsz);
1390 auto end_of_blk = cast(size_t**)(
1391 blk_base_addr + (PAGESIZE * newsz) -
1393 *end_of_blk = pm_bitmask;
1397 else if (pagenum + newsz <= pool.npages)
1399 // Attempt to expand in place
1400 for (size_t i = pagenum + psz; 1;)
1402 if (i == pagenum + newsz)
1404 if (opts.options.mem_stomp)
1405 memset(p + blk_size - pm_bitmask_size,
1406 0xF0, size - blk_size
1408 memset(pool.pagetable + pagenum +
1409 psz, B_PAGEPLUS, newsz - psz);
1411 auto end_of_blk = cast(size_t**)(
1413 (PAGESIZE * newsz) -
1415 *end_of_blk = pm_bitmask;
1419 if (i == pool.npages)
1423 if (pool.pagetable[i] != B_FREE)
1429 // if new size is bigger or less than half
1430 if (blk_size < size || blk_size > size * 2)
1432 size -= pm_bitmask_size;
1433 blk_size -= pm_bitmask_size;
1434 void* p2 = malloc(size, attrs, pm_bitmask);
1435 if (blk_size < size)
1437 cstring.memcpy(p2, p, size);
1447 * Attempt to in-place enlarge the memory block pointed to by p by at least
1448 * min_size beyond its current capacity, up to a maximum of max_size. This
1449 * does not attempt to move the memory block (like realloc() does).
1452 * 0 if could not extend p,
1453 * total size of entire memory block if successful.
1455 private size_t extend(void* p, size_t minsize, size_t maxsize)
1458 assert( minsize <= maxsize );
1462 if (opts.options.sentinel)
1465 Pool* pool = findPool(p);
1469 // Retrieve attributes
1470 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
1471 uint attrs = getAttr(pool, bit_i);
1473 void* blk_base_addr = pool.findBase(p);
1474 size_t blk_size = pool.findSize(p);
1475 bool has_pm = has_pointermap(attrs);
1476 size_t* pm_bitmask = null;
1477 size_t pm_bitmask_size = 0;
1479 pm_bitmask_size = size_t.sizeof;
1480 // Retrieve pointer map bit mask
1481 auto end_of_blk = cast(size_t**)(blk_base_addr +
1482 blk_size - size_t.sizeof);
1483 pm_bitmask = *end_of_blk;
1485 minsize += size_t.sizeof;
1486 maxsize += size_t.sizeof;
1489 if (blk_size < PAGESIZE)
1490 return 0; // cannot extend buckets
1492 auto psz = blk_size / PAGESIZE;
1493 auto minsz = (minsize + PAGESIZE - 1) / PAGESIZE;
1494 auto maxsz = (maxsize + PAGESIZE - 1) / PAGESIZE;
1496 auto pagenum = (p - pool.baseAddr) / PAGESIZE;
1499 for (sz = 0; sz < maxsz; sz++)
1501 auto i = pagenum + psz + sz;
1502 if (i == pool.npages)
1504 if (pool.pagetable[i] != B_FREE)
1514 size_t new_size = (psz + sz) * PAGESIZE;
1516 if (opts.options.mem_stomp)
1517 memset(p + blk_size - pm_bitmask_size, 0xF0,
1518 new_size - blk_size - pm_bitmask_size);
1519 memset(pool.pagetable + pagenum + psz, B_PAGEPLUS, sz);
1524 new_size -= size_t.sizeof;
1525 auto end_of_blk = cast(size_t**)(blk_base_addr + new_size);
1526 *end_of_blk = pm_bitmask;
1535 private void free(void *p)
1544 // Find which page it is in
1546 if (!pool) // if not one of ours
1548 if (opts.options.sentinel) {
1549 sentinel_Invariant(p);
1550 p = sentinel_sub(p);
1552 pagenum = cast(size_t)(p - pool.baseAddr) / PAGESIZE;
1553 bit_i = cast(size_t)(p - pool.baseAddr) / 16;
1554 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
1556 bin = cast(Bins)pool.pagetable[pagenum];
1557 if (bin == B_PAGE) // if large alloc
1562 while (++n < pool.npages && pool.pagetable[n] == B_PAGEPLUS)
1564 if (opts.options.mem_stomp)
1565 memset(p, 0xF2, npages * PAGESIZE);
1566 pool.freePages(pagenum, npages);
1571 List *list = cast(List*)p;
1573 if (opts.options.mem_stomp)
1574 memset(p, 0xF2, binsize[bin]);
1576 list.next = gc.free_list[bin];
1577 gc.free_list[bin] = list;
1583 * Determine the allocated size of pointer p. If p is an interior pointer
1584 * or not a gc allocated pointer, return 0.
1586 private size_t sizeOf(void *p)
1590 if (opts.options.sentinel)
1591 p = sentinel_sub(p);
1593 Pool* pool = findPool(p);
1597 auto biti = cast(size_t)(p - pool.baseAddr) / 16;
1598 uint attrs = getAttr(pool, biti);
1600 size_t size = pool.findSize(p);
1601 size_t pm_bitmask_size = 0;
1602 if (has_pointermap(attrs))
1603 pm_bitmask_size = size_t.sizeof;
1605 if (opts.options.sentinel) {
1606 // Check for interior pointer
1608 // 1) size is a power of 2 for less than PAGESIZE values
1609 // 2) base of memory pool is aligned on PAGESIZE boundary
1610 if (cast(size_t)p & (size - 1) & (PAGESIZE - 1))
1612 return size - SENTINEL_EXTRA - pm_bitmask_size;
1615 if (p == gc.p_cache)
1616 return gc.size_cache;
1618 // Check for interior pointer
1620 // 1) size is a power of 2 for less than PAGESIZE values
1621 // 2) base of memory pool is aligned on PAGESIZE boundary
1622 if (cast(size_t)p & (size - 1) & (PAGESIZE - 1))
1626 gc.size_cache = size - pm_bitmask_size;
1628 return gc.size_cache;
1634 * Verify that pointer p:
1635 * 1) belongs to this memory pool
1636 * 2) points to the start of an allocated piece of memory
1637 * 3) is not on a free list
1639 private void checkNoSync(void *p)
1643 if (opts.options.sentinel)
1644 sentinel_Invariant(p);
1652 if (opts.options.sentinel)
1653 p = sentinel_sub(p);
1656 pagenum = cast(size_t)(p - pool.baseAddr) / PAGESIZE;
1657 bin = cast(Bins)pool.pagetable[pagenum];
1658 assert(bin <= B_PAGE);
1659 size = binsize[bin];
1660 assert((cast(size_t)p & (size - 1)) == 0);
1666 // Check that p is not on a free list
1669 for (list = gc.free_list[bin]; list; list = list.next)
1671 assert(cast(void*)list != p);
1682 private void setStackBottom(void *p)
1684 version (STACKGROWSDOWN)
1686 //p = (void *)((uint *)p + 4);
1687 if (p > gc.stack_bottom)
1689 gc.stack_bottom = p;
1694 //p = (void *)((uint *)p - 4);
1695 if (p < gc.stack_bottom)
1697 gc.stack_bottom = cast(char*)p;
1704 * Retrieve statistics about garbage collection.
1705 * Useful for debugging and tuning.
1707 private GCStats getStats()
1717 for (n = 0; n < gc.pools.length; n++)
1719 Pool* pool = gc.pools[n];
1720 psize += pool.npages * PAGESIZE;
1721 for (size_t j = 0; j < pool.npages; j++)
1723 Bins bin = cast(Bins)pool.pagetable[j];
1726 else if (bin == B_PAGE)
1728 else if (bin < B_PAGE)
1733 for (n = 0; n < B_PAGE; n++)
1735 for (List *list = gc.free_list[n]; list; list = list.next)
1736 flsize += binsize[n];
1739 usize = bsize - flsize;
1741 stats.poolsize = psize;
1742 stats.usedsize = bsize - flsize;
1743 stats.freelistsize = flsize;
1747 /******************* weak-reference support *********************/
1749 private struct WeakPointer
1753 void ondestroy(Object r)
1755 assert(r is reference);
1756 // lock for memory consistency (parallel readers)
1757 // also ensures that weakpointerDestroy can be called while another
1758 // thread is freeing the reference with "delete"
1759 return locked!(void, () {
1766 * Create a weak pointer to the given object.
1767 * Returns a pointer to an opaque struct allocated in C memory.
1769 void* weakpointerCreate( Object r )
1773 // must be allocated in C memory
1774 // 1. to hide the reference from the GC
1775 // 2. the GC doesn't scan delegates added by rt_attachDisposeEvent
1777 auto wp = cast(WeakPointer*)(cstdlib.malloc(WeakPointer.sizeof));
1779 onOutOfMemoryError();
1781 rt_attachDisposeEvent(r, &wp.ondestroy);
1788 * Destroy a weak pointer returned by weakpointerCreate().
1789 * If null is passed, nothing happens.
1791 void weakpointerDestroy( void* p )
1795 auto wp = cast(WeakPointer*)p;
1796 // must be extra careful about the GC or parallel threads
1797 // finalizing the reference at the same time
1798 return locked!(void, () {
1800 rt_detachDisposeEvent(wp.reference, &wp.ondestroy);
1807 * Query a weak pointer and return either the object passed to
1808 * weakpointerCreate, or null if it was free'd in the meantime.
1809 * If null is passed, null is returned.
1811 Object weakpointerGet( void* p )
1815 // NOTE: could avoid the lock by using Fawzi style GC counters but
1816 // that'd require core.sync.Atomic and lots of care about memory
1817 // consistency it's an optional optimization see
1818 // http://dsource.org/projects/tango/browser/trunk/user/tango/core/Lifetime.d?rev=5100#L158
1819 return locked!(Object, () {
1820 return (cast(WeakPointer*)p).reference;
1826 /* ============================ Pool =============================== */
1833 GCBits mark; // entries already scanned, or should not be scanned
1834 GCBits scan; // entries that need to be scanned
1835 GCBits freebits; // entries that are on the free list
1836 GCBits finals; // entries that need finalizer run on them
1837 GCBits noscan; // entries that should not be scanned
1842 /// Cache for findSize()
1848 this.cached_ptr = null;
1849 this.cached_size = 0;
1852 void initialize(size_t npages)
1854 size_t poolsize = npages * PAGESIZE;
1855 assert(poolsize >= POOLSIZE);
1856 baseAddr = cast(byte *) os.alloc(poolsize);
1858 // Some of the code depends on page alignment of memory pools
1859 assert((cast(size_t)baseAddr & (PAGESIZE - 1)) == 0);
1867 topAddr = baseAddr + poolsize;
1869 mark.alloc(cast(size_t)poolsize / 16);
1870 scan.alloc(cast(size_t)poolsize / 16);
1871 freebits.alloc(cast(size_t)poolsize / 16);
1872 noscan.alloc(cast(size_t)poolsize / 16);
1874 pagetable = cast(ubyte*) cstdlib.malloc(npages);
1876 onOutOfMemoryError();
1877 memset(pagetable, B_FREE, npages);
1879 this.npages = npages;
1891 result = os.dealloc(baseAddr, npages * PAGESIZE);
1899 // See Gcx.Dtor() for the rationale of the null check.
1901 cstdlib.free(pagetable);
1921 //freebits.Invariant();
1922 //finals.Invariant();
1923 //noscan.Invariant();
1927 //if (baseAddr + npages * PAGESIZE != topAddr)
1928 //printf("baseAddr = %p, npages = %d, topAddr = %p\n", baseAddr, npages, topAddr);
1929 assert(baseAddr + npages * PAGESIZE == topAddr);
1932 for (size_t i = 0; i < npages; i++)
1934 Bins bin = cast(Bins)pagetable[i];
1935 assert(bin < B_MAX);
1941 * Allocate n pages from Pool.
1942 * Returns OPFAIL on failure.
1944 size_t allocPages(size_t n)
1950 for (i = 0; i < npages; i++)
1952 if (pagetable[i] == B_FREE)
1965 * Free npages pages starting with pagenum.
1967 void freePages(size_t pagenum, size_t npages)
1969 memset(&pagetable[pagenum], B_FREE, npages);
1974 * Find base address of block containing pointer p.
1975 * Returns null if the pointer doesn't belong to this pool
1977 void* findBase(void *p)
1979 size_t offset = cast(size_t)(p - this.baseAddr);
1980 size_t pagenum = offset / PAGESIZE;
1981 Bins bin = cast(Bins)this.pagetable[pagenum];
1982 // Adjust bit to be at start of allocated memory block
1984 return this.baseAddr + (offset & notbinsize[bin]);
1985 if (bin == B_PAGEPLUS) {
1987 --pagenum, offset -= PAGESIZE;
1988 } while (cast(Bins)this.pagetable[pagenum] == B_PAGEPLUS);
1989 return this.baseAddr + (offset & (offset.max ^ (PAGESIZE-1)));
1991 // we are in a B_FREE page
1997 * Find size of pointer p.
1998 * Returns 0 if p doesn't belong to this pool if if it's block size is less
2001 size_t findSize(void *p)
2003 size_t pagenum = cast(size_t)(p - this.baseAddr) / PAGESIZE;
2004 Bins bin = cast(Bins)this.pagetable[pagenum];
2006 return binsize[bin];
2007 if (this.cached_ptr == p)
2008 return this.cached_size;
2009 size_t i = pagenum + 1;
2010 for (; i < this.npages; i++)
2011 if (this.pagetable[i] != B_PAGEPLUS)
2013 this.cached_ptr = p;
2014 this.cached_size = (i - pagenum) * PAGESIZE;
2015 return this.cached_size;
2020 * Used for sorting pools
2022 int opCmp(in Pool other)
2024 if (baseAddr < other.baseAddr)
2027 return cast(int)(baseAddr > other.baseAddr);
2032 /* ============================ SENTINEL =============================== */
2035 const size_t SENTINEL_PRE = cast(size_t) 0xF4F4F4F4F4F4F4F4UL; // 32 or 64 bits
2036 const ubyte SENTINEL_POST = 0xF5; // 8 bits
2037 const uint SENTINEL_EXTRA = 2 * size_t.sizeof + 1;
2040 size_t* sentinel_size(void *p) { return &(cast(size_t *)p)[-2]; }
2041 size_t* sentinel_pre(void *p) { return &(cast(size_t *)p)[-1]; }
2042 ubyte* sentinel_post(void *p) { return &(cast(ubyte *)p)[*sentinel_size(p)]; }
2045 void sentinel_init(void *p, size_t size)
2047 *sentinel_size(p) = size;
2048 *sentinel_pre(p) = SENTINEL_PRE;
2049 *sentinel_post(p) = SENTINEL_POST;
2053 void sentinel_Invariant(void *p)
2055 assert(*sentinel_pre(p) == SENTINEL_PRE);
2056 assert(*sentinel_post(p) == SENTINEL_POST);
2060 void *sentinel_add(void *p)
2062 return p + 2 * size_t.sizeof;
2066 void *sentinel_sub(void *p)
2068 return p - 2 * size_t.sizeof;
2073 /* ============================ C Public Interface ======================== */
2076 private int _termCleanupLevel=1;
2080 /// sets the cleanup level done by gc
2083 /// 2: fullCollect ignoring stack roots (might crash daemonThreads)
2084 /// result !=0 if the value was invalid
2085 int gc_setTermCleanupLevel(int cLevel)
2087 if (cLevel<0 || cLevel>2) return cLevel;
2088 _termCleanupLevel=cLevel;
2092 /// returns the cleanup level done by gc
2093 int gc_getTermCleanupLevel()
2095 return _termCleanupLevel;
2100 scope (exit) assert (Invariant());
2101 gc = cast(GC*) cstdlib.calloc(1, GC.sizeof);
2104 version (DigitalMars) version(OSX) {
2105 _d_osx_image_init();
2107 // NOTE: The GC must initialize the thread library
2108 // before its first collection.
2114 assert (Invariant());
2115 if (_termCleanupLevel<1) {
2117 } else if (_termCleanupLevel==2){
2118 // a more complete cleanup
2119 // NOTE: There may be daemons threads still running when this routine is
2120 // called. If so, cleaning memory out from under then is a good
2121 // way to make them crash horribly.
2122 // Often this probably doesn't matter much since the app is
2123 // supposed to be shutting down anyway, but for example tests might
2124 // crash (and be considerd failed even if the test was ok).
2125 // thus this is not the default and should be enabled by
2126 // I'm disabling cleanup for now until I can think about it some
2129 // not really a 'collect all' -- still scans static data area, roots,
2131 return locked!(void, () {
2137 // default (safe) clenup
2138 return locked!(void, () {
2146 return locked!(void, () {
2147 assert (Invariant()); scope (exit) assert (Invariant());
2148 assert (gc.disabled > 0);
2155 return locked!(void, () {
2156 assert (Invariant()); scope (exit) assert (Invariant());
2163 return locked!(void, () {
2164 assert (Invariant()); scope (exit) assert (Invariant());
2172 return locked!(void, () {
2173 assert (Invariant()); scope (exit) assert (Invariant());
2178 uint gc_getAttr(void* p)
2182 return locked!(uint, () {
2183 assert (Invariant()); scope (exit) assert (Invariant());
2184 Pool* pool = findPool(p);
2187 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
2188 return getAttr(pool, bit_i);
2192 uint gc_setAttr(void* p, uint attrs)
2196 return locked!(uint, () {
2197 assert (Invariant()); scope (exit) assert (Invariant());
2198 Pool* pool = findPool(p);
2201 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
2202 uint old_attrs = getAttr(pool, bit_i);
2203 setAttr(pool, bit_i, attrs);
2208 uint gc_clrAttr(void* p, uint attrs)
2212 return locked!(uint, () {
2213 assert (Invariant()); scope (exit) assert (Invariant());
2214 Pool* pool = findPool(p);
2217 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
2218 uint old_attrs = getAttr(pool, bit_i);
2219 clrAttr(pool, bit_i, attrs);
2224 void* gc_malloc(size_t size, uint attrs = 0,
2225 PointerMap ptrmap = PointerMap.init)
2229 return locked!(void*, () {
2230 assert (Invariant()); scope (exit) assert (Invariant());
2231 return malloc(size, attrs, ptrmap.bits.ptr);
2235 void* gc_calloc(size_t size, uint attrs = 0,
2236 PointerMap ptrmap = PointerMap.init)
2240 return locked!(void*, () {
2241 assert (Invariant()); scope (exit) assert (Invariant());
2242 return calloc(size, attrs, ptrmap.bits.ptr);
2246 void* gc_realloc(void* p, size_t size, uint attrs = 0,
2247 PointerMap ptrmap = PointerMap.init)
2249 return locked!(void*, () {
2250 assert (Invariant()); scope (exit) assert (Invariant());
2251 return realloc(p, size, attrs, ptrmap.bits.ptr);
2255 size_t gc_extend(void* p, size_t min_size, size_t max_size)
2257 return locked!(size_t, () {
2258 assert (Invariant()); scope (exit) assert (Invariant());
2259 return extend(p, min_size, max_size);
2263 size_t gc_reserve(size_t size)
2267 return locked!(size_t, () {
2268 assert (Invariant()); scope (exit) assert (Invariant());
2269 return reserve(size);
2273 void gc_free(void* p)
2277 return locked!(void, () {
2278 assert (Invariant()); scope (exit) assert (Invariant());
2283 void* gc_addrOf(void* p)
2287 return locked!(void*, () {
2288 assert (Invariant()); scope (exit) assert (Invariant());
2289 Pool* pool = findPool(p);
2292 return pool.findBase(p);
2296 size_t gc_sizeOf(void* p)
2300 return locked!(size_t, () {
2301 assert (Invariant()); scope (exit) assert (Invariant());
2306 BlkInfo gc_query(void* p)
2309 return BlkInfo.init;
2310 return locked!(BlkInfo, () {
2311 assert (Invariant()); scope (exit) assert (Invariant());
2316 // NOTE: This routine is experimental. The stats or function name may change
2317 // before it is made officially available.
2320 return locked!(GCStats, () {
2321 assert (Invariant()); scope (exit) assert (Invariant());
2326 void gc_addRoot(void* p)
2330 return locked!(void, () {
2331 assert (Invariant()); scope (exit) assert (Invariant());
2332 if (gc.roots.append(p) is null)
2333 onOutOfMemoryError();
2337 void gc_addRange(void* p, size_t size)
2339 if (p is null || size == 0)
2341 return locked!(void, () {
2342 assert (Invariant()); scope (exit) assert (Invariant());
2343 if (gc.ranges.append(Range(p, p + size)) is null)
2344 onOutOfMemoryError();
2348 void gc_removeRoot(void* p)
2352 return locked!(void, () {
2353 assert (Invariant()); scope (exit) assert (Invariant());
2354 bool r = gc.roots.remove(p);
2359 void gc_removeRange(void* p)
2363 return locked!(void, () {
2364 assert (Invariant()); scope (exit) assert (Invariant());
2365 bool r = gc.ranges.remove(Range(p, null));
2370 void* gc_weakpointerCreate(Object r)
2372 // weakpointers do their own locking
2373 return weakpointerCreate(r);
2376 void gc_weakpointerDestroy(void* wp)
2378 // weakpointers do their own locking
2379 weakpointerDestroy(wp);
2382 Object gc_weakpointerGet(void* wp)
2384 // weakpointers do their own locking
2385 return weakpointerGet(wp);
2389 // vim: set et sw=4 sts=4 :