2 * This module contains the garbage collector implementation.
4 * Copyright: Copyright (C) 2001-2007 Digital Mars, www.digitalmars.com.
7 * This software is provided 'as-is', without any express or implied
8 * warranty. In no event will the authors be held liable for any damages
9 * arising from the use of this software.
11 * Permission is granted to anyone to use this software for any purpose,
12 * including commercial applications, and to alter it and redistribute it
13 * freely, in both source and binary form, subject to the following
16 * o The origin of this software must not be misrepresented; you must not
17 * claim that you wrote the original software. If you use this software
18 * in a product, an acknowledgment in the product documentation would be
19 * appreciated but is not required.
20 * o Altered source versions must be plainly marked as such, and must not
21 * be misrepresented as being the original software.
22 * o This notice may not be removed or altered from any source
24 * Authors: Walter Bright, David Friedman, Sean Kelly
29 // D Programming Language Garbage Collector implementation
31 /************** Debugging ***************************/
33 //debug = COLLECT_PRINTF; // turn on printf's
34 //debug = PTRCHECK; // more pointer checking
35 //debug = PTRCHECK2; // thorough but slow pointer checking
37 /*************** Configuration *********************/
39 version = STACKGROWSDOWN; // growing the stack means subtracting from the stack pointer
40 // (use for Intel X86 CPUs)
41 // else growing the stack means adding to the stack pointer
43 /***************************************************/
45 import rt.gc.cdgc.bits: GCBits;
46 import rt.gc.cdgc.stats: GCStats, Stats;
47 import dynarray = rt.gc.cdgc.dynarray;
48 import os = rt.gc.cdgc.os;
49 import opts = rt.gc.cdgc.opts;
51 import cstdlib = tango.stdc.stdlib;
52 import cstring = tango.stdc.string;
55 * This is a small optimization that proved it's usefulness. For small chunks
56 * or memory memset() seems to be slower (probably because of the call) that
57 * simply doing a simple loop to set the memory.
59 void memset(void* dst, int c, size_t n)
61 // This number (32) has been determined empirically
63 cstring.memset(dst, c, n);
66 auto p = cast(ubyte*)(dst);
73 // BUG: The following import will likely not work, since the gcc
74 // subdirectory is elsewhere. Instead, perhaps the functions
75 // could be declared directly or some other resolution could
77 static import gcc.builtins; // for __builtin_unwind_int
87 package enum BlkAttr : uint
89 FINALIZE = 0b0000_0001,
90 NO_SCAN = 0b0000_0010,
91 NO_MOVE = 0b0000_0100,
92 ALL_BITS = 0b1111_1111
95 package bool has_pointermap(uint attrs)
97 return !opts.options.conservative && !(attrs & BlkAttr.NO_SCAN);
102 alias void delegate(Object) DEvent;
103 alias void delegate( void*, void* ) scanFn;
104 enum { OPFAIL = ~cast(size_t)0 }
108 version (DigitalMars) version(OSX)
109 oid _d_osx_image_init();
111 void* rt_stackBottom();
113 void rt_finalize( void* p, bool det = true );
114 void rt_attachDisposeEvent(Object h, DEvent e);
115 bool rt_detachDisposeEvent(Object h, DEvent e);
116 void rt_scanStaticData( scanFn scan );
119 bool thread_needLock();
120 void thread_suspendAll();
121 void thread_resumeAll();
122 void thread_scanAll( scanFn fn, void* curStackTop = null );
124 void onOutOfMemoryError();
132 POOLSIZE = (4096*256),
146 B_PAGE, // start of large alloc
147 B_PAGEPLUS, // continuation of large alloc
166 int opCmp(in Range other)
168 if (pbot < other.pbot)
171 return cast(int)(pbot > other.pbot);
176 const uint binsize[B_MAX] = [ 16,32,64,128,256,512,1024,2048,4096 ];
177 const uint notbinsize[B_MAX] = [ ~(16u-1),~(32u-1),~(64u-1),~(128u-1),~(256u-1),
178 ~(512u-1),~(1024u-1),~(2048u-1),~(4096u-1) ];
181 /* ============================ GC =============================== */
184 class GCLock {} // just a dummy so we can get a global lock
195 // !=0 means don't scan stack
200 /// Turn off collections if > 0
203 /// min(pool.baseAddr)
205 /// max(pool.topAddr)
208 /// Free list for each size
209 List*[B_MAX] free_list;
211 dynarray.DynArray!(void*) roots;
212 dynarray.DynArray!(Range) ranges;
213 dynarray.DynArray!(Pool) pools;
218 // call locked if necessary
219 private T locked(T, alias Code)()
221 if (thread_needLock())
222 synchronized (gc.lock) return Code();
231 assert (gc !is null);
233 for (size_t i = 0; i < gc.pools.length; i++) {
234 Pool* pool = gc.pools[i];
237 assert(gc.min_addr == pool.baseAddr);
238 if (i + 1 < gc.pools.length)
239 assert(*pool < gc.pools[i + 1]);
240 else if (i + 1 == gc.pools.length)
241 assert(gc.max_addr == pool.topAddr);
244 gc.roots.Invariant();
245 gc.ranges.Invariant();
247 for (size_t i = 0; i < gc.ranges.length; i++) {
248 assert(gc.ranges[i].pbot);
249 assert(gc.ranges[i].ptop);
250 assert(gc.ranges[i].pbot <= gc.ranges[i].ptop);
253 for (size_t i = 0; i < B_PAGE; i++)
254 for (List *list = gc.free_list[i]; list; list = list.next)
263 * Find Pool that pointer is in.
264 * Return null if not in a Pool.
265 * Assume pools is sorted.
267 Pool* findPool(void* p)
269 if (p < gc.min_addr || p >= gc.max_addr)
271 if (gc.pools.length == 0)
273 if (gc.pools.length == 1)
275 /// The pooltable[] is sorted by address, so do a binary search
277 size_t high = gc.pools.length - 1;
278 while (low <= high) {
279 size_t mid = (low + high) / 2;
280 auto pool = gc.pools[mid];
281 if (p < pool.baseAddr)
283 else if (p >= pool.topAddr)
294 * Determine the base address of the block containing p. If p is not a gc
295 * allocated pointer, return null.
297 BlkInfo getInfo(void* p)
300 Pool* pool = findPool(p);
304 info.base = pool.findBase(p);
305 info.size = pool.findSize(info.base);
306 info.attr = getAttr(pool, cast(size_t)(info.base - pool.baseAddr) / 16u);
307 if (has_pointermap(info.attr)) {
308 info.size -= size_t.sizeof; // PointerMap bitmask
309 // Points to the PointerMap bitmask pointer, not user data
310 if (p >= (info.base + info.size)) {
314 if (opts.options.sentinel) {
315 info.base = sentinel_add(info.base);
316 // points to sentinel data, not user data
317 if (p < info.base || p >= sentinel_post(info.base))
319 info.size -= SENTINEL_EXTRA;
326 * Compute bin for size.
328 Bins findBin(size_t size)
372 * Allocate a new pool of at least size bytes.
373 * Sort it into pools.
374 * Mark all memory in the pool as B_FREE.
375 * Return the actual number of bytes reserved or 0 on error.
377 size_t reserve(size_t size)
380 size_t npages = (size + PAGESIZE - 1) / PAGESIZE;
381 Pool* pool = newPool(npages);
385 return pool.npages * PAGESIZE;
390 * Minimizes physical memory usage by returning free pools to the OS.
398 for (n = 0; n < gc.pools.length; n++)
401 for (pn = 0; pn < pool.npages; pn++)
403 if (cast(Bins)pool.pagetable[pn] != B_FREE)
406 if (pn < pool.npages)
409 gc.pools.remove_at(n);
412 gc.min_addr = gc.pools[0].baseAddr;
413 gc.max_addr = gc.pools[gc.pools.length - 1].topAddr;
418 * Allocate a chunk of memory that is larger than a page.
419 * Return null if out of memory.
421 void *bigAlloc(size_t size)
431 npages = (size + PAGESIZE - 1) / PAGESIZE;
435 // This code could use some refinement when repeatedly
436 // allocating very large arrays.
438 for (n = 0; n < gc.pools.length; n++)
441 pn = pool.allocPages(npages);
456 freedpages = fullcollectshell();
457 if (freedpages >= gc.pools.length * ((POOLSIZE / PAGESIZE) / 4))
462 // Release empty pools to prevent bloat
465 pool = newPool(npages);
471 pn = pool.allocPages(npages);
472 assert(pn != OPFAIL);
475 // Release empty pools to prevent bloat
478 pool = newPool(npages);
481 pn = pool.allocPages(npages);
482 assert(pn != OPFAIL);
492 pool.pagetable[pn] = B_PAGE;
494 memset(&pool.pagetable[pn + 1], B_PAGEPLUS, npages - 1);
495 p = pool.baseAddr + pn * PAGESIZE;
496 memset(cast(char *)p + size, 0, npages * PAGESIZE - size);
497 if (opts.options.mem_stomp)
498 memset(p, 0xF1, size);
502 return null; // let mallocNoSync handle the error
507 * Allocate a new pool with at least npages in it.
508 * Sort it into pools.
509 * Return null if failed.
511 Pool *newPool(size_t npages)
513 // Minimum of POOLSIZE
514 if (npages < POOLSIZE/PAGESIZE)
515 npages = POOLSIZE/PAGESIZE;
516 else if (npages > POOLSIZE/PAGESIZE)
518 // Give us 150% of requested size, so there's room to extend
519 auto n = npages + (npages >> 1);
520 if (n < size_t.max/PAGESIZE)
524 // Allocate successively larger pools up to 8 megs
527 size_t n = gc.pools.length;
529 n = 8; // cap pool size at 8 megs
530 n *= (POOLSIZE / PAGESIZE);
536 p.initialize(npages);
543 Pool* pool = gc.pools.insert_sorted(p);
546 gc.min_addr = gc.pools[0].baseAddr;
547 gc.max_addr = gc.pools[gc.pools.length - 1].topAddr;
554 * Allocate a page of bin's.
558 int allocPage(Bins bin)
566 for (n = 0; n < gc.pools.length; n++)
569 pn = pool.allocPages(1);
576 pool.pagetable[pn] = cast(ubyte)bin;
578 // Convert page to free list
579 size_t size = binsize[bin];
580 List **b = &gc.free_list[bin];
582 p = pool.baseAddr + pn * PAGESIZE;
584 for (; p < ptop; p += size)
586 (cast(List *)p).next = *b;
594 * Marks a range of memory using the conservative bit mask. Used for
595 * the stack, for the data segment, and additional memory ranges.
597 void mark_conservative(void* pbot, void* ptop)
599 mark(pbot, ptop, PointerMap.init.bits.ptr);
604 * Search a range of memory values and mark any pointers into the GC pool.
606 void mark(void *pbot, void *ptop, size_t* pm_bitmask)
608 // TODO: make our own assert because assert uses the GC
609 assert (pbot <= ptop);
611 const BITS_PER_WORD = size_t.sizeof * 8;
613 void **p1 = cast(void **)pbot;
614 void **p2 = cast(void **)ptop;
618 size_t type_size = pm_bitmask[0];
619 size_t* pm_bits = pm_bitmask + 1;
620 bool has_type_info = type_size != 1 || pm_bits[0] != 1 || pm_bits[1] != 0;
622 //printf("marking range: %p -> %p\n", pbot, ptop);
623 for (; p1 + type_size <= p2; p1 += type_size) {
624 for (size_t n = 0; n < type_size; n++) {
625 // scan bit set for this word
627 !(pm_bits[n / BITS_PER_WORD] & (1 << (n % BITS_PER_WORD))))
632 if (p < gc.min_addr || p >= gc.max_addr)
635 if ((cast(size_t)p & ~(PAGESIZE-1)) == pcache)
638 Pool* pool = findPool(p);
641 size_t offset = cast(size_t)(p - pool.baseAddr);
643 size_t pn = offset / PAGESIZE;
644 Bins bin = cast(Bins)pool.pagetable[pn];
646 // Adjust bit to be at start of allocated memory block
648 bit_i = (offset & notbinsize[bin]) >> 4;
649 else if (bin == B_PAGEPLUS)
655 while (cast(Bins)pool.pagetable[pn] == B_PAGEPLUS);
656 bit_i = pn * (PAGESIZE / 16);
660 // Don't mark bits in B_FREE pages
664 if (bin >= B_PAGE) // Cache B_PAGE and B_PAGEPLUS lookups
665 pcache = cast(size_t)p & ~(PAGESIZE-1);
667 if (!pool.mark.test(bit_i))
669 pool.mark.set(bit_i);
670 if (!pool.noscan.test(bit_i))
672 pool.scan.set(bit_i);
680 gc.any_changes = true;
684 * Return number of full pages free'd.
686 size_t fullcollectshell()
688 gc.stats.collection_started();
690 gc.stats.collection_finished();
692 // The purpose of the 'shell' is to ensure all the registers
693 // get put on the stack so they'll be scanned
698 gcc.builtins.__builtin_unwind_init();
705 uint eax,ecx,edx,ebx,ebp,esi,edi;
718 else version (X86_64)
720 ulong rax,rbx,rcx,rdx,rbp,rsi,rdi,r8,r9,r10,r11,r12,r13,r14,r15;
743 static assert( false, "Architecture not supported." );
754 result = fullcollect(sp);
777 size_t fullcollect(void *stackTop)
782 debug(COLLECT_PRINTF) printf("Gcx.fullcollect()\n");
785 gc.stats.world_stopped();
790 gc.any_changes = false;
791 for (n = 0; n < gc.pools.length; n++)
796 pool.freebits.zero();
799 // Mark each free entry, so it doesn't get scanned
800 for (n = 0; n < B_PAGE; n++)
802 for (List *list = gc.free_list[n]; list; list = list.next)
804 pool = findPool(list);
806 pool.freebits.set(cast(size_t)(cast(byte*)list - pool.baseAddr) / 16);
810 for (n = 0; n < gc.pools.length; n++)
813 pool.mark.copy(&pool.freebits);
816 void mark_conservative_dg(void* pbot, void* ptop)
818 mark_conservative(pbot, ptop);
821 rt_scanStaticData(&mark_conservative_dg);
825 // Scan stacks and registers for each paused thread
826 thread_scanAll(&mark_conservative_dg, stackTop);
830 debug(COLLECT_PRINTF) printf("scan roots[]\n");
831 mark_conservative(gc.roots.ptr, gc.roots.ptr + gc.roots.length);
834 debug(COLLECT_PRINTF) printf("scan ranges[]\n");
835 for (n = 0; n < gc.ranges.length; n++)
837 debug(COLLECT_PRINTF) printf("\t%x .. %x\n", gc.ranges[n].pbot, gc.ranges[n].ptop);
838 mark_conservative(gc.ranges[n].pbot, gc.ranges[n].ptop);
841 debug(COLLECT_PRINTF) printf("\tscan heap\n");
842 while (gc.any_changes)
844 gc.any_changes = false;
845 for (n = 0; n < gc.pools.length; n++)
853 bbase = pool.scan.base();
854 btop = bbase + pool.scan.nwords;
855 for (b = bbase; b < btop;)
871 o = pool.baseAddr + (b - bbase) * 32 * 16;
872 if (!(bitm & 0xFFFF))
877 for (; bitm; o += 16, bitm >>= 1)
882 pn = cast(size_t)(o - pool.baseAddr) / PAGESIZE;
883 bin = cast(Bins)pool.pagetable[pn];
885 if (opts.options.conservative)
886 mark_conservative(o, o + binsize[bin]);
888 auto end_of_blk = cast(size_t**)(o +
889 binsize[bin] - size_t.sizeof);
890 size_t* pm_bitmask = *end_of_blk;
891 mark(o, end_of_blk, pm_bitmask);
894 else if (bin == B_PAGE || bin == B_PAGEPLUS)
896 if (bin == B_PAGEPLUS)
898 while (pool.pagetable[pn - 1] != B_PAGE)
902 while (pn + u < pool.npages &&
903 pool.pagetable[pn + u] == B_PAGEPLUS)
906 size_t blk_size = u * PAGESIZE;
907 if (opts.options.conservative)
908 mark_conservative(o, o + blk_size);
910 auto end_of_blk = cast(size_t**)(o + blk_size -
912 size_t* pm_bitmask = *end_of_blk;
913 mark(o, end_of_blk, pm_bitmask);
922 gc.stats.world_started();
924 // Free up everything not marked
925 debug(COLLECT_PRINTF) printf("\tfree'ing\n");
926 size_t freedpages = 0;
928 for (n = 0; n < gc.pools.length; n++)
932 uint* bbase = pool.mark.base();
934 for (pn = 0; pn < pool.npages; pn++, bbase += PAGESIZE / (32 * 16))
936 Bins bin = cast(Bins)pool.pagetable[pn];
940 auto size = binsize[bin];
941 byte* p = pool.baseAddr + pn * PAGESIZE;
942 byte* ptop = p + PAGESIZE;
943 size_t bit_i = pn * (PAGESIZE/16);
944 size_t bit_stride = size / 16;
946 version(none) // BUG: doesn't work because freebits() must also be cleared
948 // If free'd entire page
949 if (bbase[0] == 0 && bbase[1] == 0 && bbase[2] == 0 &&
950 bbase[3] == 0 && bbase[4] == 0 && bbase[5] == 0 &&
951 bbase[6] == 0 && bbase[7] == 0)
953 for (; p < ptop; p += size, bit_i += bit_stride)
955 if (pool.finals.nbits && pool.finals.testClear(bit_i)) {
956 if (opts.options.sentinel)
957 rt_finalize(cast(List *)sentinel_add(p), false/*gc.no_stack > 0*/);
959 rt_finalize(cast(List *)p, false/*gc.no_stack > 0*/);
961 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
963 List *list = cast(List *)p;
965 if (opts.options.mem_stomp)
966 memset(p, 0xF3, size);
968 pool.pagetable[pn] = B_FREE;
973 for (; p < ptop; p += size, bit_i += bit_stride)
975 if (!pool.mark.test(bit_i))
977 if (opts.options.sentinel)
978 sentinel_Invariant(sentinel_add(p));
980 pool.freebits.set(bit_i);
981 if (pool.finals.nbits && pool.finals.testClear(bit_i)) {
982 if (opts.options.sentinel)
983 rt_finalize(cast(List *)sentinel_add(p), false/*gc.no_stack > 0*/);
985 rt_finalize(cast(List *)p, false/*gc.no_stack > 0*/);
987 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
989 List *list = cast(List *)p;
991 if (opts.options.mem_stomp)
992 memset(p, 0xF3, size);
998 else if (bin == B_PAGE)
1000 size_t bit_i = pn * (PAGESIZE / 16);
1001 if (!pool.mark.test(bit_i))
1003 byte *p = pool.baseAddr + pn * PAGESIZE;
1004 if (opts.options.sentinel)
1005 sentinel_Invariant(sentinel_add(p));
1006 if (pool.finals.nbits && pool.finals.testClear(bit_i)) {
1007 if (opts.options.sentinel)
1008 rt_finalize(sentinel_add(p), false/*gc.no_stack > 0*/);
1010 rt_finalize(p, false/*gc.no_stack > 0*/);
1012 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
1014 debug(COLLECT_PRINTF) printf("\tcollecting big %x\n", p);
1015 pool.pagetable[pn] = B_FREE;
1017 if (opts.options.mem_stomp)
1018 memset(p, 0xF3, PAGESIZE);
1019 while (pn + 1 < pool.npages && pool.pagetable[pn + 1] == B_PAGEPLUS)
1022 pool.pagetable[pn] = B_FREE;
1025 if (opts.options.mem_stomp)
1028 memset(p, 0xF3, PAGESIZE);
1037 gc.free_list[] = null;
1039 // Free complete pages, rebuild free list
1040 debug(COLLECT_PRINTF) printf("\tfree complete pages\n");
1041 size_t recoveredpages = 0;
1042 for (n = 0; n < gc.pools.length; n++)
1045 for (size_t pn = 0; pn < pool.npages; pn++)
1047 Bins bin = cast(Bins)pool.pagetable[pn];
1053 size_t size = binsize[bin];
1054 size_t bit_stride = size / 16;
1055 size_t bit_base = pn * (PAGESIZE / 16);
1056 size_t bit_top = bit_base + (PAGESIZE / 16);
1060 for (; bit_i < bit_top; bit_i += bit_stride)
1062 if (!pool.freebits.test(bit_i))
1065 pool.pagetable[pn] = B_FREE;
1070 p = pool.baseAddr + pn * PAGESIZE;
1071 for (u = 0; u < PAGESIZE; u += size)
1073 bit_i = bit_base + u / 16;
1074 if (pool.freebits.test(bit_i))
1076 List *list = cast(List *)(p + u);
1077 // avoid unnecessary writes
1078 if (list.next != gc.free_list[bin])
1079 list.next = gc.free_list[bin];
1080 gc.free_list[bin] = list;
1087 debug(COLLECT_PRINTF) printf("recovered pages = %d\n", recoveredpages);
1088 debug(COLLECT_PRINTF) printf("\tfree'd %u bytes, %u pages from %u pools\n", freed, freedpages, gc.pools.length);
1090 return freedpages + recoveredpages;
1097 uint getAttr(Pool* pool, size_t bit_i)
1106 if (pool.finals.nbits &&
1107 pool.finals.test(bit_i))
1108 attrs |= BlkAttr.FINALIZE;
1109 if (pool.noscan.test(bit_i))
1110 attrs |= BlkAttr.NO_SCAN;
1111 // if (pool.nomove.nbits &&
1112 // pool.nomove.test(bit_i))
1113 // attrs |= BlkAttr.NO_MOVE;
1121 void setAttr(Pool* pool, size_t bit_i, uint mask)
1128 if (mask & BlkAttr.FINALIZE)
1130 if (!pool.finals.nbits)
1131 pool.finals.alloc(pool.mark.nbits);
1132 pool.finals.set(bit_i);
1134 if (mask & BlkAttr.NO_SCAN)
1136 pool.noscan.set(bit_i);
1138 // if (mask & BlkAttr.NO_MOVE)
1140 // if (!pool.nomove.nbits)
1141 // pool.nomove.alloc(pool.mark.nbits);
1142 // pool.nomove.set(bit_i);
1150 void clrAttr(Pool* pool, size_t bit_i, uint mask)
1157 if (mask & BlkAttr.FINALIZE && pool.finals.nbits)
1158 pool.finals.clear(bit_i);
1159 if (mask & BlkAttr.NO_SCAN)
1160 pool.noscan.clear(bit_i);
1161 // if (mask & BlkAttr.NO_MOVE && pool.nomove.nbits)
1162 // pool.nomove.clear(bit_i);
1170 gc.stack_bottom = cast(char*)&dummy;
1171 opts.parse(cstdlib.getenv("D_GC_OPTS"));
1172 gc.lock = GCLock.classinfo;
1174 setStackBottom(rt_stackBottom());
1175 gc.stats = Stats(gc);
1182 private void *malloc(size_t size, uint attrs, size_t* pm_bitmask)
1186 gc.stats.malloc_started(size, attrs, pm_bitmask);
1188 gc.stats.malloc_finished(p);
1193 if (opts.options.sentinel)
1194 size += SENTINEL_EXTRA;
1196 bool has_pm = has_pointermap(attrs);
1198 size += size_t.sizeof;
1201 // Cache previous binsize lookup - Dave Fladebo.
1202 static size_t lastsize = -1;
1203 static Bins lastbin;
1204 if (size == lastsize)
1208 bin = findBin(size);
1213 size_t capacity; // to figure out where to store the bitmask
1216 p = gc.free_list[bin];
1219 if (!allocPage(bin) && !gc.disabled) // try to find a new page
1221 if (!thread_needLock())
1223 /* Then we haven't locked it yet. Be sure
1224 * and gc.lock for a collection, since a finalizer
1225 * may start a new thread.
1227 synchronized (gc.lock)
1232 else if (!fullcollectshell()) // collect to find a new page
1237 if (!gc.free_list[bin] && !allocPage(bin))
1239 newPool(1); // allocate new pool to find a new page
1240 int result = allocPage(bin);
1242 onOutOfMemoryError();
1244 p = gc.free_list[bin];
1246 capacity = binsize[bin];
1248 // Return next item from free list
1249 gc.free_list[bin] = (cast(List*)p).next;
1250 if (!(attrs & BlkAttr.NO_SCAN))
1251 memset(p + size, 0, capacity - size);
1252 if (opts.options.mem_stomp)
1253 memset(p, 0xF0, size);
1259 onOutOfMemoryError();
1260 // Round the size up to the number of pages needed to store it
1261 size_t npages = (size + PAGESIZE - 1) / PAGESIZE;
1262 capacity = npages * PAGESIZE;
1265 // Store the bit mask AFTER SENTINEL_POST
1266 // TODO: store it BEFORE, so the bitmask is protected too
1268 auto end_of_blk = cast(size_t**)(p + capacity - size_t.sizeof);
1269 *end_of_blk = pm_bitmask;
1270 size -= size_t.sizeof;
1273 if (opts.options.sentinel) {
1274 size -= SENTINEL_EXTRA;
1275 p = sentinel_add(p);
1276 sentinel_init(p, size);
1281 Pool *pool = findPool(p);
1284 setAttr(pool, cast(size_t)(p - pool.baseAddr) / 16, attrs);
1293 private void *calloc(size_t size, uint attrs, size_t* pm_bitmask)
1297 void *p = malloc(size, attrs, pm_bitmask);
1306 private void *realloc(void *p, size_t size, uint attrs,
1319 p = malloc(size, attrs, pm_bitmask);
1323 Pool* pool = findPool(p);
1327 // Set or retrieve attributes as appropriate
1328 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
1330 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
1331 setAttr(pool, bit_i, attrs);
1334 attrs = getAttr(pool, bit_i);
1336 void* blk_base_addr = pool.findBase(p);
1337 size_t blk_size = pool.findSize(p);
1338 bool has_pm = has_pointermap(attrs);
1339 size_t pm_bitmask_size = 0;
1341 pm_bitmask_size = size_t.sizeof;
1342 // Retrieve pointer map bit mask if appropriate
1343 if (pm_bitmask is null) {
1344 auto end_of_blk = cast(size_t**)(blk_base_addr +
1345 blk_size - size_t.sizeof);
1346 pm_bitmask = *end_of_blk;
1350 if (opts.options.sentinel)
1352 sentinel_Invariant(p);
1353 size_t sentinel_stored_size = *sentinel_size(p);
1354 if (sentinel_stored_size != size)
1356 void* p2 = malloc(size, attrs, pm_bitmask);
1357 if (sentinel_stored_size < size)
1358 size = sentinel_stored_size;
1359 cstring.memcpy(p2, p, size);
1365 size += pm_bitmask_size;
1366 if (blk_size >= PAGESIZE && size >= PAGESIZE)
1368 auto psz = blk_size / PAGESIZE;
1369 auto newsz = (size + PAGESIZE - 1) / PAGESIZE;
1373 auto pagenum = (p - pool.baseAddr) / PAGESIZE;
1378 if (opts.options.mem_stomp)
1379 memset(p + size - pm_bitmask_size, 0xF2,
1380 blk_size - size - pm_bitmask_size);
1381 pool.freePages(pagenum + newsz, psz - newsz);
1383 auto end_of_blk = cast(size_t**)(
1384 blk_base_addr + (PAGESIZE * newsz) -
1386 *end_of_blk = pm_bitmask;
1390 else if (pagenum + newsz <= pool.npages)
1392 // Attempt to expand in place
1393 for (size_t i = pagenum + psz; 1;)
1395 if (i == pagenum + newsz)
1397 if (opts.options.mem_stomp)
1398 memset(p + blk_size - pm_bitmask_size,
1399 0xF0, size - blk_size
1401 memset(pool.pagetable + pagenum +
1402 psz, B_PAGEPLUS, newsz - psz);
1404 auto end_of_blk = cast(size_t**)(
1406 (PAGESIZE * newsz) -
1408 *end_of_blk = pm_bitmask;
1412 if (i == pool.npages)
1416 if (pool.pagetable[i] != B_FREE)
1422 // if new size is bigger or less than half
1423 if (blk_size < size || blk_size > size * 2)
1425 size -= pm_bitmask_size;
1426 blk_size -= pm_bitmask_size;
1427 void* p2 = malloc(size, attrs, pm_bitmask);
1428 if (blk_size < size)
1430 cstring.memcpy(p2, p, size);
1440 * Attempt to in-place enlarge the memory block pointed to by p by at least
1441 * min_size beyond its current capacity, up to a maximum of max_size. This
1442 * does not attempt to move the memory block (like realloc() does).
1445 * 0 if could not extend p,
1446 * total size of entire memory block if successful.
1448 private size_t extend(void* p, size_t minsize, size_t maxsize)
1451 assert( minsize <= maxsize );
1455 if (opts.options.sentinel)
1458 Pool* pool = findPool(p);
1462 // Retrieve attributes
1463 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
1464 uint attrs = getAttr(pool, bit_i);
1466 void* blk_base_addr = pool.findBase(p);
1467 size_t blk_size = pool.findSize(p);
1468 bool has_pm = has_pointermap(attrs);
1469 size_t* pm_bitmask = null;
1470 size_t pm_bitmask_size = 0;
1472 pm_bitmask_size = size_t.sizeof;
1473 // Retrieve pointer map bit mask
1474 auto end_of_blk = cast(size_t**)(blk_base_addr +
1475 blk_size - size_t.sizeof);
1476 pm_bitmask = *end_of_blk;
1478 minsize += size_t.sizeof;
1479 maxsize += size_t.sizeof;
1482 if (blk_size < PAGESIZE)
1483 return 0; // cannot extend buckets
1485 auto psz = blk_size / PAGESIZE;
1486 auto minsz = (minsize + PAGESIZE - 1) / PAGESIZE;
1487 auto maxsz = (maxsize + PAGESIZE - 1) / PAGESIZE;
1489 auto pagenum = (p - pool.baseAddr) / PAGESIZE;
1492 for (sz = 0; sz < maxsz; sz++)
1494 auto i = pagenum + psz + sz;
1495 if (i == pool.npages)
1497 if (pool.pagetable[i] != B_FREE)
1507 size_t new_size = (psz + sz) * PAGESIZE;
1509 if (opts.options.mem_stomp)
1510 memset(p + blk_size - pm_bitmask_size, 0xF0,
1511 new_size - blk_size - pm_bitmask_size);
1512 memset(pool.pagetable + pagenum + psz, B_PAGEPLUS, sz);
1517 new_size -= size_t.sizeof;
1518 auto end_of_blk = cast(size_t**)(blk_base_addr + new_size);
1519 *end_of_blk = pm_bitmask;
1528 private void free(void *p)
1537 // Find which page it is in
1539 if (!pool) // if not one of ours
1541 if (opts.options.sentinel) {
1542 sentinel_Invariant(p);
1543 p = sentinel_sub(p);
1545 pagenum = cast(size_t)(p - pool.baseAddr) / PAGESIZE;
1546 bit_i = cast(size_t)(p - pool.baseAddr) / 16;
1547 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
1549 bin = cast(Bins)pool.pagetable[pagenum];
1550 if (bin == B_PAGE) // if large alloc
1555 while (++n < pool.npages && pool.pagetable[n] == B_PAGEPLUS)
1557 if (opts.options.mem_stomp)
1558 memset(p, 0xF2, npages * PAGESIZE);
1559 pool.freePages(pagenum, npages);
1564 List *list = cast(List*)p;
1566 if (opts.options.mem_stomp)
1567 memset(p, 0xF2, binsize[bin]);
1569 list.next = gc.free_list[bin];
1570 gc.free_list[bin] = list;
1576 * Determine the allocated size of pointer p. If p is an interior pointer
1577 * or not a gc allocated pointer, return 0.
1579 private size_t sizeOf(void *p)
1583 if (opts.options.sentinel)
1584 p = sentinel_sub(p);
1586 Pool* pool = findPool(p);
1590 auto biti = cast(size_t)(p - pool.baseAddr) / 16;
1591 uint attrs = getAttr(pool, biti);
1593 size_t size = pool.findSize(p);
1594 size_t pm_bitmask_size = 0;
1595 if (has_pointermap(attrs))
1596 pm_bitmask_size = size_t.sizeof;
1598 if (opts.options.sentinel) {
1599 // Check for interior pointer
1601 // 1) size is a power of 2 for less than PAGESIZE values
1602 // 2) base of memory pool is aligned on PAGESIZE boundary
1603 if (cast(size_t)p & (size - 1) & (PAGESIZE - 1))
1605 return size - SENTINEL_EXTRA - pm_bitmask_size;
1608 if (p == gc.p_cache)
1609 return gc.size_cache;
1611 // Check for interior pointer
1613 // 1) size is a power of 2 for less than PAGESIZE values
1614 // 2) base of memory pool is aligned on PAGESIZE boundary
1615 if (cast(size_t)p & (size - 1) & (PAGESIZE - 1))
1619 gc.size_cache = size - pm_bitmask_size;
1621 return gc.size_cache;
1627 * Verify that pointer p:
1628 * 1) belongs to this memory pool
1629 * 2) points to the start of an allocated piece of memory
1630 * 3) is not on a free list
1632 private void checkNoSync(void *p)
1636 if (opts.options.sentinel)
1637 sentinel_Invariant(p);
1645 if (opts.options.sentinel)
1646 p = sentinel_sub(p);
1649 pagenum = cast(size_t)(p - pool.baseAddr) / PAGESIZE;
1650 bin = cast(Bins)pool.pagetable[pagenum];
1651 assert(bin <= B_PAGE);
1652 size = binsize[bin];
1653 assert((cast(size_t)p & (size - 1)) == 0);
1659 // Check that p is not on a free list
1662 for (list = gc.free_list[bin]; list; list = list.next)
1664 assert(cast(void*)list != p);
1675 private void setStackBottom(void *p)
1677 version (STACKGROWSDOWN)
1679 //p = (void *)((uint *)p + 4);
1680 if (p > gc.stack_bottom)
1682 gc.stack_bottom = p;
1687 //p = (void *)((uint *)p - 4);
1688 if (p < gc.stack_bottom)
1690 gc.stack_bottom = cast(char*)p;
1697 * Retrieve statistics about garbage collection.
1698 * Useful for debugging and tuning.
1700 private GCStats getStats()
1710 for (n = 0; n < gc.pools.length; n++)
1712 Pool* pool = gc.pools[n];
1713 psize += pool.npages * PAGESIZE;
1714 for (size_t j = 0; j < pool.npages; j++)
1716 Bins bin = cast(Bins)pool.pagetable[j];
1719 else if (bin == B_PAGE)
1721 else if (bin < B_PAGE)
1726 for (n = 0; n < B_PAGE; n++)
1728 for (List *list = gc.free_list[n]; list; list = list.next)
1729 flsize += binsize[n];
1732 usize = bsize - flsize;
1734 stats.poolsize = psize;
1735 stats.usedsize = bsize - flsize;
1736 stats.freelistsize = flsize;
1740 /******************* weak-reference support *********************/
1742 private struct WeakPointer
1746 void ondestroy(Object r)
1748 assert(r is reference);
1749 // lock for memory consistency (parallel readers)
1750 // also ensures that weakpointerDestroy can be called while another
1751 // thread is freeing the reference with "delete"
1752 return locked!(void, () {
1759 * Create a weak pointer to the given object.
1760 * Returns a pointer to an opaque struct allocated in C memory.
1762 void* weakpointerCreate( Object r )
1766 // must be allocated in C memory
1767 // 1. to hide the reference from the GC
1768 // 2. the GC doesn't scan delegates added by rt_attachDisposeEvent
1770 auto wp = cast(WeakPointer*)(cstdlib.malloc(WeakPointer.sizeof));
1772 onOutOfMemoryError();
1774 rt_attachDisposeEvent(r, &wp.ondestroy);
1781 * Destroy a weak pointer returned by weakpointerCreate().
1782 * If null is passed, nothing happens.
1784 void weakpointerDestroy( void* p )
1788 auto wp = cast(WeakPointer*)p;
1789 // must be extra careful about the GC or parallel threads
1790 // finalizing the reference at the same time
1791 return locked!(void, () {
1793 rt_detachDisposeEvent(wp.reference, &wp.ondestroy);
1800 * Query a weak pointer and return either the object passed to
1801 * weakpointerCreate, or null if it was free'd in the meantime.
1802 * If null is passed, null is returned.
1804 Object weakpointerGet( void* p )
1808 // NOTE: could avoid the lock by using Fawzi style GC counters but
1809 // that'd require core.sync.Atomic and lots of care about memory
1810 // consistency it's an optional optimization see
1811 // http://dsource.org/projects/tango/browser/trunk/user/tango/core/Lifetime.d?rev=5100#L158
1812 return locked!(Object, () {
1813 return (cast(WeakPointer*)p).reference;
1819 /* ============================ Pool =============================== */
1826 GCBits mark; // entries already scanned, or should not be scanned
1827 GCBits scan; // entries that need to be scanned
1828 GCBits freebits; // entries that are on the free list
1829 GCBits finals; // entries that need finalizer run on them
1830 GCBits noscan; // entries that should not be scanned
1835 /// Cache for findSize()
1841 this.cached_ptr = null;
1842 this.cached_size = 0;
1845 void initialize(size_t npages)
1847 size_t poolsize = npages * PAGESIZE;
1848 assert(poolsize >= POOLSIZE);
1849 baseAddr = cast(byte *) os.alloc(poolsize);
1851 // Some of the code depends on page alignment of memory pools
1852 assert((cast(size_t)baseAddr & (PAGESIZE - 1)) == 0);
1860 topAddr = baseAddr + poolsize;
1862 mark.alloc(cast(size_t)poolsize / 16);
1863 scan.alloc(cast(size_t)poolsize / 16);
1864 freebits.alloc(cast(size_t)poolsize / 16);
1865 noscan.alloc(cast(size_t)poolsize / 16);
1867 pagetable = cast(ubyte*) cstdlib.malloc(npages);
1869 onOutOfMemoryError();
1870 memset(pagetable, B_FREE, npages);
1872 this.npages = npages;
1884 result = os.dealloc(baseAddr, npages * PAGESIZE);
1892 // See Gcx.Dtor() for the rationale of the null check.
1894 cstdlib.free(pagetable);
1914 //freebits.Invariant();
1915 //finals.Invariant();
1916 //noscan.Invariant();
1920 //if (baseAddr + npages * PAGESIZE != topAddr)
1921 //printf("baseAddr = %p, npages = %d, topAddr = %p\n", baseAddr, npages, topAddr);
1922 assert(baseAddr + npages * PAGESIZE == topAddr);
1925 for (size_t i = 0; i < npages; i++)
1927 Bins bin = cast(Bins)pagetable[i];
1928 assert(bin < B_MAX);
1934 * Allocate n pages from Pool.
1935 * Returns OPFAIL on failure.
1937 size_t allocPages(size_t n)
1943 for (i = 0; i < npages; i++)
1945 if (pagetable[i] == B_FREE)
1958 * Free npages pages starting with pagenum.
1960 void freePages(size_t pagenum, size_t npages)
1962 memset(&pagetable[pagenum], B_FREE, npages);
1967 * Find base address of block containing pointer p.
1968 * Returns null if the pointer doesn't belong to this pool
1970 void* findBase(void *p)
1972 size_t offset = cast(size_t)(p - this.baseAddr);
1973 size_t pagenum = offset / PAGESIZE;
1974 Bins bin = cast(Bins)this.pagetable[pagenum];
1975 // Adjust bit to be at start of allocated memory block
1977 return this.baseAddr + (offset & notbinsize[bin]);
1978 if (bin == B_PAGEPLUS) {
1980 --pagenum, offset -= PAGESIZE;
1981 } while (cast(Bins)this.pagetable[pagenum] == B_PAGEPLUS);
1982 return this.baseAddr + (offset & (offset.max ^ (PAGESIZE-1)));
1984 // we are in a B_FREE page
1990 * Find size of pointer p.
1991 * Returns 0 if p doesn't belong to this pool if if it's block size is less
1994 size_t findSize(void *p)
1996 size_t pagenum = cast(size_t)(p - this.baseAddr) / PAGESIZE;
1997 Bins bin = cast(Bins)this.pagetable[pagenum];
1999 return binsize[bin];
2000 if (this.cached_ptr == p)
2001 return this.cached_size;
2002 size_t i = pagenum + 1;
2003 for (; i < this.npages; i++)
2004 if (this.pagetable[i] != B_PAGEPLUS)
2006 this.cached_ptr = p;
2007 this.cached_size = (i - pagenum) * PAGESIZE;
2008 return this.cached_size;
2013 * Used for sorting pools
2015 int opCmp(in Pool other)
2017 if (baseAddr < other.baseAddr)
2020 return cast(int)(baseAddr > other.baseAddr);
2025 /* ============================ SENTINEL =============================== */
2028 const size_t SENTINEL_PRE = cast(size_t) 0xF4F4F4F4F4F4F4F4UL; // 32 or 64 bits
2029 const ubyte SENTINEL_POST = 0xF5; // 8 bits
2030 const uint SENTINEL_EXTRA = 2 * size_t.sizeof + 1;
2033 size_t* sentinel_size(void *p) { return &(cast(size_t *)p)[-2]; }
2034 size_t* sentinel_pre(void *p) { return &(cast(size_t *)p)[-1]; }
2035 ubyte* sentinel_post(void *p) { return &(cast(ubyte *)p)[*sentinel_size(p)]; }
2038 void sentinel_init(void *p, size_t size)
2040 *sentinel_size(p) = size;
2041 *sentinel_pre(p) = SENTINEL_PRE;
2042 *sentinel_post(p) = SENTINEL_POST;
2046 void sentinel_Invariant(void *p)
2048 assert(*sentinel_pre(p) == SENTINEL_PRE);
2049 assert(*sentinel_post(p) == SENTINEL_POST);
2053 void *sentinel_add(void *p)
2055 return p + 2 * size_t.sizeof;
2059 void *sentinel_sub(void *p)
2061 return p - 2 * size_t.sizeof;
2066 /* ============================ C Public Interface ======================== */
2069 private int _termCleanupLevel=1;
2073 /// sets the cleanup level done by gc
2076 /// 2: fullCollect ignoring stack roots (might crash daemonThreads)
2077 /// result !=0 if the value was invalid
2078 int gc_setTermCleanupLevel(int cLevel)
2080 if (cLevel<0 || cLevel>2) return cLevel;
2081 _termCleanupLevel=cLevel;
2085 /// returns the cleanup level done by gc
2086 int gc_getTermCleanupLevel()
2088 return _termCleanupLevel;
2093 scope (exit) assert (Invariant());
2094 gc = cast(GC*) cstdlib.calloc(1, GC.sizeof);
2097 version (DigitalMars) version(OSX) {
2098 _d_osx_image_init();
2100 // NOTE: The GC must initialize the thread library
2101 // before its first collection.
2107 assert (Invariant());
2108 if (_termCleanupLevel<1) {
2110 } else if (_termCleanupLevel==2){
2111 // a more complete cleanup
2112 // NOTE: There may be daemons threads still running when this routine is
2113 // called. If so, cleaning memory out from under then is a good
2114 // way to make them crash horribly.
2115 // Often this probably doesn't matter much since the app is
2116 // supposed to be shutting down anyway, but for example tests might
2117 // crash (and be considerd failed even if the test was ok).
2118 // thus this is not the default and should be enabled by
2119 // I'm disabling cleanup for now until I can think about it some
2122 // not really a 'collect all' -- still scans static data area, roots,
2124 return locked!(void, () {
2130 // default (safe) clenup
2131 return locked!(void, () {
2139 return locked!(void, () {
2140 assert (Invariant()); scope (exit) assert (Invariant());
2141 assert (gc.disabled > 0);
2148 return locked!(void, () {
2149 assert (Invariant()); scope (exit) assert (Invariant());
2156 return locked!(void, () {
2157 assert (Invariant()); scope (exit) assert (Invariant());
2165 return locked!(void, () {
2166 assert (Invariant()); scope (exit) assert (Invariant());
2171 uint gc_getAttr(void* p)
2175 return locked!(uint, () {
2176 assert (Invariant()); scope (exit) assert (Invariant());
2177 Pool* pool = findPool(p);
2180 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
2181 return getAttr(pool, bit_i);
2185 uint gc_setAttr(void* p, uint attrs)
2189 return locked!(uint, () {
2190 assert (Invariant()); scope (exit) assert (Invariant());
2191 Pool* pool = findPool(p);
2194 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
2195 uint old_attrs = getAttr(pool, bit_i);
2196 setAttr(pool, bit_i, attrs);
2201 uint gc_clrAttr(void* p, uint attrs)
2205 return locked!(uint, () {
2206 assert (Invariant()); scope (exit) assert (Invariant());
2207 Pool* pool = findPool(p);
2210 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
2211 uint old_attrs = getAttr(pool, bit_i);
2212 clrAttr(pool, bit_i, attrs);
2217 void* gc_malloc(size_t size, uint attrs = 0,
2218 PointerMap ptrmap = PointerMap.init)
2222 return locked!(void*, () {
2223 assert (Invariant()); scope (exit) assert (Invariant());
2224 return malloc(size, attrs, ptrmap.bits.ptr);
2228 void* gc_calloc(size_t size, uint attrs = 0,
2229 PointerMap ptrmap = PointerMap.init)
2233 return locked!(void*, () {
2234 assert (Invariant()); scope (exit) assert (Invariant());
2235 return calloc(size, attrs, ptrmap.bits.ptr);
2239 void* gc_realloc(void* p, size_t size, uint attrs = 0,
2240 PointerMap ptrmap = PointerMap.init)
2242 return locked!(void*, () {
2243 assert (Invariant()); scope (exit) assert (Invariant());
2244 return realloc(p, size, attrs, ptrmap.bits.ptr);
2248 size_t gc_extend(void* p, size_t min_size, size_t max_size)
2250 return locked!(size_t, () {
2251 assert (Invariant()); scope (exit) assert (Invariant());
2252 return extend(p, min_size, max_size);
2256 size_t gc_reserve(size_t size)
2260 return locked!(size_t, () {
2261 assert (Invariant()); scope (exit) assert (Invariant());
2262 return reserve(size);
2266 void gc_free(void* p)
2270 return locked!(void, () {
2271 assert (Invariant()); scope (exit) assert (Invariant());
2276 void* gc_addrOf(void* p)
2280 return locked!(void*, () {
2281 assert (Invariant()); scope (exit) assert (Invariant());
2282 Pool* pool = findPool(p);
2285 return pool.findBase(p);
2289 size_t gc_sizeOf(void* p)
2293 return locked!(size_t, () {
2294 assert (Invariant()); scope (exit) assert (Invariant());
2299 BlkInfo gc_query(void* p)
2302 return BlkInfo.init;
2303 return locked!(BlkInfo, () {
2304 assert (Invariant()); scope (exit) assert (Invariant());
2309 // NOTE: This routine is experimental. The stats or function name may change
2310 // before it is made officially available.
2313 return locked!(GCStats, () {
2314 assert (Invariant()); scope (exit) assert (Invariant());
2319 void gc_addRoot(void* p)
2323 return locked!(void, () {
2324 assert (Invariant()); scope (exit) assert (Invariant());
2325 if (gc.roots.append(p) is null)
2326 onOutOfMemoryError();
2330 void gc_addRange(void* p, size_t size)
2332 if (p is null || size == 0)
2334 return locked!(void, () {
2335 assert (Invariant()); scope (exit) assert (Invariant());
2336 if (gc.ranges.append(Range(p, p + size)) is null)
2337 onOutOfMemoryError();
2341 void gc_removeRoot(void* p)
2345 return locked!(void, () {
2346 assert (Invariant()); scope (exit) assert (Invariant());
2347 bool r = gc.roots.remove(p);
2352 void gc_removeRange(void* p)
2356 return locked!(void, () {
2357 assert (Invariant()); scope (exit) assert (Invariant());
2358 bool r = gc.ranges.remove(Range(p, null));
2363 void* gc_weakpointerCreate(Object r)
2365 // weakpointers do their own locking
2366 return weakpointerCreate(r);
2369 void gc_weakpointerDestroy(void* wp)
2371 // weakpointers do their own locking
2372 weakpointerDestroy(wp);
2375 Object gc_weakpointerGet(void* wp)
2377 // weakpointers do their own locking
2378 return weakpointerGet(wp);
2382 // vim: set et sw=4 sts=4 :